Package ‘WGScan’

May 27, 2019

Type Package
Title A Genome-Wide Scan Statistic Framework for Whole-Genome Sequence Data Analysis
Version 0.1
Date 2019-05-23
Author Zihuai He
Maintainer Zihuai He <zihuai@stanford.edu>
Description Functions for the analysis of whole-genome sequencing studies to simultaneously detect the existence, and estimate the locations of association signals at genome-wide scale. The functions allow genome-wide association scan, candidate region scan and single window test.
License GPL-3
Depends R(>= 2.10.0), SKAT, Matrix, MASS, seqminer, data.table
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-27 08:10:03 UTC

R topics documented:

WGScan.example .. 2
WGScan.info ... 2
WGScan.prelim .. 2
WGScan.Region ... 3
WGScan.SingleWindow .. 5
WGScan.VCF.chr .. 7

Index 9
WGScan.example

Data example for WGScan (A Genome-Wide Scan Statistic Framework For Whole-Genome Sequence Data Analysis)

Description

The dataset contains outcome variable Y, covariate X, genotype data G, positions of genetic variants pos, weight matrix for functional annotations Z.

Usage

```r
data(WGScan.example)
```

WGScan.info

hg19 chromosome sizes

Description

The dataset contains hg19 chromosome sizes from:

Usage

```r
data(WGScan.info)
```

WGScan.prelim

The preliminary data management for WGScan

Description

This function does the preliminary data management and fit the model under null hypothesis. The output will be used in the other WGScan functions.

Usage

```r
WGScan.prelim(Y, X=NULL, id=NULL, out_type="C", B=5000)
```
Arguments

Y The outcome variable, an n*1 matrix where n is the total number of observations
X An n*d covariates matrix where d is the total number of covariates.
id The subject id. This is used to match phenotype with genotype. The default is NULL, where the matched phenotype and genotype matrices are assumed.
out_type Type of outcome variable. Can be either "C" for continuous or "D" for dichotomous. The default is "C".
B Number of resampling replicates. The default is 5000. A larger value leads to more accurate and stable p-value calculation, but requires more computing time.

Value

It returns a list used for function WGScan.Region(), WGScan.SingleWindow() and WGScan.VCF.chr().

Examples

library(WGScan)

Load data example
Y: outcomes, n by 1 matrix where n is the total number of observations
X: covariates, n by d matrix
G: genotype matrix, n by p matrix where n is the total number of subjects
Z: functional annotation matrix, p by q matrix

data(WGScan.example)
Y<-WGScan.example$Y;X<-WGScan.example$X;G<-WGScan.example$G;Z<-WGScan.example$Z

Preliminary data management
result.prelim<-WGScan.prelim(Y,X=X,out_type="C",B=5000)

WGScan.Region Scan the association between an quantitative/dichotomous outcome variable and a region by score type statistics allowing for multiple functional annotation scores.

Description

Once the preliminary work is done by "WGScan.prelim()", this function scan a target region. This function is often used for candidate region analyses.

Usage

WGScan.Region(result.prelim,G,pos,Gsub.id=NULL,Z=NULL,MAF.weights='beta',
test='combined',window.size=c(5000,10000,15000,20000,25000,50000),MAF.threshold=1,
impute.method='fixed')
Arguments

result.prelim The output of function "WGScan.prelim()"

G Genetic variants in the target region, an n*p matrix where n is the subject ID and p is the total number of genetic variants.

pos The positions of genetic variants, an p dimensional vector. Each position corresponds to a column in the genotype matrix.

Gsub.id The subject id corresponding to the genotype matrix, an n dimensional vector. Each ID corresponds to a row in the genotype matrix. This is used to match phenotype with genotype. The default is NULL, where the matched phenotype and genotype matrices are assumed.

Z Weight matrix for functional annotations, an p*q matrix where p is the total number of genetic variables and q is the number of weights. This is used to incorporate functional annotations. The default is NULL, where minor allele frequency weighted (see MAF.weights) dispersion and/or burden tests are applied.

MAF.weights Minor allele frequency based weight. Can be ‘beta’ to up-weight rare variants or ‘equal’ for a flat weight. The default is ‘beta’.

test Can be ‘dispersion’, ‘burden’ or ‘combined’. The test is ‘combined’, both dispersion and burden tests are applied. The default is ‘combined’.

window.size Candidate window sizes in base pairs. The default is c(5000,10000,15000,20000,25000,50000). Note that extremely small window size (e.g. 1) requires large sample size.

MAF.threshold Threshold for minor allele frequency. Variants above MAF.threshold are ignored. The default is 1.

impute.method Choose the imputation method when there is missing genotype. Can be "random", "fixed" or "bestguess". Given the estimated allele frequency, "random" simulates the genotype from binomial distribution; "fixed" uses the genotype expectation; "bestguess" uses the genotype with highest probability.

Value

n.marker Number of tested variants in the window (heterozygous variants below MAF threshold).

window.summary Results for all windows. Each row presents a window, including chromosome number, start position, end position, dispersion p-value(s), burden p-values(s).

M Estimated number of effective tests.

threshold Estimated threshold, 0.05/M. This threshold is for windows tested in this particular region.

p.value P-value of entire region.

Examples

WGScan.prelim does the preliminary data management.
Input: Y, X (covariates)
WGScan.Region scans a region.
Input: G (genetic variants), pos (position) Z (weights) and result of WGScan.prelim
library(WGScan)

Load data example
Y: outcomes, n by 1 matrix where n is the total number of observations
X: covariates, n by d matrix
G: genotype matrix, n by p matrix where n is the total number of subjects
pos: positions of genetic variants, p dimension vector
Z: functional annotation matrix, p by q matrix

data(WGScan.example)
Y<-WGScan.example$y
X<-WGScan.example$x
G<-WGScan.example$g
pos<-WGScan.example$pos
Z<-WGScan.example$Z

result.prelim<-WGScan.prelim(Y,Y=x.out_type="C",B=5000)

result<-WGScan.Region(result.prelim,G,pos,Z)

WGScan.SingleWindow Test the association between an quantitative/dichotomous outcome variable and a single window by dispersion or burden test allowing for multiple functional annotation scores.

Description

Once the preliminary work is done by "WGScan.prelim()", this function tests a single window. This is often used to double-check significant windows identified by WGScan.Region or WGScan.VCF.chr, with an increased number of resampling replicates in WGScan.prelim.

Usage

WGScan.SingleWindow(result.prelim,G,Gsub.id=NULL,Z=NULL,MAF.weights='beta',
test='combined',MAF.threshold=1,impute.method='fixed')

Arguments

result.prelim The output of function "WGScan.prelim()"
G Genetic variants in the target region, an n*p matrix where n is the subject ID and p is the total number of genetic variants.
Gsub.id The subject id corresponding to the genotype matrix, an n dimensional vector. Each ID corresponds to a row in the genotype matrix. This is used to match phenotype with genotype. The default is NULL, where the matched phenotype and genotype matrices are assumed.
Z
Weight matrix for functional annotations, an \(p \times q \) matrix where \(p \) is the total number of genetic variables and \(q \) is the number of weights. This is used to incorporate functional annotations. The default is NULL, where minor allele frequency weighted (see MAF.weights) dispersion and/or burden tests are applied.

MAF.weights
Minor allele frequency based weight. Can be ‘beta’ to up-weight rare variants or ‘equal’ for a flat weight. The default is ‘beta’.

test
Can be ‘dispersion’, ‘burden’ or ‘combined’. The test is ‘combined’, both dispersion and burden tests are applied. The default is ‘combined’.

MAF.threshold
Threshold for minor allele frequency. Variants above MAF.threshold are ignored. The default is 1.

impute.method
Choose the imputation method when there is missing genotype. Can be “random”, “fixed” or “bestguess”. Given the estimated allele frequency, “random” simulates the genotype from binomial distribution; “fixed” uses the genotype expectation; “bestguess” uses the genotype with highest probability.

Value

n.marker
Number of tested variants in the window (heterozygous variants below MAF threshold).

p.value
P-value(s) of the window (dispersion p-value(s), then burden p-values(s))

Examples

```r
## WGScan.prelim does the preliminary data management.
# Input: Y, X (covariates)
## WGScan.Region scans a region.
# Input: G (genetic variants), pos (position) Z (weights) and result of WGScan.prelim

library(WGScan)

data(WGScan.example)

# Load data example
# Y: outcomes, n by 1 matrix where n is the total number of observations
# X: covariates, n by d matrix
# G: genotype matrix, n by p matrix where n is the total number of subjects
# pos: positions of genetic variants, p dimension vector
# Z: functional annotation matrix, p by q matrix

data(WGScan.example)
Y<-WGScan.example$Y;X<-WGScan.example$X
G<-WGScan.example$G;pos<-WGScan.example$pos
Z<-WGScan.example$Z

# Preliminary data management
result.prelim<-WGScan.prelim(Y,X=X,out_type="C",B=5000)

# Scan the region with functional annotations defined in Z
result<-WGScan.SingleWindow(result.prelim,G,Z=Z)
```
Scan a VCF file to study the association between an quantitative/dichotomous outcome variable and a region or whole chromosome by score type statistics allowing for multiple functional annotation scores.

Description

Once the preliminary work is done by "WGScan.prelim()", this function scan a target region or chromosome, and output results for all windows as well as an estimated significance threshold. For genome-wide scan, users can scan each chromosome individually, then the genome-wide significance threshold can be obtained by combining chromosome-wise thresholds:

\[\alpha = \frac{1}{1/\alpha_1 + 1/\alpha_2 + \ldots + 1/\alpha_{22}}. \]

Usage

```r
WGScan.VCF chr(result=prelim, vcf.filename, chr, pos.min=NULL, pos.max=NULL, Gsub.id=NULL, annot.filename=NULL, cell.type=NULL, MAF.weights='beta', test='combined', window.size=c(5000, 10000, 15000, 20000, 25000, 50000), MAF.threshold=1, impute.method='fixed')
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>result.prelim</td>
<td>The output of function "WGScan.prelim()"</td>
</tr>
<tr>
<td>vcf.filename</td>
<td>A character specifying the directory (including the file name) of the vcf file.</td>
</tr>
<tr>
<td>chr</td>
<td>Chromosome number.</td>
</tr>
<tr>
<td>pos.min</td>
<td>Minimum position of the scan. The default is NULL, where the scan starts at the first base pair.</td>
</tr>
<tr>
<td>pos.max</td>
<td>Maximum position of the scan. The default is NULL, where the scan ends at the last base pair, according to the chromosome sizes at: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.chrom.sizes.</td>
</tr>
<tr>
<td>Gsub.id</td>
<td>The subject id corresponding to the genotype matrix, an n dimensional vector. This is used to match phenotype with genotype. The default is NULL, where the subject id in the vcf file is used.</td>
</tr>
<tr>
<td>annot.filename</td>
<td>A character specifying the directory (including the file name) of functional annotations. Currently WGScan supports GenoNet scores across 127 tissues/cell types, which can be downloaded at: http://www.openbioinformatics.org/annovar/download/GenoNetScores/</td>
</tr>
<tr>
<td>cell.type</td>
<td>A character specifying the tissue/cell type integrated in the analysis, in addition to standard dispersion and/or burden tests. The default is NULL, where no functional annotation is included. If cell.type='all', GenoNet scores across all 127 tissues/cell types are incorporated.</td>
</tr>
<tr>
<td>MAF.weights</td>
<td>Minor allele frequency based weight. Can be 'beta' to up-weight rare variants or 'equal' for a flat weight. The default is 'beta'.</td>
</tr>
</tbody>
</table>
test Can be 'dispersion', 'burden' or 'combined'. The test is 'combined', both dispersion and burden tests are applied. The default is 'combined'.

window.size Candidate window sizes in base pairs. The default is c(5000, 10000, 15000, 20000, 25000, 50000). Note that extremely small window size (e.g. 1) requires large sample size.

MAF.threshold Threshold for minor allele frequency. Variants above MAF.threshold are ignored. The default is 1.

impute.method Choose the imputation method when there is missing genotype. Can be "random", "fixed" or "bestguess". Given the estimated allele frequency, "random" simulates the genotype from binomial distribution; "fixed" uses the genotype expectation; "bestguess" uses the genotype with highest probability.

Value

window.summary Results for all windows. Each row presents a window.

M Estimated number of effective tests.

threshold Estimated threshold, 0.05/M.

Examples

```r
# load example vcf file from package "seqminer"
vcf.filename = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")

# simulated outcomes, covariates and inidividual id.
Y<-as.matrix(rnorm(3,0,1))
X<-as.matrix(rnorm(3,0,1))
id<-c("NA12286", "NA12341", "NA12342")

# fit null model
result.prelim<-WGScan.prelim(Y,X=id, out_type="C", B=5000)

# scan the vcf file
result<-WGScan.VCF.chr(result.prelim, vcf.filename, chr=1, pos.min=196621007, pos.max=196716634)

# this is how the actual genotype matrix from package "seqminer" looks like
example.G <- t(readVCFToMatrixByRange(vcf.filename, "1:196621007-196716634", annoType=''))[[1]]
```
Index

*Topic VCF
 WGSscan.VCF.chr, 7

*Topic datasets
 WGSscan.example, 2
 WGSscan.info, 2

*Topic preliminary work
 WGSscan.prelim, 2

*Topic region
 WGSscan.Region, 3

*Topic scan
 WGSscan.Region, 3
 WGSscan.SingleWindow, 5
 WGSscan.VCF.chr, 7

*Topic single window
 WGSscan.SingleWindow, 5