Package ‘ZIPG’

February 5, 2024

Type Package
Title Zero-Inflated Poisson-Gamma Regression
Version 1.1
Author Roulan Jiang [aut, cre],
 Tianying Wang [aut]
Maintainer Roulan Jiang <roulan2000@gmail.com>
Description We provide a flexible Zero-inflated Poisson-Gamma Model (ZIPG) by connect-
ing both the mean abundance and the variability to different covariates, and build valid statisti-
cal inference procedures for both parameter estimation and hypothesis testing. These func-
tions can be used to analyze microbiome count data with zero-inflation and overdisper-
License GPL (>= 2)
URL https://github.com/roulan2000/ZIPG
BugReports https://github.com/roulan2000/ZIPG/issues
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
RoxygenNote 7.2.1
Imports pscl, MASS
NeedsCompilation no
Repository CRAN
Date/Publication 2024-02-05 22:40:18 UTC

R topics documented:

Dietary ... 2
ZIPG_CI .. 2
ZIPG_main 3
ZIPG_simulate 4
ZIPG_summary 5

Index 6
Dietary

A diet-microbiome data

Description

A diet-microbiome data with shotgun metagenomic sequencing results of fecal samples and daily dietary records of 34 subjects in 17 consecutive days. See original data from article "Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans" (Johnson et al. 2019).

Usage

Dietary

Format

A list with OTU table and other covariates

- **OTU**: OTU table
- **COV**: Major covariates extracted from original data
- **M**: Sequencing depth

Source

https://github.com/knights-lab/dietstudy_analyses

ZIPG_CI

Get confidence interval from ZIPG model

Description

Get confidence interval from ZIPG model

Usage

`ZIPG_CI(ZIPG_res, type = "Wald", CI_type = "normal", alpha = 0.05)`

Arguments

- **ZIPG_res**: Result from ZIPG_main()
- **type**: Type of hypothesis testing method, 'Wald' or 'bWald'.
- **CI_type**: Type of confidence interval, 'Wald','bWald' or 'pbWald'.
- **alpha**: We construct (1- alpha)% confidence interval by alpha/2 and (1-alpha/2).
ZIPG_main

Value

Table of confidence interval

Examples

data(Dietary)
dat = Dietary
ZIPG_res <- ZIPG_main(data = dat$COV,
X = ~ALC01+nutrPC1+nutrPC2, X_star = ~ ALC01,
W = dat$OTU[,100], M = dat$M)
ZIPG_CI(ZIPG_res)

ZIPG_main

Fit zero-inflated poisson-gamma model via EM Algorithm

Description

Fit zero-inflated poisson-gamma model via EM Algorithm

Usage

ZIPG_main(
 data,
 W,
 M,
 X,
 X_star,
 return_model = TRUE,
 pbWald_list = NULL,
 bWald_list = NULL
)

Arguments

data Data.frame for covariates of interest
W Count data
M Sequencing depth, ZIPG use log(M) as offset by default
X Formula of covariates of differential abundance
X_star Formula of covariates of differential variability
return_model whether return full complete imformation for fitted model
pbWald_list A list of arguments for parametric bootstrap Wald test, B for bootstrap sample size, X0 and X_star0 for formula of covariates included in H0
bWald_list A list of arguments for non-parametric bootstrap Wald test, B for bootstrap sample size,
Value

A list of ZIPG fitted model. Use ZIPG_summary() for a quick look at the results.

Examples

data(Dietary)
dat = Dietary
ZIPG_res <- ZIPG_main(data = dat$COV,
X = ~ ALC01 + nutrPC1 + nutrPC2, X_star = ~ ALC01,
W = dat$OTU[,100], M = dat$M)
ZIPG_summary(ZIPG_res)

ZIPG_simulate

Simulate W from ZIPG model

Description

Simulate W from ZIPG model

Usage

ZIPG_simulate(
 M,
 X,
 X_star,
 A = 1,
 d,
 d_star,
 parms,
 N,
 zi = TRUE,
 returnU = FALSE
)

Arguments

- **M**: Sequencing depth
- **X**: Covariates matrix with intercept, n * (d+1)
- **X_star**: Covariates matrix with intercept, n * (d_star+1)
- **A**: no use, reserved for multi-taxa
- **d**: number of covariates in X
- **d_star**: number of covariates in X_star
- **parms**: model parameters, input c(beta, beta*, gamma)
- **N**: repetition times
- **zi**: whether generate zero-inflated distribution
- **returnU**: whether return fluctuation factor U
ZIPG_summary

Value

A list of W generated from ZIPG model with input parameter

Examples

data(Dietary)
dat = Dietary
sim_M = sample(dat$M, 100, replace = TRUE)
sim_pre = rep(sample(rep(c(0, 1), each = 10), each = 5))
sim_PC1_mean = rep(rnorm(20, mean = 0, sd = 1), each = 5)
sim_PC1_error = rnorm(100, 0, 0.1)
sim_PC1 = sim_PC1_mean + sim_PC1_error
X = as.matrix(cbind(1, data.frame(X1 = sim_pre, X2 = sim_PC1)))
parms = c(-4.23, 1, 0.45, 0.6, 1, 0, 0) # p = 0.5
W_sim <- ZIPG_simulate(M = sim_M, X = X, X_star = X, d = 2, d_star = 2, parms = parms, N = 100)
hist(W_sim$W_list[[1]])
ZIPG_res <- ZIPG_main(data = data.frame(X1 = sim_pre, X2 = sim_PC1),
X = ~ X1 + X2, X_star = ~ X1, W = W_sim$W_list[[2]], M = sim_M)
ZIPG_summary(ZIPG_res)

Description

Summary for ZIPG_main() result.

Usage

ZIPG_summary(ZIPG_res, type = "Wald")

Arguments

ZIPG_res Result from ZIPG_main()
type Type of hypothesis testing method, 'Wald', 'bWald' or 'pbWald'.

Value

pvalue

Examples

data(Dietary)
dat = Dietary
ZIPG_res <- ZIPG_main(data = dat$COV,
X = ~ ALC01 + nutrPC1 + nutrPC2, X_star = ~ ALC01,
W = dat$OTU[, 100], M = dat$M)
ZIPG_summary(ZIPG_res)
Index

* datasets
 Dietary, 2

Dietary, 2

ZIPG_CI, 2
ZIPG_main, 3
ZIPG_simulate, 4
ZIPG_summary, 5