Package ‘VizOR’

December 14, 2016

Type Package
Title Graphical Visualization Tools for Complex Observational Data with Focus on Health Sciences
Version 0.8-5
Date 2016-12-13
Maintainer David C. Norris <david@dnc-llc.com>
Description Provides individual- and aggregate-level graphical depictions of patterns of treatment and response in patient registries, and a graphical tool for examining potential for confounding in analyses of observational data.
License GPL (>= 2)
LazyLoad yes
Depends lattice, grid
Imports rms, methods
Suggests shiny
RoxygenNote 5.0.1
NeedsCompilation no
Author Drew Griffin Levy [aut], David C. Norris [aut, cre]
Repository CRAN
Date/Publication 2016-12-14 00:27:16

R topics documented:

VizOR-package .. 2
alphatize .. 3
color ... 3
color.colored ... 4
colored ... 4
Graphical visualization tools for complex observational data (VizOR).
Package functionality includes individual- and aggregate-level graphics depicting patterns of treatment and response in patient registries, and a graphical tool for identifying potential for confounding in analyses of observational data.

Description

<table>
<thead>
<tr>
<th>Package</th>
<th>VizOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.8-3</td>
</tr>
<tr>
<td>Date</td>
<td>2014-09-11</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

TODO: Provide a general introduction to the package, including an orientation to its most important functions.

Author(s)

Drew Griffin Levy, PhD
Senior Medical Science Director
Genentech, Inc.
Evidence Science & Innovation | US Medical Affairs
<levy.drew@gene.com>
alhatize

David C. Norris, MD
David Norris Consulting, LLC
<david@dnc-llc.com>

See Also
Hmisc, rms

alphatize

Apply alpha transparency to a color vector

Description

Apply alpha transparency to a color vector

Usage

alphatize(color, alpha)

Arguments

color A vector of colors
alpha A vector of alpha values, recycled as necessary

Value

A vector of colors, with alpha applied

Author(s)

David C. Norris

color

Generic function color

Description

This generic function supports extraction of colors from colored objects

Usage

color(x, ...)

Arguments

x A colored object
... Additional arguments
Value

A vector of colors

`color.colored`
Returns the vector of colors associated with the factor levels.

Description

Returns the vector of colors associated with the factor levels.

Usage

```
## S3 method for class 'colored'
color(x, ...)
```

Arguments

- `x`
 A colored factor
- `...`
 Additional arguments (unused)

Value

A (character) vector of colors, having the same length as `x`

Author(s)

David C. Norris

See Also

`colored`

`colored`
Create a colored factor, an object of class c('colored','factor') or c('colored','ordered'), from a character vector or factor x.

Description

Colored factors permit persistent association of color to a factor, supporting consistent graphical treatment across multiple plots.

Usage

```
colored(x, color.key, ordered = is.ordered(x), default = NA)
```

Arguments

- **x**: A character vector or factor
- **color.key**: A named vector or list mapping factor levels (the names) to colors (the values). If missing (as is likely in initial exploratory analyses), this is generated automatically as a convenience to the user. In case an ordered factor is generated, the order of the levels is determined by the ordering in color.key.
- **ordered**: A logical value stating whether the factor should be ordered
- **default**: An optional argument; when provided, it gives a string in names(color.key) to which all non-matching values of x should be mapped. The effect will be to collect possibly many factor levels under a single key entry. A common choice might be, for example, default='OTHER'.

Value

An object of class `c('colored',['ordered','factor')`

Author(s)

David C. Norris

Examples

```r
# This is an example of de novo construction of a colored factor
weekdays <- colored(c("Mon","Tue","Wed","Thu","Fri"),
  color.key=c(Mon="blue",Tue="red",Wed="yellow",
  Thu="purple",Fri="green"))

# This demonstrates how one might use the 'colored' constructor
# to expand the level set of an existing factor.
week <- colored(weekdays,
  color.key=c(Sun="white", key(weekdays), Sat="gray"),
  ordered=TRUE)

# Note that 'droplevels.factor' works fine on colored factors
levels(week)
levels(droplevels(week))
```

controller

Provides a GUI panel offering dynamic control of the adjust-to settings of the partial effects plot of an rms fit object.

Description

The parameters are identified automatically by inspection of the fit object, and widgets appropriate to their data types are chosen automatically.

Usage

```r
controller(fit, datadist = NULL)
```
Arguments

fit The rms fit object to be visualized
datadist Optionally, a datadist for the fitted object may be provided, conveniently enabling use of this function with models in which logical covariates are not typed as such, but represented in 0,1, or in which covariates more properly coded as ordered factors are represented instead as a finite number of integer values.

Value

A controller panel is popped up on the screen, along with a partial effects plot for the fit object. No value is returned.

Author(s)

David C. Norris

droplevels.colored Drop unused levels from a colored factor

Description

Drop unused levels from a colored factor and its color key

Usage

S3 method for class 'colored'
droplevels(x, ...)

Arguments

x a colored factor
... further arguments passed to methods

Details

This subclass method extends droplevels.factor to handle updating of the special color key attribute of colored factors.

Value

a colored factor with no unused levels

Author(s)

David C. Norris
Description
This function serves to ‘complete’ \texttt{rms::fastbw}, such that it converts one fitted model to another, the restricted model.

Usage
\begin{verbatim}
fastback(fit, data, ...)
\end{verbatim}

Arguments
\begin{itemize}
 \item \texttt{fit} \hspace{1cm} A model fit of class \texttt{rms}
 \item \texttt{data} \hspace{1cm} The data against which \texttt{fit} was estimated
 \item \texttt{...} \hspace{1cm} Other parameters to be passed to \texttt{fastbw}
\end{itemize}

Value
A fitted model of the same type as \texttt{fit}, with regressors chosen by stepwise backward regression

Author(s)
David C. Norris

key

Generic function ‘\texttt{key}’

Description
This generic function supports extraction of color keys from colored factors, via the specific method \texttt{key.colored}

Usage
\begin{verbatim}
key(x, ...)
\end{verbatim}

Arguments
\begin{itemize}
 \item \texttt{x} \hspace{1cm} A colored object
 \item \texttt{...} \hspace{1cm} Additional arguments
\end{itemize}

Value
A vector of colors
key.colored

Extract the color key from a colored factor

Description

Return a colored factor’s key, mapping its levels to their colors. Returns a named vector, mapping
the factor levels (names) to their associated colors (values). Useful for constructing plot keys.

Usage

```r
## S3 method for class 'colored'
key(x, ...)
```

Arguments

- `x` A colored factor
- `...` Additional arguments (unused)

Value

A color key, in the form of a named vector

Author(s)

David C. Norris

See Also

colored

plotbraids

plotbraids

Description

Braided streams plot for cohort visualization

Usage

```r
plotbraids(formula, data, idvar = "id", stratify = FALSE, steps = 1:3,
color.by = paste(formula[[2]], 1, sep = "."), outside = FALSE,
xlab = NULL, ..., x.scales.labels = paste(formula[[2]], steps, sep = "."),
x.scales = list(alternating = FALSE, relation = "same", labels =
x.scales.labels, at = seq(length(steps)) - 0.5), scales = list(x = x.scales,
y = list(draw = FALSE, relation = "free"), strip = TRUE,
lattice.options = list(axis.padding = list(numeric = 0, factor = 0)))
```
Arguments

- **formula**: A formula of the form `trt ~ seq` or `trt ~ seq | cond`, where `trt` is a treatment factor, `seq` is an integer sequence number, and the optional `cond` is a conditioning factor used to trellis the braided stream plot. Probably only two-valued conditioning factors will produce visually acceptable plots.

- **data**: A data frame with columns named on the LHS and RHS of argument `formula`.

- **idvar**: A character vector naming columns of `data` that identify multiple records from the same individual, used to reshape `data` into wide form.

- **stratify**: A logical value, indicating whether whitespace should be introduced to stratify the braids by initial treatment.

- **steps**: Which values of the sequence number should be included in the plot. Presently, only vectors of the form `1:n` (for some integer `n`) are supported.

- **color.by**: The name of a factor by which individuals are to be tracked into colored braids. This may as a special case be one of the `seq.<step>` factors in the constructed wide data table.

- **outside**: A logical value determining whether the state labels are to appear outside the panel.

- **xlab**: x-axis label

- **x.scales.labels**: Labels for the treatment states

- **x.scales**: Provides a hook for modifying the basically sensible default layout and labeling of the x-axis

- **scales**: Provides a hook for modifying the basically sensible default layout of both x- and y-axes

- **strip**: Allows user to provide a strip function if the default does not suffice

- **lattice.options**: Allows specification of plot-specific lattice options

- **...**: Additional arguments passed to delegates

Details

Displays 'paths' taken by individuals passing through a sequence of discrete states, such as a sequence of treatments.

Value

A trellis plot object

Author(s)

David C. Norris
Examples

We demonstrate a simple braided stream plot based on the built-in occupationalStatus data set.
It should be noted that the semantics of these data are very slightly at odds with the intended
application of the braided stream plot, since the index cases in this data set were the _sons_,
rather than the fathers. Thus, although time goes left-to-right in this figure, the streamlines
run right-to-left epidemiologically. Notwithstanding this minor technicality, the figure gives
a lively, compelling and meaningful visualization of these data.
1. Build a 'wide-form' data set from the table 'occupationalStatus'
    ```r
df.wide <- data.frame(status.1=rep(1:8, 8),
                  status.2=rep(1:8, each=8),
                  N=as.vector(occupationalStatus))
df.wide <- df.wide[rep(1:64, times=df.wide$N), -3]
## 2. Reshape this to the 'long-form' data set expected by 'plotbraids'
    ```r
df.long <- reshape(df.wide, varying=paste("status", 1:2, sep=".", direction="long", timevar="gen")
df.long <- df.long[order(df.long$id),]
TODO: Generate appropriate 'class' labels for status.
TODO: Use this opportunity to demonstrate meaningful application of a colored factor.
3. Plot the braided stream plot
    ```r
plotbraids(status ~ gen, df.long, stratify=TRUE, steps=1:2,
        outside=TRUE, xlab="Generation",
        x.scales.labels=c("Father", "Son"))
```

predReg

Registry Ensemble Prediction

Description

Generate an `rms::predict` object or data frame for an ensemble of simulated disease registries

Usage

```r
predReg(genReg, N, M = 100, fit = NULL,
    adjust.to = fit$Design$limits["Adjust to", ],
    do.pred = function(df) {
        fit.call <- fit$call
        fit.call$data <- quote(df)
        fit <- eval(fit.call)
        fit$Design$limits["Adjust to", names(adjust.to)] <- adjust.to
        if(is(fit, "lrm"))
            Predict(fit, fun = plogis)
        else
            Predict(fit ),
    ...}
```

Arguments

genReg A function that returns a simulated registry dataset, taking as its first parameter
the desired size of the simulated registry, and possibly other parameters passed
through via the ... arg
prepanel.prevalence

N
Size of generated registries
M
Size of the ensemble
fit
A fitted model usually intended to serve as a template for a model to be fitted to the simulated registries. This may be NULL when do.pred is provided explicitly in the call
adjust.to
A list of adjust-to values for the fitted models, defaulting to the adjust-to parameters of fit
do.pred
A function to be run on the data generated during each iteration of the simulation, generating either an rms:Predict object, or a (usually, named) atomic vector
... Additional parameters passed to genReg

Details
Given a function for generating a simulated disease registry, this function generates an ensemble of such registries. It then returns an rms:Predict object that contains ensemble-averaged predictions and confidence bounds.

Value
Depending on the return type of do.pred, either an rms:Predict object containing ensemble-averaged predictions with confidence bounds reflecting their estimated ensemble variance, or else a data frame collecting the vector returned by do.pred

Author(s)
David C. Norris

prepanel.prevalence Adapts y-axis limits to prevalence range and any nonzero box width

Description
When generating a 'Prevalence Plot' via bwplot(panel=panel.prevalence), specifying prepanel=prepanel.prevalence spares one from calculating the y-axis bounds.

Usage
prepanel.prevalence(x, y, ...)

Arguments
x Vector of (numeric or difftime) treatment durations
y The treatment factor
... Used to pass prevalence and box.width parameters
radarplot

Author(s)
David C. Norris

See Also
panel.prevalence

radarplot
A multidimensional 'Table 1 at-a-glance'

Description

Plots a specialized radar (aka, 'star') plot to compare summary statistics on a handful of covariates, across a multi-dimensional set of comparison groups, as in the standard ‘Table 1’ of experimental studies, where the groups correspond to treatment assignments.

Usage

```r
radarplot(x, data, datadist = getOption("datadist"), xlim = c(-1.4, 1.4), ylim = c(-1.2, 1.2), rescale = c("IQR", "range"), treatment = NULL, stratify = NULL, strength = NULL, include.na = FALSE, overall = FALSE, ...)
```

Arguments

- **x**
 Typically, a formula of the form \(S \sim x, S \sim x | t \) or \(S \sim x | t * u \), where \(S \) is the (suitably normalized) summary matrix of a summary.formula.cross object having factors \(\{ x, t, u \} \) as covariates. In the resulting radar plot, the \(x \) factor will correspond to colored polygons overlaid within each panel of a trellis of 0, 1 or 2 dimensions, defined by the (optional) terms \(t \) and \(u \). Alternatively, \(x \) may be a fitted model in which the LHS is the experimental outcome, and the RHS includes the spoke variables.

- **data**
 Either a summary.formula.cross object (when \(x \) is a formula), or a data.frame (when \(x \) is a fitted model).

- **datadist**
 An rms:datadist object describing the underlying dataset. By suitably modifying datadist$limits, greater control may be achieved over the automatic calculation of strength-of-association measures.

- **xlim**
 A positioning parameter that really should be automated!

- **ylim**
 A positioning parameter that really should be automated!

- **rescale**
 How to rescale continuous covariates for plotting on the spokes

- **treatment**
 When \(x \) is an outcomes model, identifying the treatment variable (and any variables to stratify on, see below) permits the formula embedded in the model to be used to generate a summary.formula.cross object
stratify When \(x \) is an outcomes model, identifying the treatment variable (see above) and any variables to stratify on, permits the formula embedded in the model to be used to generate a summary.formula.cross object

strength When the default choice of strength-of-association measure is not suitable, it may be specified explicitly as a named vector with elements corresponding to the spoke variables, in the order they appear in the model formula. The names will be printed at the outer endpoints of the spokes, and will typically be numbers (e.g., odds ratios) rounded to 2-3 significant figures.

include.na Should the summary include NA values? Passed to the summary.formula call that generates the radarplot data.

overall Should the summary include an 'ALL' row? Passed to the summary.formula call that generates the radarplot data.

... Other parameters to be passed to panel.radarplot

Details

The covariates appear on the radii, or 'spokes' of the radarplot, while the several (up to 3) dimensions defining the comparison groups appear as a color-coded overlay, plus up to two trellis dimensions. In generic applications, the client code employs \texttt{Hmisc::summary.formula(method='cross')} to create the multi-dimensional array for plotting, and then rescales the array elements by a linear or affine transformation to the interval \([0,1]\). Ordered factors may be treated as quasi-continuous variables according to their internal integer representation; logical covariates (and also, conveniently, 2-valued factors) appear as proportions; and unordered categorical variables with \(n \) levels may be transformed to \(n-1 \) dummy variables, which may then be plotted as proportions. An optional strength parameter may be specified, providing a strength-of-association measure connecting the spoke variables to the experimental outcome. This is reflected graphically by fanning the spokes out into sectors subtending angles proportional to the strength of associations. Used in this way, the radar plot draws attention to those spoke variables with greatest potential to confound the outcome, and so becomes a useful exploratory tool. To provide convenient support for this specialized usage, \texttt{radarplot} optionally accepts a regression model in which the outcome of interest is the regressand, and the spoke variables are regressors. From this model, strength-of-association measures are automatically derived, appropriately to the class of the regression model. Invoked in this way, \texttt{radarplot} is also able to free client code from the burden of generating and rescaling a summary.formula.cross object. At this time, models of class \texttt{lrm} and \texttt{cph} are supported. See the example code below.

Author(s)

David C. Norris

Examples

```r
library(rms)
df <- upData(mtcars,
  #cyl=factor(cyl,levels=2*(2:4),labels=paste(2*(2:4),"cyl", sep="-")),
  #am=factor(am,levels=0:1,labels=c("automatic","manual")),
  #gear=factor(gear,levels=3:5,labels=paste(3:5,"speed", sep="-")),
  labels=c(
    mpg="Miles per gallon"
```

relevel.colored

Reorder levels of a colored factor.

Description

Reorder levels of a colored factor.

Usage

S3 method for class 'colored'
relevel(x, ref, ...)

Arguments

x A colored factor
ref The reference level
... Unused

Value

A colored factor
remvar

Author(s)

David C. Norris

See Also

relevel

Examples

TODO: Provide an example

Description

Removes variables from a regression model formula

Usage

remvar(f, vars)

Arguments

- **f**
 A model formula
- **vars**
 A character vector giving names of variables to remove from f

Details

This is a utility function, intended to support fastbw

Value

A modified formula, omitting the specified variables

Author(s)

David C. Norris
representNA

Convert "NA"s to NAs

Description
A basic utility function converting "NA" strings to R's missing type, NA.

Usage
representNA(x)

Arguments
x
A vector of class 'character', which may contain the string "NA" to be replaced with NA.

Value
Returns the vector x, with all "NA" elements recoded as NA.

Note
It is quite possible that this function should be removed, and that the issue of NAs coded as "NA" ought to be resolved by standardized workflows or SOPs for upstream data management. Conversely, if we retain this function, it should be expanded through an optional argument allowing specification of a set of strings to be recoded as NA; this argument might default to c("NA", "."), for example.

Author(s)
David C. Norris

Examples
TODO: Provide an example

representNA.data.frame

Apply the representNA function to all columns of a data frame

Description
Replace the string "NA" with R’s missing value NA, wherever it appears in the given data frame.

Usage
representNA.data.frame(df)
Arguments
df The data frame to be 'cleaned up'.

Value

Returns a data frame identical to df, with "NA" recoded as NA.

Author(s)

David C. Norris

Examples

TODO: Provide an example

timeline}

A color-coded treatment time-line, with overlaid events

Description

This individual-level graphic depicts horizontal time intervals of an ongoing treatment course, color-coded by, e.g., agent. Categorical events which may occur during treatment, such as assessments of response, are annotatated with color-coded arrows.

Usage
timeline(figlabel, txs, resp, bsl, ptid = "patnum", condition = TRUE, formula = trt + resp ~ time | patnum, followed = list(from = as.difftime(0, units = "days"), to = as.difftime(Inf, units = "days")), tx.start = "start", tx.end = "end", treatment = as.character(formula[[2]][[2]]), response = as.character(formula[[2]][[3]]), time = as.character(formula[[3]][[2]]), timeunit = units(resp[[time]]), caption = NULL, tx.key = key(txs[[treatment]]), resp.key = key(resp[[response]]), cols.rows = c(2, 5), prefix.string = "splot", xlim = c(0, as.double(min(followed$to, max(resp[[time]]))), units = timeunit), xlab = paste("Time (", timeunit, ")", sep = ""), ylab = "", filename = paste(figlabel, "followed", sub("[.]", ",", followed$from), ",-", sub("[.]", ",", followed$to), "y", sep = ""))

Arguments

figlabel A string to be used as a LaTeX figure label

txs A data frame describing intervals of treatment

resp A data frame describing treatment response assessments
bsl A data frame of subject baseline characteristics
ptid The name of the unique patient identifier (default is “patnum”)
condition An R expression giving a logical condition (a predicate on subject baseline characteristics) used for selecting the subjects to be plotted
formula A formula of the form trt+resp~time|patnum, interpreted as "plot treatment and response vs time, by patnum"
followed A list with difftime components from and to, giving the minimum and maximum durations of follow-up for patients to be plotted. This is necessary to prevent the dwarfing of treatment courses for patients with short follow-up when plotted alongside those of patients with extended follow-up
tx.start name of treatment start date column of txs
tx.end name of treatment end date column of txs
treatment name of treatment column of txs
response name of response column of resp
time name of time column of resp
timeunit The time unit desired for the horizontal axis
caption The figure caption may be provided explicitly or (if NULL) constructed automatically
tx.key The plot legend for treatments
resp.key The plot legend for responses
cols.rows Trellis layout as c(ncols, nrows)
prefix.string Prefix string (including possibly a directory) for cached plot output
xlim x-axis limits
xlab x-axis label
ylab y-axis label
filename Filename pattern for cached plot output

Note
TODO: further notes

Author(s)
David C. Norris

References
TODO: Reference our white paper or pending publication

See Also
TODO: List objects to See Also as help
Examples

todo: provide an example
todo: document usage. If necessary, include sample data sets in package:VizOR.

vlbw

Data on 671 very low birth weight infants

Description

Documentation for included dataset vlbw

Format

A data frame containing 32 observations on 671 infants.

Details

Data on 671 infants with very low (<1600 grams) birth weight from 1981-87 were collected at Duke University Medical Center by Dr. Michael O’Shea.

Source

http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets

References

[.colored]

Index a colored vector

Description

Index a colored vector

Usage

```r
## S3 method for class 'colored'

x[...]
```

Arguments

- `x` A colored factor
- `...` Unused
Value
A colored factor

Author(s)
David C. Norris

See Also
colored
Index

*Topic **category**
 color.colored, 4
 colored, 4
 key.colored, 8
 relevel.colored, 14
*Topic **classes**
 colored, 4
*Topic **color**
 alphatize, 3
 color.colored, 4
 key.colored, 8
 relevel.colored, 14
*Topic **datagen**
 predReg, 10
*Topic **dynamic**
 controller, 5
*Topic **hplot**
 plotbraids, 8
 prepanel.prevalence, 11
 radarplot, 12
 timeline, 17
*Topic **htest**
 radarplot, 12
*Topic **iplot**
 controller, 5
*Topic **manip**
 representNA, 16
 representNA.data.frame, 16
*Topic **package**
 VizOR-package, 2
*Topic **regression**
 fastback, 7
 [.colored, 19
 alphatize, 3
 color, 3
 color.colored, 4
 colored, 4, 4, 8, 20
 controller, 5
 droplevels.colored, 6
 fastback, 7
 help, 18
 Hmisc, 3
 key, 7
 key.colored, 8
 panel.prevalence, 12
 plotbraids, 8
 predReg, 10
 prepanel.prevalence, 11
 radarplot, 12
 relevel, 15
 relevel(relevel.colored), 14
 relevel.colored, 14
 remvar, 15
 representNA, 16
 representNA.data.frame, 16
 rms, 3
 timeline, 17
 VizOR (VizOR-package), 2
 VizOR-package, 2
 vlbw, 19