Package ‘WR’

January 27, 2020

Type Package
Title Win Ratio Analysis
Version 0.1.1
Author Lu Mao and Tuo Wang
Maintainer Lu Mao <lmao@biostat.wisc.edu>
Description Contains win-ratio analysis routines for prioritized composite time-to-event outcomes, e.g., death and non-fatal events. These routines include functions to fit the proportional win-fractions (PW) model and to compute and plot the standardized score process to assess the proportionality assumption.
License GPL (>= 2)
Encoding UTF-8
LazyData true
Depends R (>= 2.10), survival
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-01-27 16:40:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>non_ischemic</td>
<td>2</td>
</tr>
<tr>
<td>plot.pwreg.score</td>
<td>3</td>
</tr>
<tr>
<td>print.pwreg</td>
<td>4</td>
</tr>
<tr>
<td>print.pwreg.score</td>
<td>4</td>
</tr>
<tr>
<td>pwreg</td>
<td>5</td>
</tr>
<tr>
<td>score.proc</td>
<td>6</td>
</tr>
</tbody>
</table>

Index 8
Description

These are a subset of the data on the non-ischemic patients in the HF-ACTION study.

Usage

non_ischemic

Format

A data frame with 751 rows and 16 variables:

- **ID**: subject IDs
- **time**: event times
- **status**: event status
- **trt_ab**: treatment indicator: 1=exercise training; 0=usual care
- **age**: patient age in years
- **sex**: 1=female; 2=male
- **Black.vs.White**: 1=black; 0=otherwise
- **Other.vs.White**: 1=race other than black or white; 0=otherwise
- **bmi**: body mass index
- **bipllvef**: (biplane) left-ventricular ejection fraction
- **hyperten**: indicator for history of hypertension
- **COPD**: indicator for history of COPD
- **diabetes**: indicator for history of diabetes
- **acei**: indicator for current use of ACE inhibitors
- **betab**: indicator for current use of beta blockers
- **smokecurr**: indicator for current smoker

References

Description

Plot the standardized score processes.

Usage

S3 method for class 'pwreg.score'
plot(x, k, xlab = "Time", ylab = "Standardized score", lty = 1, frame.plot = TRUE, add = FALSE, ylim = c(-3, 3), xlim = NULL, lwd = 1, ...)

Arguments

x an object of class pwreg.score.
k A positive integer indicating the order of covariate to be plotted. For example, k=3 requests the standardized score process for the third covariate in the covariate matrix Z.
xlab a title for the x axis.
ylab a title for the y axis.
lty the line type. Default is 1.
frame.plot a logical variable indicating if a frame should be drawn in the 1D case.
add a logical variable indicating whether add to current plot?
ylim a vector indicating the range of y-axis. Default is (-3, 3).
xlim a vector indicating the range of x-axis. Default is NULL.
lwd the line width, a positive number. Default is 1.
... further arguments passed to or from other methods

Value

a plot of the standardized score process for object pwreg.score.

See Also

score.proc

Examples

see the example for score.proc
print.pwreg

Print the results of the proportional win-fractions regression model

Description

Print the results of the proportional win-fractions regression model

Usage

S3 method for class 'pwreg'
print(x, ...)

Arguments

x an object of class pwreg.

... further arguments passed to or from other methods

Value

print the results of pwreg object

See Also

pwreg

Examples

see the example for pwreg

print.pwreg.score

Print information on the content of the pwreg.score object

Description

Print information on the content of the pwreg.score object

Usage

S3 method for class 'pwreg.score'
print(x, ...)

Arguments

x A object of class pwreg.score.

... further arguments passed to or from other methods
pwreg

Value

print the results of `pwreg.score` object

See Also

`score.proc`

Examples

```r
# see the example for score.proc
```

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>a vector of all the event times.</td>
</tr>
<tr>
<td>status</td>
<td>a vector of the status for all the event. 0: censoring, 1: death and 2: non-fatal event.</td>
</tr>
<tr>
<td>Z</td>
<td>a matrix or a vector of covariates.</td>
</tr>
<tr>
<td>ID</td>
<td>a vector of unique subject-level identifiers.</td>
</tr>
<tr>
<td>rho</td>
<td>a non-negative number as the power of the survival function used in the weight. Default (rho=0) is recommended.</td>
</tr>
<tr>
<td>eps</td>
<td>precision for the convergence of Newton-Raphson algorithm.</td>
</tr>
<tr>
<td>maxiter</td>
<td>maximum number of iterations allowable for the Newton-Raphson algorithm.</td>
</tr>
</tbody>
</table>

Description

Fit priority-adjusted proportional win-fractions (PW) regression model.

Usage

```r
pwreg(time, status, Z, ID, rho = 0, eps = 1e-04, maxiter = 50)
```

Value

An object of class `pwreg` with the following components:

- `beta`: a vector of estimated regression coefficients.
- `Var`: estimated covariance matrix for `beta`.
- `conv`: boolean variable indicating whether the algorithm converged within the maximum number of iterations.

References

score.proc

Computes the standarized score processes

Description

Computes the standarized score processes for the covariates.

Usage

score.proc(obj, t = NULL)

Arguments

obj an object of class pwreg.

A vector containing times. If not specified, the function will use all unique event times from the data.

Value

An object of class pwreg.score consisting of t: a vector of times; and score: a matrix whose rows are the standarized score processes as a function of t.
References

See Also

pwreg

Examples

library(WR)
head(non_ischemic)

Randomly sample 200 subjects from non_ischemic data
id_unique <- unique(non_ischemic$ID)
set.seed(2019)
id_sample <- sample(id_unique, 200)

non_ischemic_reduce <- non_ischemic[non_ischemic$ID %in% id_sample,]
Use the reduced non_ischemic data for analysis
nr <- nrow(non_ischemic_reduce)
p <- ncol(non_ischemic_reduce)-3
ID <- non_ischemic_reduce[, "ID"]
time <- non_ischemic_reduce[, "time"]
status <- non_ischemic_reduce[, "status"]
Z <- as.matrix(non_ischemic_reduce[,4:(3+p)],nr,p)
pwreg.obj <- pwreg(time=time,status=status,Z=Z,ID=ID)
score.obj <- score.proc(pwreg.obj)
plot the standardized score process for the first covariate
plot(score.obj, k = 1)
Index

*Topic **datasets**
 non_ischemic, 2

non_ischemic, 2

plot.pwreg.score, 3
print.pwreg, 4
print.pwreg.score, 4
pwreg, 4, 5, 7

score.proc, 3, 5, 6, 6