Package ‘WhiteStripe’

October 1, 2019

Type Package

Title White Matter Normalization for Magnetic Resonance Images using WhiteStripe

Version 2.3.2

Date 2019-09-26

Author R. Taki Shinohara, John Muschelli

Maintainer John Muschelli <muschellij2@gmail.com>

Description Shinohara (2014) <DOI:10.1016/j.nicl.2014.08.008> introduced ‘WhiteStripe’, an intensity-based normalization of T1 and T2 images, where normal appearing white matter performs well, but requires segmentation. This method performs white matter mean and standard deviation estimates on data that has been rigidly-registered to the ‘MNI’ template and uses histogram-based methods.

License GPL-3

Depends R (>= 2.10), methods

Imports graphics, stats, utils, oro.nifti (>= 0.5.0), mgcv

LazyData true

BugReports https://github.com/muschellij2/WhiteStripe/issues

RoxygenNote 6.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2019-10-01 13:00:02 UTC
R topics documented:

- download_img_data .. 2
- get.deriv.smooth.hist 3
- get.first.mode .. 3
- get.largest.mode ... 4
- get.last.mode .. 5
- make_img_voi .. 6
- s.hist ... 7
- smooth_hist ... 7
- t1.voi.hist .. 8
- t2.voi.hist .. 9
- whitestripe ... 10
- whitestripe_hybrid .. 11
- whitestripe_ind_to_mask 12
- whitestripe_norm ... 13
- ws_img_data ... 14
- xvals ... 14

Index

download_img_data Download T1 and T2 data

Description

Download T1 and T2 data for Examples

Usage

 download_img_data(lib.loc = NULL)

Arguments

 lib.loc a character vector with path names of R libraries. Passed to `img_data`

Value

 Logical indicator if the files were downloaded.

get.deriv.smooth.hist
Gets n^{th} derivative of smoothed histogram

Description
This function outputs the nth derivative of a histogram smooth.

Usage
```
get.deriv.smooth.hist(x, coefs, knots, deg = 4, deriv.deg = 1)
```

Arguments
- `x`: values from smooth_hist
- `coefs`: Coefficients from GAM from smooth_hist
- `knots`: Number of knots fit for GAM
- `deg`: Degree of polynomials
- `deriv.deg`: The degree of the derivative.

Value
Derivative of smoothed histogram

Examples
```
data(smoothed_histogram)
dy<-get.deriv.smooth.hist(xvals,
  coefs=s.hist$coefs,
  knots=s.hist$knots,
  deg=s.hist$deg,
  deriv.deg=1)
```

get.first.mode
Get First Peak

Description
This function grabs the first peak or shoulder.

Usage
```
get.first.mode(x, y, rare.prop = 1/5, verbose = TRUE, remove.tail = TRUE, ...)
```
get.largest.mode

Arguments

- **x**: values of midpoints from `hist`
- **y**: values of counts from `hist`
- **rare.prop**: Proportion used to remove rare intensity tail
- **verbose**: print diagnostic output
- **remove.tail**: Remove rare intensity tail
- **...**: arguments to be passed to `smooth_hist`

Value

Value of x that is the first peak

Examples

```r
data(t1.voi.hist)
system.time({
y = t1.voi.hist$counts
x = t1.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
# 20 used for speed of example
nawm_peak = get.first.mode(x, y, k=20)
plot(t1.voi.hist, border="red")
abline(v=nawm_peak)
})
```

Description

This function grabs the largest peak of the histogram

Usage

```r
get.largest.mode(x, y, verbose = TRUE, ...)
```

Arguments

- **x**: values of midpoints from `hist`
- **y**: values of counts from `hist`
- **verbose**: print diagnostic output
- **...**: arguments to be passed to `smooth_hist`
get.last.mode

Value

Value of x that is the largest peak

Examples

data(t2.voi.hist)
system.time(
 y = t2.voi.hist$counts
 x = t2.voi.hist$mids
 x = x[!is.na(y)];
 y = y[!is.na(y)]
 # 30 used for speed of example
 nawm_peak = get.largest.mode(x, y, k=30)
 plot(t2.voi.hist, border="red")
 abline(v=nawm_peak)
)

get.last.mode Get Last Peak

Description

This function grabs the last peak or shoulder.

Usage

get.last.mode(x, y, rare.prop = 1/5, verbose = TRUE, remove.tail = TRUE, ...)

Arguments

x values of midpoints from hist
y values of counts from hist
rare.prop Proportion used to remove rare intensity tail
verbose print diagnostic output
remove.tail Remove rare intensity tail
... arguments to be passed to smooth_hist

Value

Value of x that is the last peak
Examples

```r
data(t1.voi.hist)
system.time(
  y = t1.voi.hist$counts
  x = t1.voi.hist$mids
  x = x[!is.na(y)];
  y = y[!is.na(y)]
  # 20 used for speed of example
  nawm_peak = get.last.mode(x, y, k=20)
  plot(t1.voi.hist, border="red")
  abline(v=nawm_peak)
)
```

make_img_voi

Make Image VOI

Description

Creates a VOI of Image for the specified slices

Usage

```r
make_img_voi(img, slices = 80:120, na.rm = TRUE, ...)
```

Arguments

- `img`
 Image (T1 usually or T2). Array or object of class nifti
- `slices`
 Slices to take for the image voi
- `na.rm`
 Remove NAs from mean. This is for double checking
- `...`
 Arguments passed from other methods (not used)

Value

VOI of image.
s.hist

Smoothed histogram of image

Description
Smoothed histogram of image

Usage
s.hist

Format
A GAM from mgcv for x and y from histograms

Examples
Not run:
data(t2.voi.hist)
y = t2.voi.hist$count
x = t2.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
70 used for speed of example
s.hist = smooth_hist(x, y, k=70)

End(Not run)

smooth_hist

Histogram smoothing for whitestripe

Description
Uses a generalized additive model (GAM) to smooth a histogram for whitestripe

Usage
smooth_hist(x, y, deg = 4, k = floor(min(250, length(x)/2)),
 method = "REML", ...)

Arguments
x values of midpoints from hist
y values of counts from hist
deg degree of polynomials used
k Number of knots
method Method for smoothing for GAM
... Arguments passed to gam
Value

List of objects: x and y coordinates of histogram, coefficients from GAM, fitted values from GAM, the GAM model, the knots fitted, and degrees of polynomials

See Also

gam

Examples

data(t2.voi.hist)
y = t2.voi.hist$counts
x = t2.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
30 used for speed of example
s.hist = smooth_hist(x, y, k=30)
plot(t2.voi.hist, border="red")
lines(s.hist)

t1.voi.hist Histogram of VOI of T1 template image

Description

Histogram of VOI of T1 template image

Usage

t1.voi.hist

Format

A volume of interest histogram from a T1 image for smoothing

Examples

Not run:
lib.loc = tempdir()
if (download_img_data(lib.loc = lib.loc))(t1 = readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe", lib.loc = lib.loc))
t1.voi = make_img_voi(t1)
any(is.na(t1.voi))
FALSE

Save to disk

t1.voi.hist = hist(t1.voi,
b breaks=2000,
plot=FALSE)
#save(t1.voi.hist, file="data/t1.voi.hist.rda", compress = TRUE,
t2.voi.hist

compression_level=9)
}
End(Not run)

Description

Histogram of VOI of T2 template image

Usage

```r
t2.voi.hist
```

Format

A histogram volume of interest from a T2 image for smoothing

Examples

```r  
## Not run:  
lib.loc = tempdir()  
if (download_img_data(lib.loc = lib.loc)) {  
t2 = readNIfTI(system.file("T2Strip.nii.gz", package="WhiteStripe",  
lib.loc = lib.loc))  
t2.voi = make_img_voi(t2)  
any(is.na(t2.voi))  
# FALSE  
t2.voi.hist = hist(t2.voi,  
breaks=2000,  
plot=FALSE)  
#save(t2.voi.hist, file="data/t2.voi.hist.rda", compress = TRUE,  
# compression_level=9)  
}  
## End(Not run)
```
whitestripe

Performs White Stripe of T1 or T2 Images

Description

Returns the mean/sd of the whitestripe and indices for them on the image

Usage

whitestripe(img, type = c("T1", "T2", "FA", "MD", "first", "last", "largest"), breaks = 2000, whitestripe.width = 0.05, whitestripe.width.l = whitestripe.width, whitestripe.width.u = whitestripe.width, arr.ind = FALSE, verbose = TRUE, stripped = FALSE, slices = NULL, ...)

Arguments

img Image (T1, T2, FA, or MD). Array or object of class nifti
type T1, T2, FA, or MD image whitestripe
breaks Number of breaks passed to hist
whitestripe.width Radius of the white stripe
whitestripe.width.l Lower Radius of the white stripe
whitestripe.width.u Upper Radius of the white stripe
arr.ind Whether indices should be array notation or not, passed to which
verbose Print diagnostic information
stripped Applying to skull-stripped image. NOTE: This does NOT do a subset of slices, as make_img_voi.
slices slices to use for make_img_voi if only a subset to estimate the distribution.
... Arguments to be passed to get.last.mode

Details

This function takes in an image and computes a window of the distribution called the white stripe. If you wish to pass in values you have subset, such as single from a skull-stripped image, you can pass in img and set the class to img_voi (class(img) = "img_voi") and this will not rerun make_img_voi.

Value

List of indices of whitestripe, last mode of histogram, array/nifti of 0/1 corresponding to the mask, mean of whitestripe, standard deviation of whitestripe
Examples

```r
## Not run:
library(WhiteStripe)
lib.loc = tempdir()
if (WhiteStripe::download_img_data(lib.loc = lib.loc)){
  library(oro.nifti)
  set.seed(1)
  t1 = readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe",
    lib.loc = lib.loc))
  t1.ind = whitestripe(t1, "T1")
  set.seed(2)
  t1_2 = readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe",
    lib.loc = lib.loc))
  t1_2.ind = whitestripe(t1_2, "T1")
  t1.mask = whitestripe_ind_to_mask(t1, t1.ind$whitestripe.ind)
  t1.mask[t1.mask == 0] = NA
  orthographic(t1, t1.mask, col.y="red")
  t2 = readNIfTI(system.file("T2Strip.nii.gz", package="WhiteStripe",
    lib.loc = lib.loc))
  t2.ind = whitestripe(t2, "T2")
  t2.mask = whitestripe_ind_to_mask(t2, t2.ind$whitestripe.ind)
  t2.mask[t2.mask == 0] = NA
  orthographic(t2, t2.mask, col.y="red")
}
## End(Not run)
```

`whitestripe_hybrid` *Hybrid WhiteStripe*

Description

Uses t1 and t2 WhiteStripe to get an intersection of the two masks for a hybrid approach.

Usage

`whitestripe_hybrid(t1, t2, ...)`

Arguments

- `t1`: T1 image, array or class nifti
- `t2`: T2 image, array or class nifti
- `...`: arguments passed to `whitestripe`

Value

List of indices of overlap mask, and overlap of class array or nifti
whitestripe_ind_to_mask

Description

Uses WhiteStripe indices to create image mask

Usage

```r
whitestripe_ind_to_mask(img, indices, writeimg = FALSE, ...)
```

Arguments

- `img`:

 Array or class nifti that is corresponds to dimensions of the images the indices were generated from

- `indices`:

 indices from `whitestripe`

- `writeimg`:

 logical to write image or not

- `...`:

 arguments to passed to `writeNIfTI` for writing image

Value

Class of array or nifti depending on `img` input

See Also

- `whitestripe`
- `whitestripe_hybrid`
whitestripe_norm

Examples

```r
## Not run:
lib.loc = tempdir()

if (download_img_data(lib.loc = lib.loc)){
  t1 = readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe",
    lib.loc = lib.loc))
  t2 = readNIfTI(system.file("T2Strip.nii.gz", package="WhiteStripe",
    lib.loc = lib.loc))
  ind = whitestripe_hybrid(t1, t2)
  mask = whitestripe_ind_to_mask(t1, ind$whitestripe.ind)
  orthographic(mask)
}
## End(Not run)
```

whitestripe_norm Normalize Image using white stripe

Description

Taking the indices from white stripe to normalize the intensity values of the brain

Usage

```r
whitestripe_norm(img, indices, ...)
```

Arguments

- `img` Array or object of class nifti
- `indices` Indices of white stripe from `whitestripe`. Can also be a mask (indices where mask > 0 are used.)
- `...` arguments to be passed to `mean` and `sd`

Value

Object of same class as `img`, but normalized
ws_img_data

Return Filenames of T1 and T2 data

Description

Return filenames T1 and T2 data for example and vignettes

Usage

```
ws_img_data(lib.loc = NULL, warn = TRUE)
```

Arguments

- `lib.loc`: a character vector with path names of R libraries. Passed to `system.file`
- `warn`: Should a warning be printed if the images were not there

Value

Vector of filenames

xvals

Midpoints from VOI histogram

Description

Midpoints from VOI histogram

Usage

```
xvals
```

Format

x values from histogram for VOI
Index

*Topic **datasets**
 s.hist, 7
 t1.voi.hist, 8
 t2.voi.hist, 9
 xvals, 14

*Topic **hybrid**
 whitestripe_hybrid, 11
 whitestripe_ind_to_mask, 12

*Topic **whitestripe**
 whitestripe_hybrid, 11
 whitestripe_ind_to_mask, 12

download_img_data, 2

gam, 7, 8
get.deriv.smooth.hist, 3
get.first.mode, 3
get.largest.mode, 4
get.last.mode, 5, 10

hist, 4, 5, 7, 10
hybrid (whitestripe_hybrid), 11

img_data, 2

make_img_voi, 6, 10
mean, 13

s.hist, 7
sd, 13
smooth_hist, 4, 5, 7
system.file, 14

t1.voi.hist, 8
t2.voi.hist, 9

which, 10
whitemask (whitestripe_ind_to_mask), 12
whitestripe, 10, 11–13
whitestripe_hybrid, 11
whitestripe_ind_to_mask, 12