Package ‘WaveletANN’

October 12, 2022

Type Package
Title Wavelet ANN Model
Version 0.1.2
Author Dr. Ranjit Kumar Paul [aut, cre],
 Dr. Md Yeasin [aut]
Maintainer Dr. Ranjit Kumar Paul <ranjitstat@gmail.com>
Description The wavelet and ANN technique have been combined to reduce the effect of data noise. This wavelet-ANN conjunction model is able to forecast time series data with better accuracy than the traditional time series model. This package fits hybrid Wavelet ANN model for time series forecasting using algorithm by Anjoy and Paul (2017) <DOI:10.1007/s00521-017-3289-9>.
License GPL-3
Encoding UTF-8
Imports stats, wavelets, fracdiff, forecast, Metrics
NeedsCompilation no
RoxygenNote 7.2.1
Repository CRAN
Date/Publication 2022-09-08 10:33:00 UTC

R topics documented:

WaveletFitting ... 2
WaveletFittingann .. 3

Index 5
WaveletFitting

Description

Wavelet Transform Using Maximal Overlap Discrete Wavelet Transform (MODWT) Algorithm

Usage

WaveletFitting(ts, Wvlevels, Filter = "haar", bndry = "periodic", FFlag = TRUE)

Arguments

- ts: Univariate time series
- Wvlevels: The level of wavelet decomposition
- Filter: Wavelet filter
- bndry: The boundary condition of wavelet decomposition
- FFlag: The FastFlag condition of wavelet decomposition: True or False

Value

- WaveletSeries - The wavelet transform of the series

References

Examples

data<-rnorm(100,mean=100,sd=50)
WaveletFitting(ts=data,Wvlevels=3,Filter="haar",bndry="periodic",FFlag=TRUE)
WaveletFittingann

Wavelet-ANN Hybrid Model for Forecasting

Description

Wavelet-ANN Hybrid Model for Forecasting

Usage

WaveletFittingann(
 ts,
 Waveletlevels,
 Filter = "haar",
 boundary = "periodic",
 FastFlag = TRUE,
 nonseaslag,
 seaslag = 1,
 hidden,
 NForecast
)

Arguments

ts Univariate time series
Waveletlevels The level of wavelet decomposition
Filter Wavelet filter
boundary The boundary condition of wavelet decomposition
FastFlag The FastFlag condition of wavelet decomposition: True or False
nonseaslag Number of non seasonal lag
seaslag Number of non seasonal lag
hidden Size of the hidden layer
NForecast The forecast horizon: A positive integer

Value

- Finalforecast - Forecasted value
- FinalPrediction - Predicted value of train data
- Accuracy - RMSE and MAPE for train data

References

Examples

\begin{verbatim}
N <- 100
PHI <- 0.2
THETA <- 0.1
SD <- 1
M <- 0
D <- 0.2
Seed <- 123
set.seed(Seed)
Sim.Series <- fracdiff::fracdiff.sim(n = N, ar = c(PHI), ma = c(THETA), d = D, rand.gen = rnorm, sd = SD, mu = M)
simts <- as.ts(Sim.Series$series)
WaveletForecast <- WaveletFittingann(ts = simts, Waveletlevels = 3, Filter = 'd4', nonseaslag = 5, hidden = 3, NForecast = 5)
\end{verbatim}
Index

WaveletFitting, 2
WaveletFittingann, 3