Package ‘Voss’

May 9, 2022

Type Package

Title Generic Voss Algorithm (Random Sequential Additions)

Version 0.1.5

Author Pavel V. Moskalev

Maintainer Pavel V. Moskalev <moskaleff@gmail.com>

Description
Generating realizations of a fractal Brownian function on uniform 1D & 2D grid with classic and generic versions of the Voss algorithm (random sequential additions).

License GPL-3

Encoding UTF-8

 Depends fields

 NeedsCompilation no

 Repository CRAN

 Date/Publication 2022-05-09 09:20:02 UTC

 R topics documented:

 Voss-package ... 2
 voss1d ... 2
 voss1g ... 3
 voss2d ... 5
 voss2g ... 6

 Index 8
Voss-package

Generic Voss algorithm (random sequential additions)

Description

Generating realizations of fractal Brownian functions on uniform 1D & 2D grid with classic and generic versions of the Voss algorithm (random sequential additions).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>Voss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.1.5</td>
</tr>
<tr>
<td>Date:</td>
<td>2022-05-09</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

voss1d() and voss2d() functions generate realizations of fractal Brownian functions on uniform 1D & 2D grid with a classic version of the Voss algorithm (random sequential additions).

voss1g() and voss2g() functions generate realizations of fractal Brownian functions on uniform 1D & 2D grid with a generic version of the Voss algorithm (random sequential additions).

Author(s)

Pavel V. Moskalev

voss1d

Fractal Brownian function on 1D grid with a classic Voss algorithm

Description

voss1d() function generates realizations of a fractal Brownian function on uniform 1D grid (FBF(x)) with a classic version of the Voss algorithm (random sequential additions).

Usage

voss1d(g=7, H=0.5, r=0.5, center=TRUE)

Arguments

- **g**
 - a number of iteration.
- **H**
 - a Hurst parameter: (0<H) & (H<1).
- **r**
 - a partition coefficient for iteration segments.
- **center**
 - logical; if center=TRUE then the y-coordinates of prefractal points will be centered.
Details

The Voss algorithm on 1D grid is based on an iterative partitioning of the initial segment into smaller subsegments by linear interpolation of additional points.

At each iteration, all values of the fractal Brownian function get normal pseudorandom additions with zero mean and standard deviation, which depends on the iteration index \(i\).

In the classical version of the Voss algorithm a standard deviation is exponentially distributed by iteration: \(s[i] <- s0*r^{i*H}\), where the initial value \(s0 <- H*\log(1/r)\).

Value

A list of Cartesian coordinates of prefractal points.

Author(s)

Pavel V. Moskalev

References

See Also

voss2d, voss1g

Examples

```r
set.seed(20120522)
plot(voss1d(), type="l", xlab="x", ylab="y",
     main="FBF(x) with a parameter H=0.5")
abline(h=0, lty=2)
```

```r
voss1g() Fractal Brownian function on 1D grid with a generic Voss algorithm

Description

voss1g() function generates realizations of a fractal Brownian function on uniform 1D grid (FBF(x)) with a generic version of the Voss algorithm (random sequential additions).

Usage

```r
voss1g(p=cbind(n=0.5^-seq(0,7)+1,
 s=dchisq(seq(0,7), df=2)),
 center=TRUE)
```
Arguments

- p: a matrix of parameters:
  - nrow(p): a number of iterations;
  - p[, "n"]: a number of partition points in the iteration process;
  - p[, "s"]: a standard deviation of normal pseudorandom additions;
- center: logical; if center=TRUE then the y-coordinates of prefractal points will be centered.

Details

The Voss algorithm on 1D grid is based on an iterative partitioning of the initial segment into smaller subsegments by linear interpolation of additional points.

At each iteration, all values of the fractal Brownian function get normal pseudorandom additions with zero mean and standard deviation, which depends on the iteration index s[i].

By default, the iterative distribution of standard deviation in the generic version of the Voss algorithm is equal to the probability density of the chi-square distribution with 2 degrees of freedom: s[i] <- dchisq(i, df=2).

Value

A list of Cartesian coordinates of prefractal points.

Author(s)

Pavel V. Moskalev

References


See Also

voss2g, voss1d

Examples

```r
Example 1: FBF(x) with a s[i]=dchisq(i,df=2)
set.seed(20120522)
plot(voss1g(type="l", xlab="x", ylab="y",
main="FBF(x) with a s[i]=dchisq(i,df=2)"))
abline(h=0, lty=2)

Example 2: FBF(x) with a s[i]=dlnorm(i,sdlog=1)
set.seed(20120522)
voss <- voss1g(p=cbind(n=0.5^-seq(0,7)+1,
s=dlnorm(seq(0,7), sdlog=1)))
plot(voss, type="l", xlab="x", ylab="y",
main="FBF(x) with a s[i]=dlnorm(i,sdlog=1)")
```
# Example 3: FBF(x,y) with a s[i]=df(i,df1=7,df2=7)
set.seed(20120522)
voss <- voss1g(p=cbind(n=0.5^-seq(0,7)+1, 
s=df(seq(0,7), df1=7, df2=7)))
plot(voss, type="l", xlab="x", ylab="y", 
     main="FBF(x) with a s[i]=df(i,df1=7,df2=7)"
     abline(h=0, lty=2)

---

**voss2d**

*Fractal Brownian function on 2D grid with a classic Voss algorithm*

### Description

voss2d() function generates realizations of a fractal Brownian function on uniform 2D grid (FBF(x,y)) with a classic version of the Voss algorithm (random sequential additions).

### Usage

voss2d(g=7, H=0.5, r=0.5, center=TRUE)

### Arguments

- **g**: a number of iteration.
- **H**: a Hurst parameter: (0<H)(H<1).
- **r**: a partition coefficient for iteration segments.
- **center**: logical; if center=TRUE then the y-coordinates of prefractal points will be centered.

### Details

The Voss algorithm on 2D grid is based on an iterative partitioning of the initial domain into smaller subdomains by bilinear interpolation of additional points.

At each iteration, all values of the fractal Brownian function get normal pseudorandom additions with zero mean and standard deviation, which depends on the iteration index i.

In the classical version of the Voss algorithm standard deviation is exponentially distributed by iteration: 
\[ s[i] \leftarrow s0*r^{(i*H)} \]
where the initial value 
\[ s0 \leftarrow H*\log(1/r) \]

### Value

A list of Cartesian coordinates of prefractal points.

### Author(s)

Pavel V. Moskalev
References


See Also

voss1d, voss2g

Examples

```r
set.seed(20120522)
voss <- voss2d()
image(voss, xlab="x", ylab="y",
 main="FBF(x,y) with a parameter H=0.5")
contour(voss, levels=0, add=TRUE)
```

voss2g

*Fractal Brownian function on 2D grid with a generic Voss algorithm*

Description

voss2g() function generates realizations of a fractal Brownian function on uniform 2D grid (FBF(x,y)) with a generic version of the Voss algorithm (random sequential additions).

Usage

```r
voss2g(p=cbind(n=0.5^-seq(0,7)+1,
 s=dchisq(seq(0,7), df=2)),
 center=TRUE)
```

Arguments

- `p` a matrix of parameters:
  - `nrow(p)` a number of iterations;
  - `p[,"n"]` a number of partition points in the iteration process;
  - `p[,"s"]` a standard deviation of normal pseudorandom additions;
- `center` logical; if `center=TRUE` then the y-coordinates of prefractal points will be centered.

Details

The Voss algorithm on 2D grid is based on an iterative partitioning of the initial domain into smaller subdomains by bilinear interpolation of additional points.

At each iteration, all values of the fractal Brownian function get normal pseudorandom additions with zero mean and standard deviation, which depends on the iteration index `s[i]`.

By default, the iterative distribution of standard deviation in the generic version of the Voss algorithm is equal to the probability density of the chi-square distribution with 2 degrees of freedom: `s[i] <- dchisq(1, df=2)`.
Value

A list of Cartesian coordinates of prefractal points.

Author(s)

Pavel V. Moskalev

References


See Also

voss1g, voss2d

Examples

# Example 1: FBF(x,y) with a s[i]=dchisq(i,df=2)
set.seed(20120522)
voss <- voss2g()
image(voss, xlab="x", ylab="y",
     main="FBF(x,y) with a s[i]=dchisq(i,df=2)"
    )
contour(voss, levels=0, add=TRUE)

# Example 2: FBF(x,y) with a s[i]=dlnorm(i,sdlog=1)
set.seed(20120522)
voss <- voss2g(p=cbind(n=0.5^-seq(0,7)+1,
    s=dlnorm(seq(0,7), sdlog=1)))
image(voss, xlab="x", ylab="y",
     main="FBF(x,y) with a s[i]=dlnorm(i,sdlog=1)"
    )
contour(voss, levels=0, add=TRUE)

# Example 3: FBF(x,y) with a s[i]=df(i,df1=7,df2=7)
set.seed(20120522)
voss <- voss2g(p=cbind(n=0.5^-seq(0,7)+1,
    s=df(seq(0,7), df1=7, df2=7)))
image(voss, xlab="x", ylab="y",
     main="FBF(x,y) with a s[i]=df(i,df1=5,df2=5)"
    )
contour(voss, levels=0, add=TRUE)
Index

* fractal brownian function
  voss1d, 2
  voss1g, 3
  voss2d, 5
  voss2g, 6

* random sequential additions
  voss1d, 2
  voss1g, 3
  voss2d, 5
  voss2g, 6

Voss (Voss-package), 2
Voss-package, 2
voss1d, 2, 4, 6
voss1g, 3, 3, 7
voss2d, 3, 5, 7
voss2g, 4, 6, 6