Package ‘ZIBR’

October 17, 2023

Type Package

Title A Zero-Inflated Beta Random Effect Model

Version 1.0.2

Date 2023-10-16

Description A two-part zero-inflated Beta regression model with random effects (ZIBR) for testing the association between microbial abundance and clinical covariates for longitudinal microbiome data. Eric Z. Chen and Hongzhe Li (2016) <doi:10.1093/bioinformatics/btw308>.

License MIT + file LICENSE

LazyData TRUE

RoxygenNote 7.2.3

Encoding UTF-8

Suggests betareg, dplyr, lme4 (>= 1.1-34), nlme, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10), statmod

VignetteBuilder knitr

URL https://github.com/PennChopMicrobiomeProgram/ZIBR

BugReports https://github.com/PennChopMicrobiomeProgram/ZIBR/issues

NeedsCompilation no

Author Eric Zhang Chen [aut, cph], Charlie Bushman [cre]

Maintainer Charlie Bushman <ctbushman@gmail.com>

Repository CRAN

Date/Publication 2023-10-17 09:50:08 UTC
R topics documented:

- `fit_beta_random_effect` ... 2
- `fit_logistic_random_effect` .. 3
- `fit_zero_inflated_beta_random_effect` 3
- `ibd` .. 5
- `simulate_beta_random_effect_data` 5
- `simulate_logistic_data` .. 6
- `simulate_zero_inflated_beta_random_effect_data` 7
- `zibr` .. 9

Index

fit_beta_random_effect

Fit beta random effect

Description

Fit beta random effect

Usage

```r
golden_open
fit_beta_random_effect(
  Z = Z,
  Y = Y,
  subject.ind = subject.ind,
  time.ind = time.ind,
  quad.n = 30,
  verbose = FALSE
)
golden_close```

**Arguments**

- `Z` 
  FILL
- `Y` 
  FILL
- `subject.ind` 
  the subject index
- `time.ind` 
  the time index
- `quad.n` 
  number of points in gaussian quadrature
- `verbose` 
  a boolean to enable more output

**Value**

a named list

- `est.table`
- `s2.est`
- `v.est`
fit_logistic_random_effect

Fit logistic random effect

Description

Fit logistic random effect

Usage

```r
fit_logistic_random_effect(
 X = X,
 Y = Y,
 subject.ind = subject.ind,
 time.ind = time.ind,
 quad.n = 30,
 verbose = FALSE
)
```

Arguments

- `X`: FILL
- `Y`: FILL
- `subject.ind`: the subject index
- `time.ind`: the time index
- `quad.n`: number of points in gaussian quadrature
- `verbose`: a boolean to enable more output

Value

a named list

- `est.table`
- `s1.est`

fit_zero_inflated_beta_random_effect

Fit zero inflated beta random effect

Description

Fit zero inflated beta random effect
Usage

fit_zero_inflated_beta_random_effect(
  X = X,
  Z = Z,
  Y = Y,
  subject_ind = subject_ind,
  time_ind = time_ind,
  component_wise_test = TRUE,
  joint_test = TRUE,
  quad_n = 30,
  verbose = FALSE
)

Arguments

X  FILL
Z  FILL
Y  FILL
subject_ind  the subject index
time_ind  the time index
component_wise_test  boolean to run component-wise test
joint_test  boolean to run joint test
quad_n  number of points in gaussian quadrature
verbose  a boolean to enable more output

Value

a named list

- logistic_est_table
- logistic_s1_est
- beta_est_table
- beta_s2_est
- beta_v_est
- loglikelihood
- joint_p
Longitudinal human microbiome data

Description
A dataset containing the bacterial abundance and clinical information from a longitudinal human microbiome study

Usage
ibd

Format
A data frame with 236 rows and 5 variables:
- Sample  Sample IDs
- Subject  Subject IDs
- Time  Time points
- Treatment  Treatment, 0 for antiTNF, 1 for EEN
- Abundance  Abundance for Eubacterium ...

References
Lewis and Chen et al. (2016) Cell Host & Microbe 18 (4), 489-500

simulate_beta_random_effect_data

Description
Simulate beta data

Usage
simulate_beta_random_effect_data(
  subject_n = 50,
  time_n = 5,
  v = 2,
  beta = as.matrix(c(-0.5, -0.5, 0.5)),
  Z = NA,
  s2 = 1,
  sim_seed = 100
)
**simulate_logistic_data**

*Simulate logistic data*

**Arguments**

- `subject_n`: the number of subjects
- `time_n`: the number of time points
- `v`: FILL
- `beta`: FILL
- `Z`: FILL
- `s2`: FILL
- `sim_seed`: the random seed with which to simulate the data

**Value**

a named list

- `Y`
- `Z`
- `c`
- `u`
- `v`
- `beta`
- `s2`
- `subject_ind`
- `time_ind`

**Description**

Simulate logistic data

**Usage**

```r
simulate_logistic_data(
 subject_n = 50,
 time_n = 5,
 alpha = as.matrix(c(0, 0.5, -1)),
 s1 = 0.5,
 sim_seed = 100
)
```
simulate_zero_inflated_beta_random_effect_data

Arguments

subject_n  the number of subjects

subject_n  the number of subjects

time_n  the number of time points

alpha  FILL

s1  FILL

sim_seed  the random seed with which to simulate the data

Value

a named list

• X

• Y

• b

• subject_ind

• time_ind

Description

Simulate data according to zero-inflated beta random effects model

Usage

simulate_zero_inflated_beta_random_effect_data(  subject_n = 50,
  time_n = 5,
  v = 2,
  alpha = as.matrix(c(0, 0.5, -1)),
  beta = as.matrix(c(-0.5, -0.5, 0.5)),
  X = NA,
  Z = NA,
  s1 = 0.2,
  s2 = 0.2,
  sim_seed = 100
)
Arguments

subject_n     number of subjects
time_n        number of time points for each subject
v             the dispersion parameter in beta component
alpha         the coefficients in logistic component
beta          the coefficients in beta component
X             the covariates in logistic component
Z             the covariates in beta component
s1            the standard deviation of random effect in logistic component
s2            the standard deviation of random effect in beta component
sim_seed      the random seed

Value

a named list

• Y the bacterial abundance generated from the model
• X the covariates in logistic component
• Z the covariates in beta component
• alpha the coefficients in logistic component
• beta the coefficients in beta component
• s1 the standard deviation of random effect in logistic component
• s2 the standard deviation of random effect in beta component
• subject_ind the IDs for each subject
• time_ind time points

Examples

simulate_zero_inflated_beta_random_effect_data(
  subject_n = 100, time_n = 5,
  X = as.matrix(c(rep(0, 50 * 5), rep(1, 50 * 5))),
  alpha = as.matrix(c(-0.5, 1)),
  beta = as.matrix(c(-0.5, 0.5)),
  s1 = 1, s2 = 0.8,
  v = 5,
  sim_seed = 100
)
zibr

*Fit zero-inflated beta regression with random effects*

**Description**
Fit zero-inflated beta regression with random effects

**Usage**
```
zibr(
 logistic_cov,
 beta_cov,
 Y,
 subject_ind,
 time_ind,
 component_wise_test = TRUE,
 quad_n = 30,
 verbose = FALSE
)
```

**Arguments**
- `logistic_cov` the covariates in logistic component
- `beta_cov` the covariates in beta component
- `Y` the response variable in the regression model
- `subject_ind` the variable for subject IDs
- `time_ind` the variable for time points
- `component_wise_test` whether to perform component wise test. If true, ZIBR will calculate p-values for logistic and beta component respectively.
- `quad_n` Gaussian quadrature points
- `verbose` print the fitting process

**Value**
a named list
- `logistic_est_table` - the estimated coefficients for logistic component.
- `logistic_s1_est` - the estimated standard deviation for the random effect in the logistic component.
- `beta_est_table` - the estimated coefficients for logistic component.
- `beta_s2_est` - the estimated standard deviation for the random effect in the beta component.
- `beta_v_est` - the estimated dispersion parameter in the beta component.
- `loglikelihood` - the log likelihood of fitting ZIBR model on the data.
- `joint_p` - the p-values for jointly testing each covariate in both logistic and beta component.
Examples

```r
simulate some data
sim <- simulate_zero_inflated_beta_random_effect_data(
 subject_n = 100, time_n = 5,
 X = as.matrix(c(rep(0, 50 * 5), rep(1, 50 * 5))),
 Z = as.matrix(c(rep(0, 50 * 5), rep(1, 50 * 5))),
 alpha = as.matrix(c(-0.5, 1)),
 beta = as.matrix(c(-0.5, 0.5)),
 s1 = 1, s2 = 0.8,
 v = 5,
 sim_seed = 100
)

run zibr on the simulated data
zibr_fit <- zibr(
 logistic_cov = sim$X, beta_cov = sim$Z, Y = sim$Y,
 subject_ind = sim$subject_ind, time_ind = sim$time_ind
)

zibr_fit
```
Index

* datasets
  ibd, 5
fit_beta_random_effect, 2
fit_logistic_random_effect, 3
fit_zero_inflated_beta_random_effect, 3
ibd, 5
simulate_beta_random_effect_data, 5
simulate_logistic_data, 6
simulate_zero_inflated_beta_random_effect_data, 7
zibr, 9