Package ‘WaterML’

September 21, 2015

Type Package
Title Fetch and Analyze Data from WaterML or CUAHSI WaterOneFlow Web Service
Version 1.5.0
Description Lets you connect to any CUAHSI WaterOneFlow web service from any hydroserver. To see list of available hydroserver, see http://hiscentral.cuahsi.org.
The package has five data download functions: GetServices(): show all public HydroServers from the HIS Central Catalog.
HISCentral_GetSites() and HISCentral_GetSeriesCatalog(): search for sites or time series from the HIS Central catalog based on geographic bounding box, server, or keyword.
GetVariables(): Show a data.frame with all variables on the server.
GetSites(): Show a data.frame with all sites on the server.
GetSiteInfo(): Show what variables, methods and quality control levels are available at the specific site. GetValues(): Given a site code, variable code, start time and endtime, fetch a data.frame of all the observation time series data values.
The data.frame has two columns: time and DataValue. This function has an optional "daily" parameter, you can set daily="max", daily="min" or daily="mean" to get aggregated daily values. The GetValues function can also retrieve WaterML 1 or WaterML 2.0 data from a custom URL or from a local file. The package also has five data upload functions: AddSites(), AddVariables(), AddMethods(), AddSources(), and AddValues(). These functions can be used for uploading data to a HydroServer Lite ODM database via the JSON data upload web service interface.

License MIT + file LICENSE
Depends R (>= 3.0)
Imports stats, XML, RJJSONIO, httr
LazyData true
URL https://github.com/jirikadlec2/waterml
Suggests knitr
VignetteBuilder knitr
NeedsCompilation no
Author Jiri Kadlec [aut, cre]
Maintainer Jiri Kadlec <jirikadlec2@gmail.com>
Repository CRAN
Date/Publication 2015-09-21 11:19:16

R topics documented:

- WaterML-package ........................................... 2
- AddMethods ................................................. 3
- AddSites .................................................... 4
- AddSources .................................................. 5
- AddValues .................................................... 6
- AddVariables ................................................ 7
- GetServices .................................................. 8
- GetSiteInfo .................................................. 9
- GetSites ..................................................... 11
- GetValues .................................................... 12
- GetVariables ................................................ 13
- HISCentral_GetSeriesCatalog ............................... 14
- HISCentral_GetSites ....................................... 16
- MakeSOAPEnvelope ....................................... 17
- WaterMLVersion .......................................... 18
- WaterOneFlowNamespace ................................. 18
- WaterOneFlowVersion .................................... 19

Index 20

<table>
<thead>
<tr>
<th>WaterML-package</th>
<th>Fetch and analyze data from WaterML or CUAHSI WaterOneFlow web service</th>
</tr>
</thead>
</table>

Description

Package: WaterML
Type: Package
License: MIT
LazyLoad: yes

Details

Fetch and analyze data from WaterML or CUAHSI WaterOneFlow web service.

Please see https://github.com/jirikadlec2/waterml for more information.
AddMethods

Author(s)
Jiri Kadlec <jirikadlec2@gmail.com>

Description
This function adds a table of methods to HydroServer Lite. The input must be a data.frame with all required ODM 'method' fields. NOTE: this only works with HydroServer Lite that implements the JSON API. You must specify a valid server url, username, and password for the HydroServer. The examples here use the 'sandbox' HydroServer on http://worldwater.byu.edu/app/ with the username: admin and password: password.

Usage
AddMethods(server, username, password, methods)

Arguments
server  The URL of the web service ending with /services or with ?wsdl, for example: http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx?wsdl alternatively you can specify the JSON API url like: http://worldwater.byu.edu/app/index.php/default/services/api/
username  The valid HydroServer Lite username, for example "admin"
password  The valid HydroServer Lite password, for example "password"
methods  The valid table of methods. This table must have the following columns: MethodDescription, MethodLink.

Value
A table of the added methods, with two extra columns: MethodID (the ID assigned by the server), Status (the status showing if the method was added: OK or Error). If the status is Error, then the Error message with reason why the method could not be added is also shown.

Examples
user <- "admin"
pass <- "password"
server <- "http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx"
# make random site codes
random_description <– sprintf("R Test Method %04d", sample(1:10000, 1))
random_link <– "http://example.com"
my_methods <- data.frame(
   MethodDescription = random_description,
   MethodLink = random_link
)

added_methods <- AddMethods(server, username=user, password=pass, methods=my_methods)
AddSites

Description

This function adds a table of sites to HydroServer Lite. The input must be a data.frame with all required ODM site fields. NOTE: this only works with HydroServer Lite that implements the JSON API. you must specify a valid server url, user name, and password for the HydroServer. The examples here use the 'sandbox' HydroServer on http://worldwater.byu.edu/app/ with the username: admin and password: password.

Usage

AddSites(server, username, password, sites)

Arguments

server
The URL of the web service ending with /services or with ?wsdl, for example: http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx?wsdl alternatively you can specify the JSON API url like: http://worldwater.byu.edu/app/index.php/default/services/api/

username
The valid HydroServer Lite username, for example "admin"

password
The valid HydroServer Lite password, for example "password"

sites
The valid table of sites. This table must have the following 4 columns: SiteCode, SiteName, Latitude, Longitude. It can also have the optional columns: Elevation, SiteType, State, County, Comments.

Value

A table of the added sites, with two extra columns: SiteID (the ID assigned by the server), Status (the status showing if the site was added: OK or Error). If the status is Error, then the Error message with reason why the site could not be added is also shown.

Examples

user <- "admin"
password <- "password"
server <- "http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx"

# make random site codes
random_codes = sprintf("%04d", sample(1:10000, 2))
random_names = paste("Upload", random_codes)

random_lats = runif(2, 35.0, 49.0) # two random latitudes inside U.S
random_lons = runif(2, -110.0, -70.0) # random longitudes inside U.S

my_sites <- data.frame(SiteCode=random_codes, SiteName=random_names, SiteCode=random_codes, Latitude=random_lats, Longitude=random_lons)

added_sites <- AddSites(server, username=user, password=pass, sites=my_sites)
Description

This function adds a table of sources to HydroServer Lite. The input must be a data.frame with all required ODM 'Source' fields NOTE: this only works with HydroServer Lite that implements the JSON API, you must specify a valid server url, user name, and password for the HydroServer. The examples here use the 'sandbox' HydroServer on http://worldwater.byu.edu/app/ with the username: admin and password: password.

Usage

AddSources(server, username, password, sources)

Arguments

server
The URL of the web service ending with /services or with ?wsdl, for example:
http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx?wsdl
Alternatively you can specify the JSON API url like: http://worldwater.byu.edu/app/index.php/default/services/api/

username
The valid HydroServer Lite username, for example "admin"

password
The valid HydroServer Lite password, for example "password"

sources
The valid table of sources. This table must have the following columns: Organization, Description, SourceLink, ContactName, ContactPhone, ContactEmail, Address, City, State, Zipcode, Citation, MetadataID.

Value

A table of the added sources, with two extra columns: SourceID (the ID assigned by the server), Status (the status showing if the source was added: OK or Error). If the status is Error, then the Error message with reason why the source could not be added is also shown.

Examples

user <- "admin"
pass <- "password"
server <- "http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx"
# make random source codes
random_id <- sample(1:10000, size=1)
random_name <- paste("R test source", random_id)
my_sources <- data.frame(
   Organization = random_name,
   Description = paste("Uploaded from R:", random_name),
   SourceLink = paste("http://", random_id, sep=""),
   ContactName = random_name,
   ContactPhone = "012-345-6789",
   ContactEmail = "test<at>gmail.com",
   Address = random_name,
AddValues

Description

This function adds a table of data values to HydroServer Lite. The input must be a data.frame
with Time and DataValue fields. The Time field must be POSIXct format and DataValue must
be numeric format. It is also required to enter a valid SiteID, VariableID, SourceID, MethodID and
QualityControlLevelID. New data values shall be inserted only if the SiteID, VariableID, SourceID,
MethodID and QualityControlLevelID entries already exist in the HydroServer. NOTE: this only
works with HydroServer Lite that implements the JSON API. You must specify a valid server url,
user name, and password for the HydroServer. The examples here use the 'sandbox' HydroServer
on http://worldwater.byu.edu/app/ with the username: admin and password: password.

Usage

AddValues(server, username, password, site, variable, methodID, sourceID,
          qualityControl, values)

Arguments

- **server**: The URL of the web service ending with /services or with ?wsdl, for example:
  http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx?wsdl
  Alternatively you can specify the JSON API url like: http://worldwater.byu.edu/app/index.php/default/services/api/
- **username**: The valid HydroServer Lite username, for example "admin"
- **password**: The valid HydroServer Lite password, for example "password"
- **site**: The valid SiteID
- **variable**: The valid VariableID
- **methodID**: The valid MethodID
- **sourceID**: The valid SourceID
- **qualityControl**: The valid QualityControlLevelID
- **values**: The valid table of data values. This table must have the following columns:
  Time (POSIXct), DataValue (numeric).
Value

Status (the status showing if the values were added: OK or Error). If the status is Error, then the Error message with reason why the values could not be added is also shown.

Examples

```r
user <- "admin"
pass <- "password"
server <- "http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx"
sourceID = 15
qualityID = 1
variableID = 43
siteID = 170
methodID = 10
random_times <- sort(Sys.time() + runif(3, 0, 10)*60)
random_values <- runif(3, 0, 100)
my_values <- data.frame(Time=random_times, DataValue=random_values)

status <- AddVariables(server, username=user, password=pass,
 site=siteID, variable=variableID,
 methodID=methodID, sourceID=sourceID,
 qualityControl=qualityID, values=my_values)
```

Description

This function adds a table of variables to HydroServer Lite. The input must be a data.frame with all required ODM 'variable' fields NOTE: this only works with HydroServer Lite that implements the JSON API. you must specify a valid server url, user name, and password for the HydroServer. The examples here use the 'sandbox' HydroServer on http://worldwater.byu.edu/app/ with the username: admin and password: password.

Usage

AddVariables(server, username, password, variables)

Arguments

- **server** The URL of the web service ending with /services or with ?wsdl, for example: http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx?wsdl alternatively you can specify the JSON API url like: http://worldwater.byu.edu/app/index.php/default/services/api/
- **username** The valid HydroServer Lite username, for example "admin"
- **password** The valid HydroServer Lite password, for example "password"
variables

The valid table of variables. This table must have the following columns: VariableCode, VariableName, Speciation, VariableUnitsID, SampleMedium, ValueType, IsRegular, TimeSupport, TimeUnitsID, DataType, GeneralCategory, NoDataValue. NOTE that the values of these fields must be in the CUAHSI controlled vocabulary.

Value

A table of the added variables, with two extra columns: VariableID (the ID assigned by the server), Status (the status showing if the variable was added: OK or Error). If the status is Error, then the Error message with reason why the variable could not be added is also shown.

Examples

```r
user <- "admin"
pass <- "password"
server <- "http://worldwater.byu.edu/app/index.php/default/services/cuahsi_1_1.asmx"

# make random site codes
random_code = sprintf("R-%04d",sample(1:10000,1))

my_variables <- data.frame(
  VariableCode = random_code,
  VariableName = "Color",
  Speciation = "Not Applicable",
  VariableUnitsID = 189,
  SampleMedium = "Groundwater",
  ValueType = "Sample",
  IsRegular = 1,
  TimeSupport = 0,
  TimeUnitsID = 100,
  DataType = "Average",
  GeneralCategory = "Hydrology",
  NoDataValue = -9999
)

added_variables <- AddVariables(server, username=user, password=pass,
  variables=my_variables)
```

---

**GetServices**

**Description**

This function gets the table of web services from the HIS Central catalog

**Usage**

`GetServices()`

**Examples**

`GetServices()`
GetSiteInfo

Description

This function gets the table variables measured at a specific site from the WaterML web service.

Usage

GetSiteInfo(server, siteCode)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server</td>
<td>The URL of the web service ending with .asmx or .wsdl, for example: <a href="http://worldwater.byu.edu/app/index.php/rushvalley/services/cuahsi_1_1.asmx?WSDL">http://worldwater.byu.edu/app/index.php/rushvalley/services/cuahsi_1_1.asmx?WSDL</a></td>
</tr>
<tr>
<td>siteCode</td>
<td>The full site code, for example: default:Ru5BMMA. To get a list of available site codes, see GetSites() function and use the FullSiteCode field.</td>
</tr>
</tbody>
</table>

Value

A data.frame of data values with the following columns:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiteID</td>
<td>character</td>
<td>The site ID in the original database</td>
</tr>
<tr>
<td>SiteName</td>
<td>character</td>
<td>The name of the site</td>
</tr>
<tr>
<td>SiteCode</td>
<td>character</td>
<td>A short unique code of the site</td>
</tr>
<tr>
<td>FullSiteCode</td>
<td>character</td>
<td>The complete unique code of the site</td>
</tr>
<tr>
<td>in the format NETWORK:CODE, for example SNOTEL:879.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>numeric</td>
<td>The WGS84 latitude in decimal degrees</td>
</tr>
<tr>
<td>Longitude</td>
<td>numeric</td>
<td>The WGS84 longitude in decimal degrees</td>
</tr>
<tr>
<td>Elevation</td>
<td>numeric</td>
<td>The elevation of the site above sea level in meters</td>
</tr>
<tr>
<td>State</td>
<td>character</td>
<td>Only for sites in the USA: the state of the site</td>
</tr>
<tr>
<td>County</td>
<td>character</td>
<td>Only for sites in the USA: The county of the site</td>
</tr>
<tr>
<td>Comments</td>
<td>character</td>
<td>Additional comments about the sites</td>
</tr>
<tr>
<td>(note: this field is often empty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VariableCode</td>
<td>character</td>
<td>Short code of the variable</td>
</tr>
<tr>
<td>FullVariableCode</td>
<td>character</td>
<td>The full variable code, for example: SNOTEL:SNWD.</td>
</tr>
<tr>
<td>Use this value as the variableCode parameter in GetValues().</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VariableName</td>
<td>character</td>
<td>The name of the variable</td>
</tr>
<tr>
<td>ValueType</td>
<td>character</td>
<td>the type of observation:</td>
</tr>
<tr>
<td>DataType</td>
<td>character</td>
<td>the aggregate data type:</td>
</tr>
<tr>
<td>GeneralCategory</td>
<td>character</td>
<td>the general category of the measurements:</td>
</tr>
<tr>
<td>Climate, Water Quality..</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SampleMedium</td>
<td>character</td>
<td>the sample medium:</td>
</tr>
<tr>
<td>for example water, atmosphere, soil..</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnitName</td>
<td>character</td>
<td>The name of the measurement units</td>
</tr>
</tbody>
</table>
GetSiteInfo

- **UnitType** character: the type of the measurement units
- **UnitAbbreviation** character: The abbreviation of the measurement units
- **NoDataValue** numeric: The value that indicates missing data
- **IsRegular** boolean: TRUE if the measurements are regular, FALSE otherwise
- **TimeZone** character: The name of the time units
- **Support** character: The length of the time period over which one measurement is taken
- **Speciation** character: The chemical sample speciation
- **methodID** character: The ID of the sensor or measurement method
- **methodCode** character: The code of the sensor or measurement method. Usually the same as methodID.
- **methodDescription** character: The description of the sensor or of the data collection instrumentation / measurement method.
- **methodLink** character: The hyperlink of the website of the sensor or measurement method.
- **sourceID** character: The ID of the data source or author
- **organization** character: The name of the organization collecting the data
- **sourceDescription** character: The description of the organization collecting the data
- **citation** character: Instruction how to cite the data
- **qualityControlLevelID** character: The ID of the quality control level. Usually 0 means raw data and 1 means quality controlled data.
- **qualityControlLevelCode** character: The code of the quality control level. Usually same as qualityControlLevelID.
- **qualityControlLevelDefinition** character: The quality control level definition.
- **valueCount** character: The number of observations in this time series.
- **beginDateTime** POSIXct: The local date and time of the first available observation in this time series.
- **endTime** POSIXct: The local date and time of the last available observation in this time series.
- **beginDateTimeUTC** POSIXct: The UTC date and time of the first available observation in this time series.
- **endTimeUTC** POSIXct: The UTC date and time of the last available observation in this time series.

The output data.frame also has attributes with information about the status: download.time, parse.time, download.status, parse.status These attributes can be used for troubleshooting WaterOneFlow/WaterML server errors. If parse status is "NO_SERIES_FOUND", then this site doesn’t have any available data.

**Examples**

```r
server <- "http://worldwater.byu.edu/app/index.php/rushvalley/services/cuahsi_1_1.asmx"
siteInfo <- GetSiteInfo(server, siteCode="default:Ru5BMM")
```
Description

This function gets the table of sites from the WaterML web service.

Usage

GetSites(server, west = NULL, south = NULL, east = NULL, north = NULL)

Arguments

- server: The URL of the web service ending with .WSDL, for example: http://icewater.usu.edu/MudLake/cuahsi_1_0.asmx?WSDL or alternatively this can be the REST URL to get the sites.
- west: Optional parameter: The west longitude of the geographic bounding box in decimal degrees. Allowed values are between -180.0 and +180.0.
- south: Optional parameter: The south latitude of the geographic bounding box in decimal degrees. Allowed values are between -90.0 and +90.0.
- east: Optional parameter: The east longitude of the geographic bounding box in decimal degrees. Allowed values are between -180.0 and +180.0.
- north: Optional parameter: The north latitude of the geographic bounding box in decimal degrees. Allowed values are between -90.0 and +90.0.

Value

A data.frame of sites. The data.frame has the following columns:

- SiteID: The site ID in the original database.
- SiteName: The name of the site.
- SiteCode: A short unique code of the site.
- FullSiteCode: The complete unique code of the site in the format NETWORK:CODE. Use this value in the GetSiteInfo and GetValues functions.
- Latitude: The WGS84 latitude in decimal degrees.
- Longitude: The WGS84 longitude in decimal degrees.
- Elevation: The elevation of the site above sea level in meters.
- State: Only for sites in the USA: The state of the site.
- County: Only for sites in the USA: The county of the site.
- Comments: Additional comments about the sites (note: this field is often empty).

The output data.frame also has attributes with information about the status: download.time, parse.time, download.status, parse.status These attributes can be used for troubleshooting WaterOneFlow/WaterML server errors.
Examples

# Getting all sites from a service
sites <- GetSites("http://icewater.usu.edu/MudLake/cuahsi_1_0.asmx?WSDL")

# Getting a subset of sites restricted by geographical area
server <- "http://drought.usu.edu/usbreservoirs/cuahsi_1_1.asmx?WSDL"
sites_subset <- GetSites(server, west=113.0, south=35.0, east=110.0, north=40.0)

---

GetValues

Description

This function gets the time series data values from the WaterML web service

Usage

GetValues(server, siteCode = NULL, variableCode = NULL, startDate = NULL,
           endDate = NULL, methodID = NULL, sourceID = NULL, qcID = NULL,
           daily = NULL)

Arguments

server
  The URL of the web service, for example: http://worldwater.byu.edu/interactive/rushvalley/services/index.php/cuahsi_1_1.asmx?WSDL.
  This can be also a custom REST URL or the file name of the WaterML file.

siteCode
  The site code. To get a list of available site codes, see GetSites() function and use the FullSiteCode field.

variableCode
  The variable code. To get a list of possible variable codes, see GetVariables() function and use the FullVariableCode field.

startDate
  (optional) The start date in "yyyymmdd" format.

endDate
  (optional) The end date in "yyyymmdd" format.

methodID
  (optional) The ID of the observation method. To get a list of possible method IDs, see methodID column in the output of GetSiteInfo(). If methodID is not specified, then the observations in the output data.frame won't be filtered by method.

sourceID
  (optional) The ID of the source. To get a list of possible source IDs, see sourceID column in the output of GetSiteInfo(). If sourceID is not specified, then the observations in the output data.frame won't be filtered by source.

qcID
  (optional) The ID of the quality control level. Typically 0 is used for raw data and 1 is used for quality controlled data. To get a list of possible quality control level IDs, see QualityControlLevelID column in the output of GetSiteInfo(). If qcID is not specified, then the observations in the output data.frame won't be filtered by quality control level.

daily
  (optional) If you set daily="max", daily="min" or daily="mean", then the data values are aggregated to daily time step.
Value

a data.frame of data values with the following columns:

- **time**: The local date/time of the observation. The data type is POSIXct.
- **DataValue**: The observed data value
- **UTCOffset**: The difference between local time and UTC time in hours
- **CensorCode**: The code for censored observations. Possible values are nc (not censored), gt (greater than), lt (less than), nd (non-detect), pnq (present but not quantified)
- **DateTimeUTC**: The UTC time of the observation. The data type is POSIXct.
- **MethodCode**: The code of the method or instrument used for the observation
- **SourceCode**: The code of the data source
- **QualityControlLevelCode**: The code of the quality control level. Possible values are -9999 (Unknown), 0 (Raw data), 1 (Quality controlled data), 2 (Derived products), 3 (Interpreted products), 4 (Knowledge products)

The output data.frame also has attributes with information about the status: download.time, parse.time, download.status, parse.status. These attributes can be used for troubleshooting WaterOneFlow/WaterML server errors. If parse status is "NO_VALUES_FOUND", then this time series doesn’t have any available data for the selected time period.

Examples

```r
# example 1: Get Values from a known site and variable from RushValley server
v1 <- GetValues("http://worldwater.byu.edu/app/index.php/rushvalley/services/cuahsi_1_1.asmx?WSDL",
                 site="RuSMMMA", variable="SRS_NR_NDVI", startDate="2014-11-01", endDate="2014-11-02",
                 daily="max")

# example 2: Get values from an external REST URL (in this case the Provo USGS NWIS site id 10163000)
url <- "http://waterservices.usgs.gov/nwis/dv/?format=waterml,1.1&sites=10163000&parameterCd=00060"
v2 <- GetValues(url)

# example 3: Get values from WaterML 2.0 file
url2 <- "http://www.waterml2.org/KiWIS-WML2-Example.wml"
waterml2_data <- GetValues(url2)
```

Description

This function gets the table of variables from the WaterML web service

Usage

GetVariables(server)

Arguments

- **server**: The URL of the web service ending with ?WSDL, for example: http://worldwater.byu.edu/app/index.php/
**Value**

A data.frame of variables with the following columns:

- **VariableCode**: character  | Short code of the variable
- **FullVariableCode**: character  | The full variable code, for example: SNOTEL:897. Use this value as the variableCode parameter in GetValues() function.
- **VariableName**: character  | The name of the variable
- **ValueType**: character  | The type of observation: Field Observation or Derived Value
- **DataType**: character  | The aggregate data type: Average, Continuous, Sporadic..
- **GeneralCategory**: character  | The general category of the measurements: Climate, Water Quality..
- **SampleMedium**: character  | The sample medium, for example water, atmosphere, soil..
- **UnitName**: character  | The name of the measurement units
- **UnitType**: character  | The type of the measurement units
- **UnitAbbreviation**: character  | The abbreviation of the measurement units (m, cm, in..)
- **NoDataValue**: numeric  | The value that indicates missing data
- **IsRegular**: boolean  | TRUE if the measurements are regular, FALSE otherwise
- **TimeUnitName**: character  | The name of the time units
- **TimeUnitAbbreviation**: character  | The time units abbreviation
- **TimeSupport**: character  | The length of the time period over which one measurement is taken
- **Speciation**: character  | The chemical sample speciation (as nitrogen, as phosphorus..)

**Examples**

GetVariables("http://worldwater.byu.edu/app/index.php/rushvalley/services/cuahsi_1_1.asmx?WSDL")

**Description**

This function searches the table of time series from the HIS Central catalog

**Usage**

HISCentral_GetSeriesCatalog(west, south, east, north, serviceID = NULL, keyword = NULL, beginDate = NULL, endDate = NULL)

**Arguments**

- `west`: The west longitude of the geographic bounding box in decimal degrees. Allowed values are between -180.0 and +180.0
- `south`: The south latitude of the geographic bounding box in decimal degrees. Allowed values are between -90.0 and +90.0
- `east`: The east longitude of the geographic bounding box in decimal degrees. Allowed values are between -180.0 and +180.0
north
The north latitude of the geographic bounding box in decimal degrees. Allowed values are between -90.0 and +90.0.

serviceID
(optional): The ID of the service on HIS Central. To get the service ID, use the id column in the output of the GetServices() function.

keyword
(optional): The concept keyword (common name of variable) for searching the sites on HIS Central. Examples include Temperature, Precipitation, Snow Depth, ... If the Keyword is not specified then sites with any variable will be returned.

beginDate
(optional): The begin date of the observations in yyyy-mm-dd format.

date
(optional): The end date of the observations in yyyy-mm-dd format.

Value

a data.frame of series catalog entries. The data.frame has the following columns:

• ServiceCode: The code of the HydroServer
• ServiceURL: The URL of the server. Use this as the server parameter in GetValues() function.
• FullSiteCode: The complete unique code of the site in the format NETWORK:CODE. Use this value as the siteCode parameter in the GetValues function.
• FullVariableCode: The complete unique code of the site in the format VOCABULARY:CODE. Use this value as the variableCode parameter in the GetValues function.
• BeginDateTime: The local date/time of the first observation of the time series in POSIXct format.
• EndDateTime: The local date/time of the last observation of the time series in POSIXct format.
• ValueCount: The number of measurements in the time series
• SiteName: The name of the site.
• Latitude: The WGS84 latitude of the site in decimal degrees
• Longitude: The WGS84 longitude of the site in decimal degrees
• DataType: The data type of the variable
• ValueType: The type of the observation (field observation, sample, or derived value)
• SampleMedium: The sample medium (air, water or other)
• TimeUnits: The time units
• TimeSupport: The length of the time period of one measurement

Examples

#Getting all time series from the (14.1E, 49.9N, 14.3E, 50.1N) bounding box
series_catalog <- HISCentral_GetSeriesCatalog(west=14.1, south=49.9, east=14.3, north=50.1)
Description

This function gets the table of sites from the HIS Central catalog.

Usage

\[
\text{HISCentral\_GetSites(\text{west} = -180, \text{south} = -90, \text{east} = 180, \text{north} = 90,}
\text{\text{serviceID} = \text{NULL, keyword} = \text{NULL, IncludeServerDetails} = \text{TRUE})}
\]

Arguments

- **west**: The west longitude of the geographic bounding box in decimal degrees. Allowed values are between -180.0 and +180.0.
- **south**: The south latitude of the geographic bounding box in decimal degrees. Allowed values are between -90.0 and +90.0.
- **east**: The east longitude of the geographic bounding box in decimal degrees. Allowed values are between -180.0 and +180.0.
- **north**: The north latitude of the geographic bounding box in decimal degrees. Allowed values are between -90.0 and +90.0.
- **serviceID** (optional): The ID of the service on HIS Central. To get the service ID, use the id column in the output of the GetServices() function.
- **keyword** (optional): The concept keyword (common name of variable) for searching the sites on HIS Central. Examples include Temperature, Precipitation, Snow Depth,... If the Keyword is not specified then sites with any variable will be returned.
- **IncludeServerDetails** (optional): If set to TRUE, then the output will include the servCode and servURL for each site. If set to FALSE, then we assume that all sites are from the same server and the servURL and servCode are not included.

Value

A data.frame of sites. The data.frame has the following columns:

- **SiteName**: The name of the site
- **SiteCode**: A short unique code of the site
- **FullSiteCode**: The complete unique code of the site in the format NETWORK:CODE. Use this value in the GetSiteInfo and GetValues functions
- **Latitude**: The WGS84 latitude in decimal degrees
- **Longitude**: The WGS84 longitude in decimal degrees
- **ServCode**: The code of the service in HIS Central. Same as the networkName in the output from GetServices() function. This column is only shown if IncludeServerDetails is TRUE.
• ServURL: The URL of the web service for this site as registered in HIS Central. This column is only shown if IncludeServerDetails is TRUE.

Examples

#Getting all sites from the (14.1E, 49.8N, 14.6E, 50.2N) bounding box from the GLDAS web service
sites <- HISCentral_GetSites(west=14.1, south=49.8, east=14.6, north=50.2, serviceID=262)

Description

A helper function that makes a SOAP envelope to send to the CUAHSI WaterOneFlow SOAP web service. It is internally used by the GetSites, GetSiteInfo, GetVariables and GetValues functions.

Usage

MakeSOAPEnvelope(CUAHSINamespace, MethodName, parameters = NULL)

Arguments

CUAHSINamespace
The SOAP namespace. This must be either "http://www.cuahsi.org/hs/1.0/ws" for WaterML 1.0, or "http://www.cuahsi.org/hs/1.1/ws" for WaterML 1.1

MethodName
The name of the WaterOneFlow web service method. It can be one of the following values: "GetSites", "GetSitesObject", "GetSitesByBoxObject", "GetSiteInfoObject", "GetVariablesObject", "GetValuesObject"

parameters
An optional vector of named parameters for the web method. For GetSites, GetSitesObject and GetVariables no parameters are required. For GetSiteInfoObject you need the "site" parameter. For GetValuesObject you need the "location", "variable", "startDate" and "endDate" parameters.

Value

A <soap:Envelope> text in XML format. This text is send in a HTTP POST body to the SOAP service. Two headers must be sent in the request: Content-Type="text/XML" and SOAPAction=paste(CUAHSINamespace, MethodName). For example if MethodName is GetSites and the WaterML version is 1.1, then SOAPAction="http://www.cuahsi.org/hs/1.1/ws/GetSites".

Examples

library(httr)
myEnvelope <- MakeSOAPEnvelope("http://www.cuahsi.org/hs/1.1/ws/", "GetSitesObject")
SOAPAction <- "http://www.cuahsi.org/hs/1.1/ws/GetSitesObject"
url <- "http://hydrodata.info/chmi-d/cuahsi_1_1.asmx"
response <- POST(url, body = myEnvelope, add_headers("Content-Type" = "text/xml", "SOAPAction" = SOAPAction),
### WaterMLVersion

**Description**

A helper function that finds out the WaterML version from the WaterML document. By default it checks for "http://www.opengis.net/waterml/2.0" Otherwise it tries to detect "http://www.cuahsi.org/waterML/1.1/" (for WaterML 1.1) or "http://www.cuahsi.org/WaterML/1.0/" (for WaterML 1.0)

**Usage**

```r
WaterMLVersion(doc)
```

**Arguments**

- `doc` The XML document object

**Value**

A character with the WaterML version: either 1.0, 1.1, or 2.0

**Examples**

```r
library(httr)
library(XML)
url <- "http://www.waterml2.org/KiWIS-WML2-Example.wml"
response <- GET(url)
doc <- content(response, type = "application/xml")
version <- WaterMLVersion(doc)
```

---

### WaterOneFlowNamespace

**Description**

A helper function that finds out the WaterOneFlow namespace information based on the version number 1.0 or 1.1.

**Usage**

```r
WaterOneFlowNamespace(version)
```
WaterOneFlow Version

Arguments

version The version of the WaterOneFlow XML namespace. Must be either "1.0" or "1.1"

Value

A list with the namespaces and corresponding prefixes. This namespace information is important for correct parsing of the WaterML XML document.

Examples

ns <- WaterOneFlowNamespace("1.0")
nv <- WaterOneFlowNamespace("1.1")

Description

A helper function that finds out the WaterOneFlow service version from the URL of the wsdl file. By default it checks for "cuahsi_1_0" or "cuahsi_1_1" in the url. If that is not found, then the function checks the version inside the WSDL file.

Usage

WaterOneFlowVersion(WSDL)

Arguments

WSDL The URL of the WSDL, for example http://icewater.usu.edu/MudLake/cuahsi_1_0.asmx?WSDL

Value

A list with two items: Version (either 1.0 or 1.1), and Namespace (either http://www.cuahsi.org/his/1.0/ws/ or http://www.cuahsi.org/his/1.1/ws/)

Examples

versionInfo <- WaterOneFlowVersion("http://icewater.usu.edu/MudLake/cuahsi_1_0.asmx?WSDL")
versionInfo$Version
versionInfo$Namespace
Index

*Topic CUAHSI, WaterML-package, 2

*Topic HydroServer, WaterML-package, 2

*Topic WaterML, WaterML-package, 2

*Topic WaterML
AddValues, 6
GetVariables, 13
MakeSOAPEnvelope, 17
WaterMLVersion, 18
WaterOneFlowNamespace, 18
WaterOneFlowVersion, 19

*Topic services
WaterML-package, 2

*Topic waterml
AddMethods, 3
AddSites, 4
AddSources, 5
AddVariables, 7
GetServices, 8
GetSiteInfo, 9
GetSites, 11
GetValues, 12
HISCentral_GetSeriesCatalog, 14
HISCentral_GetSites, 16

*Topic web
WaterML-package, 2

AddMethods, 3
AddSites, 4
AddSources, 5
AddValues, 6
AddVariables, 7
GetServices, 8
GetSiteInfo, 9
GetSites, 11
GetValues, 12
GetVariables, 13