Package ‘WPKDE’
March 2, 2017

Type Package
Title Weighted Piecewise Kernel Density Estimation
Version 0.1
Date 2017-02-04
Author Kunyu Ye, Siyao Wang, Xudong Liu, Tianwei Yu
Maintainer Kunyu Ye <kunyuye@163.com>
Suggests mvtnorm(>= 1.0-0)
Description Weighted Piecewise Kernel Density Estimation for large data.
License GPL
LazyData TRUE
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-03-02 14:29:46

R topics documented:

findPeak .. 1
kdeC .. 3
plot2d .. 4

Index

findPeak find peaks

Description
using the result of kdeC to find peaks

Usage
findPeak(estimate, filter)
Arguments

- **estimate**: matrix returned by the kdeC function
- **filter**: a num value, filter the result less than argument value filter and set 0 as default

Details

The function `findPeak` can be executed after `kdec` to find peaks

Value

The returned value is a matrix corresponding to input argument estimate, the value in the returned matrix larger than 0 means it is a peak

Author(s)

Kunyu Ye

Examples

```R
dataNgen<-function(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)
{
  library(mvtnorm)

  dat<-matrix(0, nrow=N, ncol=2)
  all.m<-c(NA,NA)

  for(i in 1:n.peaks)
  {
    this.m<-runif(2)
    this.var<-runif(2, min=0.1*max.var, max=max.var)
    this.cov<-runif(1, min=-1*max.corr, max=max.corr) * sqrt(this.var[1]) * sqrt(this.var[2])
    this.sc<-matrix(c(this.var[1], this.cov, this.cov, this.var[2]), ncol=2)

    dat[((i-1)*N/n.peaks+1):(i*N/n.peaks),]<-rmvnorm(N/n.peaks, mean=this.m, sigma=this.sc)
    all.m<-rbind(all.m, this.m)
  }

  all.m[,1]<-(all.m[,1]-min(dat[,1]))/diff(range(dat[,1]))
  all.m[,2]<-(all.m[,2]-min(dat[,2]))/diff(range(dat[,2]))
  dat[,1]<-(dat[,1]-min(dat[,1]))/diff(range(dat[,1]))
  dat[,2]<-(dat[,2]-min(dat[,2]))/diff(range(dat[,2]))

  all.m<-all.m[-1,]
  return(list(dat=dat, m=all.m))
}

r<-dataNgen(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)
k1<-kdeC(r$dat, H=c(0.005,0.005), gridsize = c(501,501), cutNum=c(1,1))
```

Description

fast weighted kernel density estimation for 2-dimension and calling C function to implement the calculation procedure

Usage

```r
kdec(x, H, gridsize, cutNum, w)
```

Arguments

- `x`: data points in the format n*2 matrix.
- `H`: bandwidth, a vector containing 2 num values and set c(0.01, 0.01) as default.
- `gridsize`: number of points for each direction, a vector containing 2 int values and set c(200, 50) as default.
- `cutNum`: number of pieces to be cutted for each direction, a vector containing 2 int values and set c(1, 1) as default.
- `w`: weight, a vector corresponding to parameter `x` and set rep(1, length(x)/2) as default.

Details

The function `kdec` is only suitable for 2-dimension data. The advantage of `kdec` is that it can get the result quickly because the calculation procedure is implemented in C code.

Value

the returned value is a list

- `estimate`: density estimate at points `evalpointsX` and `evalpointsY`.
- `evalpointsX`: points at which the `estimate` is evaluated at x-axis direction.
- `evalpointsY`: points at which the `estimate` is evaluated at y-axis direction.

Author(s)

Kunyu Ye

References

R package ‘ks’
Examples

data.gen<-function(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)
{
 library(mvtnorm)
 dat<-matrix(0, nrow=N, ncol=2)
 all.m<-c(NA,NA)
 for(i in 1:n.peaks)
 {
 this.m<-runif(2)
 this.var<-runif(2, min=0.1*max.var, max=max.var)
 this.cov<-runif(1, min=-1*max.corr, max=max.corr) * sqrt(this.var[1]) * sqrt(this.var[2])
 this.sc<-matrix(c(this.var[1], this.cov, this.cov, this.var[2]),ncol=2)
 dat[((i-1)*N/n.peaks+1):(i*N/n.peaks),]<-rmvnorm(N/n.peaks, mean=this.m, sigma=this.sc)
 all.m<-rbind(all.m, this.m)
 }
 all.m[,1]<-(all.m[,1]-min(dat[,1]))/diff(range(dat[,1]))
 all.m[,2]<-(all.m[,2]-min(dat[,2]))/diff(range(dat[,2]))
 dat[,1]<-(dat[,1]-min(dat[,1]))/diff(range(dat[,1]))
 dat[,2]<-(dat[,2]-min(dat[,2]))/diff(range(dat[,2]))
 all.m<-all.m[-1,]
 return(list(dat=dat,m=all.m))
}
	r<-data.gen(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)

k1<-kdec(r$dat, H=c(0.005,0.005), gridsize = c(501,501), cutNum=c(1,1))
k2<-kdec(r$dat, H=c(0.005,0.005), gridsize = c(101,101), cutNum=c(5,5))

plotfunction

plot2d

Description

plot all the data points(black spots in the plot) and peaks(red spots in the plot) in one coordinate system

Usage

plot2d(x,matPeaks,evalpointsX,evalpointsY)

Arguments

 x data points in the format n*2 matrix
 matPeaks matrix returned by the findPeak function
plot2d

evalpointsX points at which the matPeaks is evaluated at x-axis direction

evalpointsY points at which the matPeaks is evaluated at y-axis direction

Details

The function plot2d is mainly designed to make the result of functions kdec and findPeak visual

Author(s)

Kunyu Ye

Examples

data.gen<-function(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)
{
 library(mvtnorm)
 dat<-matrix(0, nrow=N, ncol=2)
 all.m<-c(NA, NA)

 for(i in 1:n.peaks)
 {
 this.m<-runif(2)
 this.var<-runif(2, min=0.1*max.var, max=max.var)
 this.cov<-runif(1, min=-1*max.corr, max=max.corr) * sqrt(this.var[1]) * sqrt(this.var[2])
 this.s<-matrix(c(this.var[1], this.cov, this.cov, this.var[2]), ncol=2)

 dat[((i-1)*N/n.peaks+1):(i*N/n.peaks),] <- rmvnorm(N/n.peaks, mean=this.m, sigma=this.s)
 all.m<-rbind(all.m, this.m)
 }

 all.m[,1]<-(all.m[,1]-min(dat[,1]))/diff(range(dat[,1]))
 all.m[,2]<-(all.m[,2]-min(dat[,2]))/diff(range(dat[,2]))
 dat[,1]<-(dat[,1]-min(dat[,1]))/diff(range(dat[,1]))
 dat[,2]<-(dat[,2]-min(dat[,2]))/diff(range(dat[,2]))

 all.m<-all.m[-1,]
 return(list(dat=dat, m=all.m))
}

c<-data.gen(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)

k1<-kdec(r$dat, H=c(0.005, 0.005), gridsize = c(501,501), cutNum=c(1,1))

matPeaks<-findPeak(estimate=k1$estimate, filter=0)

plot2d(x=r$dat, matPeaks=matPeaks, evalpointsX=k1$evalpointsX, evalpointsY=k1$evalpointsY)
Index

*Topic kernel
 kdeC, 3
*Topic peak
 findPeak, 1
*Topic plot
 plot2d, 4
*Topic smooth
 kdeC, 3
 findPeak, 1
 kdeC, 3
 plot2d, 4