Package ‘YPBP’

June 29, 2020

Title Yang and Prentice Model with Baseline Distribution Modeled by Bernstein Polynomials

Version 0.0.1

Description Semiparametric modeling of lifetime data with crossing survival curves via Yang and Prentice model with baseline hazard/odds modeled with Bernstein polynomials. Details about the model can be found in Demarqui et al. (2019) <arXiv:1910.04475>. Model fitting can be carried out via both maximum likelihood and Bayesian approaches. The package also provides point and interval estimation for the crossing survival times.

License GPL (>= 2)

URL https://github.com/fndemarqui/YPBP

BugReports https://github.com/fndemarqui/YPBP/issues

Encoding UTF-8

LazyData true

Biarch true

Depends R (>= 3.4.0), survival

Imports Formula, MASS, methods, Rcpp (>= 0.12.0), rstan (>= 2.18.1), rstantools (>= 2.0.0)

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

SystemRequirements GNU make

RoxygenNote 7.1.0

Suggests knitr, testthat

NeedsCompilation yes

Author Fabio Demarqui [aut, cre] (<https://orcid.org/0000-0001-9236-1986>)

Maintainer Fabio Demarqui <fndemarqui@est.ufmg.br>

Repository CRAN

Date/Publication 2020-06-29 09:20:13 UTC
The 'YPBP' package.

Description

Semiparametric modeling of lifetime data with crossing survival curves via Yang and Prentice model with baseline hazard/odds modeled with Bernstein polynomials. Details about the model can be found in Demarqui and Mayrink (2019) <arXiv:1910.04475>. Model fitting can be carried out via maximum likelihood or Bayesian approaches. The package also provides point and interval estimation for the crossing survival times.

References

coef.ypbp

<table>
<thead>
<tr>
<th>coef.ypbp</th>
<th>Estimated regression coefficients</th>
</tr>
</thead>
</table>

Description

This function returns the estimated regression coefficients when the maximum likelihood estimation approach is used in the model fitting.

Usage

```r
## S3 method for class 'ypbp'
coef(object, ...)
```

Arguments

- **object**
 - an object of the class ypbp.
- **...**
 - further arguments passed to or from other methods.

Value

the estimated regression coefficients.

Examples

```r
fit <- ypbp(Surv(time, status)~arm, data=ipass)
coef(fit)
```

confint

<table>
<thead>
<tr>
<th>confint</th>
<th>Generic S3 method confint</th>
</tr>
</thead>
</table>

Description

Generic S3 method confint

Usage

```r
confint(object, ...)
```

Arguments

- **object**
 - a fitted model object
- **...**
 - further arguments passed to or from other methods.
Value

the confidence intervals for the regression coefficients

Description

This function returns the estimated confidence intervals for the regression coefficients when the
maximum likelihood estimation approach is used in the model fitting.

Usage

S3 method for class 'ypbp'
confint(object, level = 0.95, ...)

Arguments

object an object of the class ypbp.
level the confidence level required.
... further arguments passed to or from other methods.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for the regression
coefficients. These will be labeled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and
97.5%).

Examples

fit <- ypbp(Surv(time, status)-arm, data=ipass)
confint(fit)
crossTime

Generic S3 method crossTime

description
Generic S3 method crossTime

usage

crossTime(object, ...)

arguments

object a fitted model object
...

... further arguments passed to or from other methods.

value

the crossing survival time

crossTime.ypbp Computes the crossing survival times

description
Computes the crossing survival times along with their corresponding confidence/credible intervals.

usage

S3 method for class 'ypbp'
crossTime(object, newdata1, newdata2, conf.level = 0.95, nboot = 4000, ...)

arguments

object an object of class ypbp
newdata1 a data frame containing the first set of explanatory variables
newdata2 a data frame containing the second set of explanatory variables
conf.level level of the confidence/credible intervals; default is conf.level = 0.95
nboot number of bootstrap samples (default nboot=4000); ignored if approach="bayes".
...

... further arguments passed to or from other methods.

value

the crossing survival time
Examples

ML approach:
library(YPBP)
mle <- ypbp(Surv(time, status)~arm, data=ipass, approach="mle")
summary(mle)
newdata1 <- data.frame(arm=0)
newdata2 <- data.frame(arm=1)
tcross <- crossTime(mle, newdata1, newdata2, nboot = 100)
tcross
ekm <- survival::survfit(Surv(time, status)~arm, data=ipass)
newdata <- data.frame(arm=0:1)
St <- survfit(mle, newdata)
plot(ekm, col=1:2)
with(St, lines(time, surv[[1]]))
with(St, lines(time, surv[[2]], col=2))
abline(v=tcross, col="blue")

Bayesian approach:
bayes<-ypbp(Surv(time,status)~arm,data=ipass,approach="bayes",chains=2,iter=100)
summary(bayes)
newdata1 <- data.frame(arm=0)
newdata2 <- data.frame(arm=1)
tcross <- crossTime(bayes, newdata1, newdata2)
tcross
ekm <- survival::survfit(Surv(time, status)~arm, data=ipass)
newdata <- data.frame(arm=0:1)
St <- survfit(bayes, newdata)
plot(ekm, col=1:2)
with(St, lines(time, surv[[1]]))
with(St, lines(time, surv[[2]], col=2))
abline(v=tcross, col="blue")

gastric

Gastric cancer data set

Description

Data set from a clinical trial conducted by the Gastrointestinal Tumor Study Group (GTSG) in 1982. The data set refers to the survival times of patients with locally nonresectable gastric cancer. Patients were either treated with chemotherapy combined with radiation or chemotherapy alone.

Format

A data frame with 90 rows and 3 variables:

- time: survival times (in days)
- status: failure indicator (1 - failure; 0 - otherwise)
- trt: treatments (1 - chemotherapy + radiation; 0 - chemotherapy alone)
References

IPASS

Description

Reconstructed IPASS clinical trial data reported in Argyropoulos and Unruh (2015). Although reconstructed, this data set preserves all features exhibited in references with full access to the observations from this clinical trial. The data base is related to the period of March 2006 to April 2008. The main purpose of the study is to compare the drug gefitinib against carboplatin/paclitaxel doublet chemotherapy as first line treatment, in terms of progression free survival (in months), to be applied to selected non-small-cell lung cancer (NSCLC) patients.

Format

A data frame with 1217 rows and 3 variables:

• time: progression free survival (in months)
• status: failure indicator (1 - failure; 0 - otherwise)
• arm: (1 - gefitinib; 0 - carboplatin/paclitaxel doublet chemotherapy)

References

model.matrix.ypbp

Model.matrix method for ypbp models

Description

Reconstruct the model matrix (or matrices if the alternative formulation of the YP model is used) for a ypbp model.

Usage

S3 method for class 'ypbp'
model.matrix(object, ...)

Arguments

object an object of the class ypbp.
... further arguments passed to or from other methods.
Value
The model matrix (or matrices) for the fit.

Examples

```r
fit <- ypbp(Surv(time, status) ~ arm, data=ipass)
model.matrix(fit)
```

print.summary.ypbp
Print the summary.ypbp output

Description
Print the summary.ypbp output

Usage

```r
## S3 method for class 'summary.ypbp'
print(x, ...)
```

Arguments

- `x` an object of the class `summary.ypbp`.
- `...` further arguments passed to or from other methods.

Value
a summary of the fitted model.

summary.ypbp
Summary for the ypbp model

Description
Summary for the ypbp model

Usage

```r
## S3 method for class 'ypbp'
summary(object, ...)
```

Arguments

- `object` an object of the class `ypbp`.
- `...` further arguments passed to or from other methods.
survfit.ypbp
survfit method for ypbp models

Description

Computes the predicted survivor function for a ypbp model.

Usage

```r
## S3 method for class 'ypbp'
survfit(formula, newdata, ...)
```

Arguments

- `formula`: an object of the class ypbp
- `newdata`: a data frame containing the set of explanatory variables.
- `...`: further arguments passed to or from other methods.

Value

a list containing the estimated survival probabilities.

Examples

```r
# ML approach:
library(YPBP)
mle <- ypbp(Surv(time, status)~arm, data=ipass, approach="mle")
summary(mle)
ekm <- survival::survfit(Surv(time, status)~arm, data=ipass)
newdata <- data.frame(arm=0:1)
St <- survfit(mle, newdata)
plot(ekm, col=1:2)
with(St, lines(time, surv[[1]]))
with(St, lines(time, surv[[2]], col=2))

# Bayesian approach:
bayes <- ypbp(Surv(time, status) ~ arm, data = ipass,
               approach = "bayes", chains = 2, iter = 100)
summary(bayes)
ekm <- survival::survfit(Surv(time, status)~arm, data=ipass)
newdata <- data.frame(arm=0:1)
St <- survfit(bayes, newdata)
plot(ekm, col=1:2)
with(St, lines(time, surv[[1]]))
with(St, lines(time, surv[[2]], col=2))
```
vcov.ypbp

Variance-covariance matrix for a ypbp model

Description
This function extracts and returns the variance-covariance matrix associated with the regression coefficients when the maximum likelihood estimation approach is used in the model fitting.

Usage
S3 method for class 'ypbp'
vcov(object, ...)

Arguments

object an object of the class ypbp.
...
further arguments passed to or from other methods.

Value
the variance-covariance matrix associated with the regression coefficients.

ypbp
Fits the Yang and Prentice using Bernstein polynomials to model the baseline distribution.

Description
Fits the Yang and Prentice model with either the baseline hazard hazard or the baseline odds modeled via Bernstein polynomials.

Usage
ypbp(
formula,
data,
degree = NULL,
tau = NULL,
approach = c("mle", "bayes"),
baseline = c("hazard", "odds"),
hessian = TRUE,
hyperParms = list(h1_gamma = 0, h2_gamma = 4, mu_psi = 0, sigma_psi = 4, mu_phi = 0,
 sigma_phi = 4, mu_beta = 0, sigma_beta = 4),
 ...
)

Arguments

- **formula**: An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which ypbp is called.
- **degree**: Number of intervals of the PE distribution. If NULL, default value (square root of n) is used.
- **tau**: The maximum time of follow-up. If NULL, \(\tau = \max(\text{time}) \), where time is the vector of observed survival times.
- **approach**: Approach to be used to fit the model (mle: maximum likelihood; bayes: Bayesian approach).
- **baseline**: Baseline function to be modeled.
- **hessian**: Logical; If TRUE (default), the hessian matrix is returned when approach="mle".
- **hyper_parms**: A list containing the hyper-parameters of the prior distributions (when approach = "bayes"). If not specified, default values are used.
- **...**: Arguments passed to either ‘rstan::optimizing’ or ‘rstan::sampling’.

Value

ypbp returns an object of class "ypbp" containing the fitted model.

Examples

```r
library(YPBP)
mle1 <- ypbp(Surv(time, status)~trt, data=gastric, baseline = "hazard")
mle2 <- ypbp(Surv(time, status)~trt, data=gastric, baseline = "odds")
bayes1 <- ypbp(Surv(time, status)~trt, data=gastric, baseline = "hazard",
approach = "bayes", chains = 2, iter = 500)
bayes2 <- ypbp(Surv(time, status)~trt, data=gastric, baseline = "odds",
approach = "bayes", chains = 2, iter = 500)
```
Index

*Topic **datasets**
 - gastric, 6
 - ipass, 7

 - coef.ypbp, 3
 - confint, 3
 - confint.ypbp, 4
 - crossTime, 5
 - crossTime.ypbp, 5

- gastric, 6
- ipass, 7
- model.matrix.ypbp, 7
- print.summary.ypbp, 8
- summary.ypbp, 8
- survfit.ypbp, 9
- vcov.ypbp, 10

- YPBP (YPBP-package), 2
- ypbp, 10
- YPBP-package, 2