Package ‘Wcompo’

October 12, 2022

Type Package
Title Semiparametric Proportional Means Regression of Weighted Composite Endpoint
Version 1.0
Author Lu Mao
Maintainer Lu Mao <lmao@biostat.wisc.edu>
URL https://sites.google.com/view/lmaowisc/
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
VignetteBuilder knitr
Imports survival
Depends R (>= 2.10)
Suggests knitr, rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2021-11-30 21:30:02 UTC

R topics documented:

CompoML .. 2
hfmock ... 3
plot.CompoML .. 4
print.CompoML .. 5

Index 6
CompoML

Fit a proportional means regression model for weighted composite endpoint of recurrent event and death

Description

Fit a semiparametric proportional means regression model for the weighted composite endpoint of recurrent event and death (Mao and Lin, 2016). (Jared D. Huling (ORCID: 0000-0003-0670-4845) contributed to the optimization of this code.)

Usage

```r
CompoML(id, time, status, Z, w = NULL, ep = 1e-04)
```

Arguments

- `id`: A vector of unique patient identifiers.
- `time`: A vector of event times.
- `status`: A vector of event type labels. 0: censoring; 1: death; 2, 3,..., \(K \): different types of (possibly recurrent) nonfatal event.
- `Z`: Covariate matrix (must be time-constant).
- `w`: A \(K \)-vector of weights assigned to event types 1 (death), 2, ... , \(K \) (nonfatal events); If NULL, an unweighted endpoint is modeled (i.e., with \(w = c(1, 1, \ldots, 1) \)).
- `ep`: Convergence threshold for the Newton-Raphson algorithm.

Value

An object of class `CompoML` with the following components. `beta`: a vector of estimated regression coefficients (log-mean ratios); `var`: estimated covariance matrix for `beta`; `t`: unique event times; `y`: estimated baseline mean function (of `t`).

References

See Also

`plot.CompoML`, `print.CompoML`
Examples

```r
## load package and data
library(Wcompo)
head(hfmock)
## fit a weighted PM (w_D=2, w_1=1)
obj <- CompoML(hfmock$id,hfmock$time,hfmock$status,hfmock[,c("Training","HF.etiology")],
w=c(2,1))
## print out the result
obj

oldpar <- par(mfrow = par("mfrow"))
par(mfrow=c(1,2))
## plot the estimated mean function for
## non-ischemic patients by treatment
plot(obj,c(1,0),ylim=c(0,1.5),xlim=c(0,50),
     main="Non-ischemic",
     xlab="Time (months)",cex.main=1.2,lwd=2)
plot(obj,c(0,0),add=TRUE,cex.main=1.2,lwd=2,lty=2)
legend("topleft",lty=1:2,lwd=2,c("Exercise training","Usual care"))

## plot the estimated mean function for
## ischemic patients by treatment
plot(obj,c(1,1),ylim=c(0,1.5),xlim=c(0,50),
     main="Ischemic",
     xlab="Time (months)",cex.main=1.2,lwd=2)
plot(obj,c(0,1),add=TRUE,cex.main=1.2,lwd=2,lty=2)
legend("topleft",lty=1:2,lwd=2,c("Exercise training","Usual care"))
par(oldpar)
```

hfmock

A dataset from the HF-ACTION trial

Description

The Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) study was conducted between 2003–2007 to investigate whether adding exercise training to the usual care of heart failure patients improves their cardiovascular outcomes (O’Conner et al., 2009). This is a mock dataset consisting of 963 patients with baseline information about heart failure etiology.

Usage

hfmock
Format

A data frame with 1,315 rows and 5 variables:

- **id** Unique patient identifier.
- **time** Event time (months).
- **status** Event type; 2 = recurrent hospitalization, 1 = death, 0 = censoring.
- **Training** 1 = exercise training, 0 = usual care.
- **HF.etiology** 1 = ischemic, 0 = non-ischemic.

References

plot.CompoML

Plot the predicted mean function under the proportional means model

Description

Plot the predicted mean function under the proportional means model for a new observation.

Usage

```r
## S3 method for class 'CompoML'
plot(x,
     z = NULL,
     xlab = "Time",
     ylab = "Mean function",
     lty = 1,
     frame.plot = FALSE,
     add = FALSE,
     ...
)
```

Arguments

- **x** An object returned by `CompoML`.
- **z** Covariate vector for the new observation. If `NULL`, the baseline mean function will be plotted.
- **xlab** A label for the x axis.
- **ylab** A label for the y axis.
- **lty** Line type for the plot.
print.CompoML

frame.plot Boolean argument indicating whether to add a rectangular frame to the plot.
add If TRUE, the curve will be overlaid on an existing plot; otherwise, a separate
 plot will be constructed.
... Other arguments that can be passed to the underlying plot method.

Value

No return value, called for side effects.

See Also

CompoML, print.CompoML.

Examples

 ## see example for CompoML
Index

* CompoML
 CompoML, 2
 plot.CompoML, 4
 print.CompoML, 5

* datasets
 hfmock, 3

CompoML, 2, 4, 5
hfmock, 3
plot.CompoML, 2, 4, 5
print.CompoML, 2, 5, 5