Package ‘ZeBook’

November 9, 2018

Type Package

Title Working with Dynamic Models for Agriculture and Environment

Version 1.1

Date 2018-11-08

Author Francois Brun (ACTA), David Makowski (INRA), Daniel Wallach (INRA), James W. Jones (U.of Florida).

Maintainer Francois Brun <francois.brun@acta.asso.fr>

Description

License LGPL-3

LazyData yes

Depends R(>= 2.10.0)

Imports triangle, deSolve, stats, graphics

LazyDataCompression xz

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-11-09 17:40:03 UTC

R topics documented:

ZeBook-package .. 3
AICf ... 4
Bean ... 5
carbonsoil.model ... 6
carbonsoil.update ... 7
carcass.define.param ... 7
carcass.EMI.model .. 8
carcass.EMI.model2 .. 9
R topics documented:

- carcass.EMI.multi .. 10
- carcass.EMI.simule 10
- carcass.model ... 11
- carcass_data ... 12
- carrot.weevil.model 12
- chicks_data .. 13
- cotton.model ... 14
- epirice.define.param 15
- epirice.model .. 15
- epirice.multi.simule 16
- epirice.weather .. 16
- evaluation.criteria 17
- exponential.model 17
- exponential.model.bis 18
- exponential.model.ie 19
- goodness.of.fit .. 19
- graph_epid .. 20
- graph_epid_s ... 21
- lactation.calf.model 21
- lactation.calf.model2 22
- lactation.calf.simule 23
- lactation.define.param 23
- lactation.machine.model 24
- lactation.machine.model2 25
- magarey.define.param 26
- magarey.model ... 26
- magarey.model2 .. 27
- magarey.simule .. 27
- maize.data_EuropeEU 28
- maize.data_MetaModelling 28
- maize.define.param 29
- maize.model ... 29
- maize.model2 ... 31
- maize.muchow.graph 31
- maize.muchow.model 32
- maize.multisy ... 33
- maize.multisy240 34
- maize.RUEtemp ... 34
- maize.simule .. 35
- maize.simule240 ... 36
- maize.simule_multisy240 36
- maize.weather ... 37
- maize_cir.model .. 38
- maize_cir_rue.model 38
- maize_cir_rue_ear.model 39
- mm.A.fct .. 40
- mm.FAS.fct .. 41
- mm.HI.fct .. 41
Description

Package: ZeBook
Type: Package
Version: 1.1
Date: 2018-11-08
License: LGPL-3
LazyLoad: yes
LazyData: yes
Depends: R(>= 2.10.0)
ZeBook Working with dynamic models for agriculture and environment (Working with Dynamic Crop Models)

A full description of the models is in the book in appendix of the book.

Chapter numbers have changed between Second edition and Third Edition. Here the chapter numbers in the demo were changed to fit to Third edition. But all materials available in Second edition are still available in this version.

ACKNOWLEDGMENTS The project "Associate a level of error in predictions of models for agronomy" (CASDAR 2010-2013) and the French network "RMT modeling and agriculture", http://www.modelia.org) have contributed to the development of this R package. This project and network are lead by ACTA (French Technical Institute for Agriculture) and was funded by a grant from the Ministry of Agriculture and Fishing of France.

Author(s)

Francois Brun (ACTA) <francois.brun@acta.asso.fr>, David Makowski (INRA), Daniel Wallach (INRA), James W. Jones (U.of Florida).

References

AICf

Calculate AIC, Akaike's Information Criterion

Description

This function calculate AIC criterion given a vector of observation, a vector of prediction and number of parameter. Note that number of parameters should include variance. AICcomplete is the same calculation of the AIC function of R (AICcomplete = n*log(RSS/n)+n+n*log(2*pi)+2*p, with p including variance). AICshort is the calculation described in chapter 6 Working with crop model (AICshort =n*log(RSS/n)+2*p, with p including variance). difference between AICcomplete and AICshort is AICcomplete-AICshort=n+n*log(2*pi) As you use AIC to compare models (with different number of parameters) on a same data (with same n, number of observation), you can use AICshort or AICcomplete.
Usage

AICf(yobs, ypred, npar)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yobs</td>
<td>observed values</td>
</tr>
<tr>
<td>ypred</td>
<td>prediction values from the model</td>
</tr>
<tr>
<td>npar</td>
<td>number of parameters (should include variance that count for one supplementary parameter)</td>
</tr>
</tbody>
</table>

Value

A vector with AICcomplete and AICshort

Examples

```r
x=c(1,2,3,4,5)
y=c(1.2,1.8,3.5,4,3,5.5)
fit = lm(y~x)
AIC(fit)
AICf(y, predict(fit), 3) # 3 parameters : intercept, slope and variance
```

Bean

Bean gene-based models dataset

Description

Genetic data for the common bean (Phaseolus vulgaris L) that was based on a population created by C. E. Vallejos (personal communication; also see Bhakta et al., 2015, 2017) by crossing two widely-differing cultivars of bean (Calima, an Andean type, with Jamapa, a Mesoamerican type). Bean$marker : Bean Marker Data Bean$MET : Weather data on 5 Locations Bean$QTL : QTL Data Bean$modelpar : Dynamic Model parameters

Usage

Bean

Format

A list including 4 data.frame Bean$marker, Bean$MET, Bean$QTL, Bean$modelpar.
Source

Examples

show the maker of JC1 to JC9 values for both parents (JAM and CAL)
and 5 cRILS (RIJC001 to RIJC005)
Bean$marker[2:8,1:10]
show the first value of weather data
head(Bean$MET)
show the value of QTL
Bean$QTL[4:10,1:10]
show the value of
Bean$modelpar

carbonsoil.model

The CarbonSoil model - calculate daily values over designated time period

Description

Simple dynamic model of soil carbon content, with a time step of one year. The equations that describe the dynamics of this system are adapted from the Henin-Dupuis model described in Jones et al. (2004). The soil carbon content is represented by a single state variable: the mass of carbon per unit land area in the top 20 cm of soil in a given year (Z, kg.ha-1). It is assumed that soil C is known in some year, taken as the initial year. The yearly change in soil C is the difference between input from crop biomass and loss.

Usage

carbonsoil.model(R, b, U, Z1, duration)

Arguments

R : the fraction of soil carbon content lost per year
b : the fraction of yearly crop biomass production left in the soil
U : the amount of C in crop biomass production (constant or time series)
Z1 : initial soil carbon content
duration : duration of simulation (year))
\textit{CarbonSoil model - calculate change in soil carbon for one year}

\textbf{Description}

Simple dynamic model of soil carbon content, with a time step of one year. The equations that describe the dynamics of this system are adapted from the Henin-Dupuis model described in Jones et al. (2004). The soil carbon content is represented by a single state variable: the mass of carbon per unit land area in the top 20 cm of soil in a given year (Z, kg.ha$^{-1}$). It is assumed that soil C is known in some year; taken as the initial year. The yearly change in soil C is the difference between input from crop biomass and loss.

\textbf{Usage}

\texttt{carbonsoil.update(Zy, R, b, Uy)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{Zy} : Soil carbon content for year
 \item \texttt{R} : the fraction of soil carbon content lost per year
 \item \texttt{b} : the fraction of yearly crop biomass production left in the soil
 \item \texttt{Uy} : the amount of C in crop biomass production in the given year
\end{itemize}

\textbf{Value}

Soil carbon content for year+1.

\textit{Carcass model - define parameters}

\textbf{Description}

Define parameters values

\textbf{Usage}

\texttt{carcass.define.param(full = FALSE)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{full} : if TRUE, return the full description of distribution(default = FALSE)
\end{itemize}
The Carcass (growth of beef cattle) model with energy as input

description

Model description. This model is proposed by Hoch et. al (2004) to represent the growth of cattle and the relative body composition of different types of animals depending on nutritionnal conditions. It simulates the dynamics of changes in the composition of the body fat and proteins according to nutrient intake. The system is represented by four state variables: the protein and fat in the carcass (resp. ProtC and LIPC) and other tissues (resp. ProtNC and LipNC) grouped under the name of the fifth district (again, gastrointestinal tract, skin ...). These variables depend on time, the time step used is \(dt = 1 \text{ day} \). The model is defined by 20 equations, with a total of 18 parameters for the described process.

Usage

```r
 carcass.EMI.model(protcmax, protncmax, alphac, alphanc, gammac, gammanc,
     lip0, lipc1, lipnc1, beta, delta, amW, b0c, b1c, b0nc, b1nc, c0, c1,
     energie, PVI, duration)
```

Arguments

- `protcmax`: amounts of protein in the carcass of the adult animal (kg)
- `protncmax`: amounts of protein in the 5th district of the adult animal (kg)
- `alphac`: maximum protein synthesis rate in the frame (excluding basal metabolism) (j-1)
- `alphanc`: maximum rate of protein synthesis in the 5th district (except basal metabolism) (j-1)
- `gammac`: maximum rate of protein degradation in the frame (excluding basal metabolism) (j-1)
- `gammanc`: maximum rate of protein degradation in the 5th district (except basal metabolism) (j-1)
- `lip0`: maximum lipid concentration to the theoretical physiological age (percent)
- `lipc1`: increase coefficient of the maximum lipid concentration with the physiological age of the carcase (percent)
- `lipnc1`: increase coefficient of the highest lipid concentration with physiological age area in the 5th (percent)
beta : lipid synthesis rate (j-1)
delta : lipid degradation rate (d-1)
\(\alpha mN \) :
\(\beta 0c \) : coefficient of the allometric equation linking mass and lipid-protein carcass
\(\beta 1c \) : exponent allometric equation linking mass and defatted protein carcass
\(\beta 0nc \) : coefficient of the allometric equation linking mass and lipid-protein 5th district
\(\beta 1nc \) : exponent allometric equation linking mass and lipid-protein 5th district
\(c0 \) : coefficient of the allometric equation between live weight and live weight empty
\(c1 \) : exponent allometric equation linking body weight and live weight empty
energie : Metabolizable energy available
\(PVi \) : initial liveweight
duration : duration of simulation

Value

data.frame with ProtC,LipC,ProtNC,LipNC,PV

Description

see carcass.EMI.model for model description.

Usage

carcass.EMI.model2(param, energie, PVi, duration)

Arguments

param : a vector of parameters
energie : Metabolizable energy available
PVi : initial liveweight
duration : duration of simulation

Value

data.frame with PV,ProtC,ProtNC,LipC,LipNC
carcass.EMI.multi
Wrapper function to run Carcass model on several animals with different conditions

Description

wrapper function for multisimulation with carcass.EMI.model2

Usage

```r
carcass.EMI.multi(param, list_individuals, energy, init_condition)
```

Arguments

- `param`: a vector of parameters
- `list_individuals`: list of individuals
- `energy`: Metabolizable energy available for all individuals
- `init_condition`: initial condition for all individuals

Value

data.frame with id, ration, duration, day, PV, ProtC, ProtNC, LipC, LipNC

carcass.EMI.simule
Wrapper function to the Carcass model for multiple sets of parameter values

Description

Wrapper function to the Carcass model for multiple sets of parameter values

Usage

```r
carcass.EMI.simule(X, energy, PVi, duration)
```

Arguments

- `X`: parameter matrix
- `energy`: Metabolizable energy available
- `PVi`: initial liveweight
- `duration`: duration of simulation

Value

data.frame with PV, ProtC, ProtNC, LipC, LipNC
The Carcass model

Description

Model description.
The model is defined by 20 equations, with a total of 19 parameters for the described process.

Usage

carcass.model(protcmax, protncmax, alphac, alphanc, gamma, gammanc, lip0, lip1, lipnc1, beta, delta, k, b0c, b1c, b0nc, b1nc, c0, c1, cem, duration)

Arguments

protcmax : amounts of protein in the carcass of the adult animal (kg)
protncmax : amounts of protein in the 5th district of the adult animal (kg)
alphac : maximum protein synthesis rate in the frame (excluding basal metabolism) (j-1)
alphanc : maximum rate of protein synthesis in the 5th district (except basal metabolism) (j-1)
gamma : maximum rate of protein degradation in the frame (excluding basal metabolism) (j-1)
gammanc : maximum rate of protein degradation in the 5th district (except basal metabolism) (j-1)
lip0 : maximum lipid concentration to the theoretical physiological age (percent)
lip1 : increase coefficient of the maximum lipid concentration with the physiological age of the carcase (percent)
lipnc1 : increase coefficient of the highest lipid concentration with physiological age area in the 5th (percent)
beta : lipid synthesis rate (j-1)
delta : lipid degradation rate (d-1)
k : Parameter coefficient between the half-saturation of the Michaelis-Menten equation of the metabolic weight (MJ.kg^0.75)
b0c : coefficient of the allometric equation linking mass and lipid-protein carcass
b1c : exponent allometric equation linking mass and defatted protein carcass
b0nc : coefficient of the allometric equation linking mass and lipid-protein 5th district
b1nc : exponent allometric equation linking mass and lipid-protein 5th district
c0 : coefficient of the allometric equation between live weight and live weight empty
c1 : exponent allometric equation linking body weight and live weight empty
cem :
duration : duration of simulation
Value

Data frame with ProtC,LipC,ProtNC,LipNC,PV

carcass_data Data of growth of beef cattle for Carcass model

Description

This dataset is a list of 5 dataframe. list_individuals: identifiant for each individual, energy: Ration (type ration), Individu, time (week), energy (?), init_condition: Individu, Pvi (initial liveweight), observation_dynamic: Ration (3 levels "C","EM","F"), individu, time, PVobs observation_slaughter: Ration, individu, time, PVVobs, PVobs, ProtCobs, ProtNCobs, LipCobs, LipNCobs.

Usage

carcass_data

Format

a RangedData instance, 1 row per plot.

Source

Agabriel, J. (com.pers.)

carrotnweevilNmodel Carrot weevil development model

Description

Model description. Simple model of development of carrot weevil.

Usage

carrotnweevilNmodel(tbase = 7, tteggs = 130, ttlarvae = 256, ttprepupae = 114, ttpupae = 130, ttadultpreovi = 91, weather, sdate = 1, ldate = 360)
chicks_data

Arguments

- `tbase`: base temperature
- `tteggs`: duration of eggs stage in degre.day
- `ttlarvae`: duration of larvae stage in degre.day
- `ttprepupae`: duration of prepupae stage in degre.day
- `ttpupae`: duration of pupae stage in degre.day
- `ttadultpreovi`: duration of adult stage until egg laying in degre.day
- `weather`: weather data.frame for one single year
- `sdate`: date to begin simulation (day of year) (default 1)
- `ldate`: date to end simulation (day of year) (default 360)

Value

data.frame with daily state variable

chicks_data
Data of growth of chicks

Description

This dataset content dynamic measurements of growth of chicks for different individuals and different strains. The data comes from a selection experiment on chicken initiated by F. Ricard Research Station on Poultry of INRA Nouzilly. The selection focuses on weight at 8 and 36 weeks and allowed to differentiate the following five strains:

- **strain 1**: X+ (low at 8, but high at 36 weeks)
- **strain 2**: X+ (high at 8, but low at 36 weeks)
- **strain 3**: X++ (high weight at both ages)
- **strain 4**: X- (low weight for both ages)
- **strain 5**: X0 (control).

This is a sub-sample of 50 females in the last generation of selection with weight data (in g) at 12 different ages to complete measurement (0, 4, 6, 8, 12, 16, 20, 24; 28, 32, 36 and 40 weeks).

Usage

`carcass_data`

Format

a RangedData instance, 1 row: strain; id_animal; time (day); liveweight (g).
cotton.model

Source

This dataset was used in a training session Biobayes (France, 2011) training session.

cotton.model

The Cotton model (dynamic for numbers of Cotton fruiting points).

Description

Model description. TO COMPLETE

Usage

```r
r
cotton.model(TESQ, PMAX, AFL, AL, AOP, P1, P2, P3, P4, P5, PF, PSF, TSQ, P, PR, PT, tend)
```

Arguments

- **TESQ** : TO COMPLETE
- **PMAX** : TO COMPLETE
- **AFL** : TO COMPLETE
- **AL** : TO COMPLETE
- **AOP** : TO COMPLETE
- **P1** : TO COMPLETE
- **P2** : TO COMPLETE
- **P3** : TO COMPLETE
- **P4** : TO COMPLETE
- **P5** : TO COMPLETE
- **PF** : TO COMPLETE
- **PSF** : TO COMPLETE
- **TSQ** : TO COMPLETE
- **P** : TO COMPLETE
- **PR** : TO COMPLETE
- **PT** : TO COMPLETE
- **tend** : TO COMPLETE
epirice.define.param

Value
data.frame with daily state variable

epirice.define.param Define values of the parameters for the Epirice model

Description
Define parameters values

Usage
epirice.define.param()

Value
matrix with parameter values (nominal, binf, bsup)

epirice.model The Epirice model (Disease model for rice)

Description
Model description. Adapted from Savary et al.(2012)

Usage
epirice.model(param, weather, sdate = 1, ldate = 120, H0 = 600)

Arguments
param : a vector of parameters
weather : weather data.frame for one single year
sdate : date to begin simulation (day of year) (default 1)
ldate : date to end simulation (day of year) (default 120)
H0 : initial number of plant’s healthy sites (default 600)

Value
data.frame with daily state variable

See Also
epirice.multi.simule
epirice.multi.simule
Wrapper function to run Epirice multiple times (for multiple sets of inputs)

Description

Wrapper function for epirice.model

Usage

```r
epirice.multi.simule(param, multi.simule, all = FALSE)
```

Arguments

- `param`: a vector of parameters
- `multi.simule`: matrix of n row definition of input variable: site, year and date of transplantation.
- `all`: if you want a matrix combining multi.simule and output (default = FALSE)

Value

matrix with AUDPC for each input vector

See Also

epirice.model

epirice.weather
Read weather data for Epirice (southern Asia weather)

Description

Read weather data and format them for epirice.model

Usage

```r
epirice.weather(working.year = NA, working.site = NA, weather = weather_SouthAsia)
```

Arguments

- `working.year`: year for the subset of weather data (default=NA: all the year)
- `working.site`: site for the subset of weather data (default=NA: all the site)
- `weather`: weather table
evaluation.criteria

Value

data.frame with daily weather data for one or several site(s) and for one or several year(s)

Description

This function is depreciated and will be remove from the package in future versions. Please use `goodness.of.fit`

Usage

evaluation.criteria(Ypred, Yobs, draw.plot = FALSE)

Arguments

- **Ypred**: prediction values from the model
- **Yobs**: observed values
- **draw.plot**: draw evaluation plot

Value

data.frame with the different evaluation criteria

Examples

```r
# observed and simulated values
obs<-c(78,110,92,75,110,108,113,155,150)
sim<-c(126,126,126,105,105,105,147,147,147)
evaluation.criteria(sim,obs,draw.plot=TRUE)
```

exponential.model

The Exponential growth model of dynamic of population

Description

Exponential growth model of dynamic of population

Usage

```r
exponential.model(a, Y0, duration = 40, dt = 1)
```
Arguments

<table>
<thead>
<tr>
<th>a</th>
<th>growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>y0</td>
<td>initial condition</td>
</tr>
<tr>
<td>duration</td>
<td>duration of simulation</td>
</tr>
<tr>
<td>dt</td>
<td>time step for integration</td>
</tr>
</tbody>
</table>

Value
data.frame with Y for each time step

See Also

verhulst.update for the update function of the Verhulst model.

exponential.model.bis

The Exponential growth model of dynamic of population - another form

Description

Exponential growth model of dynamic of population - another form

Usage

exponential.model.bis(a, y0, duration = 40, dt = 1)

Arguments

<table>
<thead>
<tr>
<th>a</th>
<th>growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>y0</td>
<td>initial condition</td>
</tr>
<tr>
<td>duration</td>
<td>duration of simulation</td>
</tr>
<tr>
<td>dt</td>
<td>time step for integration</td>
</tr>
</tbody>
</table>

Value
data.frame with Y for each time step

See Also

verhulst.update for the update function of the Verhulst model.
The Exponential growth model of dynamic of population - with improved Euler integration

Description

Exponential growth model of dynamic of population - with improved Euler integration

Usage

```r
exponential.model.ie(a, Y0, duration = 40, dt = 1)
```

Arguments

- `a`: growth rate
- `Y0`: initial condition
- `duration`: duration of simulation
- `dt`: time step for integration

Value

data.frame with Y for each time step

See Also

- `verhulst.update` for the update function of the Verhulst model.

Calcule multiple goodness-of-fit criteria

Description

Calcule multiple goodness-of-fit criteria

Usage

```r
goodness.of.fit(Yobs, Ypred, draw.plot = FALSE)
```

Arguments

- `Yobs`: observed values
- `Ypred`: prediction values from the model
- `draw.plot`: draw evaluation plot
graph_epid

Value

data.frame with the different evaluation criteria

Examples

observed and simulated values
obs<-(78,110,92,75,110,108,113,155,150)
sim<-(126,126,126,105,105,105,105,147,147,147)
goodness.of.fit(obs,sim,draw.plot=TRUE)

desc

graph_epid

Plot output of a Classical SEIR model for plant disease

Description

Plot the output of the Zadoks classical SEIR model for plant disease.

Usage

graph_epid(out, typel = "s", all = TRUE, param = TRUE)

Arguments

out : output of the zadoks.original.model
typel : type of plot (default : s)
all : if all=true (default), plot all the state variable
param : if param (default), add the values of param on the plot

Value

plot

See Also

zadoks.original.model
Plot output of a Classical SEIR model for plant disease

Description
Plot the output of the Zadoks classical SEIR model for plant disease.

Usage
graph_epid_s(out, typel = "s", all = TRUE, param = TRUE)

Arguments
- out: output of the zadoks.original.model
- typel: type of plot (default: s)
- all: if all=true (default), plot all the state variable
- param: if param (default), add the values of param on the plot

Value
plot

See Also
- zakoks.original.model

The Lactation model

Description
Model description. This model is a model of lactating mammary glands of cattle described by Heather et al. (1983). This model was then inspired more complex models based on these principles. This model simulates the dynamics of the production of cow's milk. the system is represented by 6 state variables: change in hormone levels (H), the production and loss of milk secreting cells (CS), and removing the secretion of milk (M), the average quantity of milk contained in the animal (Mmean), the amount of milk removed (RM) and yield (Y). The model has a time step dt = 0.1 for regular consumption of milk by a calf. The model is defined by a few equations, with a total of fourteen parameters for the described process.

Usage
lactation.calf.model(cu, kdiv, kdl, kdh, km, ksl, kr, ks, ksm, mh, mm, p, mum, rc, duration, dt)
Arguments

- **cu**: number of undifferentiated cells
- **kdiv**: cell division rate, Michaelis-Menten constant
- **kd1**: constant degradation of milk
- **kdh**: rate of decomposition of the hormone
- **km**: constant secretion of milk
- **ks1**: milk secretion rate, Michaelis-Menten constant
- **kr**: average milk constant
- **ks**: rate of degradation of the basal cells
- **ksm**: constant rate of degradation of milk secreting cells
- **mh**: parameter
- **mm**: storage capacity milk the animal
- **p**: parameter
- **mum**: setting the maximum rate of cell division
- **rc**: parameter of milk m(t) function
- **duration**: duration of simulation
- **dt**: time step

Value
data.frame with CS, M, Mmoy, RM, day, week

Examples

lactation.calf.model2(lactation.define.param()$"nominal", 300, 0.1)

Description

see lactation.calf.model for model description.

Usage

lactation.calf.model2(param, duration, dt)

Arguments

- **param**: a vector of parameters
- **duration**: duration of simulation
- **dt**: time step
Value

data.frame with CS, M, Mmoy, RM, day, week

Examples

```r
sim=lactation.calf.model2(lactation.define.param()["nominal",],6+2*7, 0.1)
```

lactation.calf.simule
Wrapper function to run the Lactation model for multiple sets of parameter values

Description

Wrapper function to run the Lactation model for multiple sets of parameter values

Usage

```r
lactation.calf.simule(X, duration, dt)
```

Arguments

- `X`: parameter matrix
- `duration`: duration of simulation
- `dt`: time step

Value

data.frame with: number of parameter vector (line number from X), week, CS, M, Mmoy, RM, day, week

lactation.define.param

Define values of the parameters for the Lactation model

Description

values from Heather et al. (1983) for different scenarios

Usage

```r
lactation.define.param(type = "calf")
```

Arguments

- `type`: for which model version? "calf" or "machine"
Value

matrix with parameter values (nominal, binf, bsup)

Examples

lactation.define.param()

Description

Model description. This model is a model of lactating mammary glands of cattle described by Heather et al. (1983). This model was then inspired more complex models based on these principles. This model simulates the dynamics of the production of cow’s milk. the system is represented by 6 state variables: change in hormone levels (H), the production and loss of milk secreting cells (CS), and removing the secretion of milk (M), the average quantity of milk contained in the animal (Mmean), the amount of milk removed (RM) and yield (Y). The model has a time step dt = 0.001 for milking machines. The model is defined by a few equations, with a total of twenty parameters for the described process.

Usage

lactation.machine.model(cu, kdiv, kdl, kdh, km, ksl, kr, ks, ksm, mh, mm, p, mum, rma, t1, t2, t3, t4, t5, t6, duration, dt, CSi, Mi)

Arguments

- cu : number of undifferentiated cells
- kdiv : cell division rate, Michaelis-Menten constant
- kdl : constant degradation of milk
- kdh : rate of decomposition of the hormone
- km : constant secretion of milk
- ksl : milk secretion rate, Michaelis-Menten constant
- kr : average milk constant
- ks : rate of degradation of the basal cells
- ksm : constant rate of degradation of milk secreting cells
- mh : parameter
- mm : storage Capacity milk the animal
- p : parameter
- mum : setting the maximum rate of cell division
- rma : parameter of milk m (t) function
The Lactation model for use with lactation.machine.simule

Description
see lactation.calf.model for model description.

Usage
lactation.machine.model2(param, duration, dt, CSi, Mi)

Arguments

param : a vector of parameters containing (cu,kdiv,kdh,km,ksl,kr,ks,ksm,mh,mm,p,mum,rma,t1,t2,t3,t4,t5,t6) (see lactation.model.machine)
duration : duration of simulation
dt : time step
CSi : initial Number of secretory cells
Mi : initial Quantity of milk in animal (kg)

Value
data.frame with CS,M,Mmoy,RM
magarey.define.param
Define values of the parameters for the Magarey model

Description
Define values of the parameters for the Magarey model

Usage
magarey.define.param(species = "unkown")

Arguments
- **species**: name of a species. By default, value for an "unkown" species are given. Other possibility are "G.citricarpa" or "Kaki.fungus"

Value
matrix with parameter values (nominal, binf, bsup)

Examples
magarey.define.param(species="G.citricarpa")
magarey.define.param(species="Kaki.fungus")

magarey.model
The Magarey model

Description
Generic model of infection for foliar diseases caused by fungi (from Magarey et al.,2005).

Usage
magarey.model(T, Tmin, Topt, Tmax, Wmin, Wmax)

Arguments
- **T**: input variable. Either a scalar or a vector (for a weather series).
- **Tmin**: parameter of minimal temperature for infection (degC)
- **Topt**: parameter of optimal temperature for infection (degC)
- **Tmax**: parameter of maximal temperature for infection (degC)
- **Wmin**: parameter of minimal wetness duration for infection (hour)
- **Wmax**: parameter of maximal wetness duration for infection (hour)
Value

Wetness duration (W, hour). Either a scalar or a vector depending on T.

Examples

plot(1:35, magarey.model(1:35, 7, 18, 30, 10, 42), type="l", xlab="T", ylab="W")

magarey.model2

The Magarey model, taking a vector of parameters as argument

Description

Generic model of infection for foliar diseases caused by fungi (from Magarey et al., 2005).

Usage

magarey.model2(T, param)

Arguments

T : input variable. Either a scalar or a vector (for a weather series).
param : parameters

Value

W : Wetness duration (hour). Either a scalar or a vector depending on T.

magarey.simule

Wrapper function to run the Magarey model multiple times (for multiple sets of inputs)

Description

Wrapper function to run the Magarey model multiple times (for multiple sets of inputs)

Example magarey.simule(magarey.define.param(), 15)

Usage

magarey.simule(X, T, all = FALSE)

Arguments

X : parameter matrix
T : input variable, temperature
all : if you want a matrix combining X and output
maize.data_MetaModelling

Value

a table with wetness duration (W) for each parameter vector

maize.data_EuropeEU
maize biomass and leaf area data

Description

"observation data" for several site and year (site-year) in Europe. This data are fake observed date, derived from simulations with an error model.

Usage

`maize.data_EuropeEU`

Format

a RangedData instance, 1 row per measurement.

Source

NA

maize.data_MetaModelling
dataset of simulation for maize final biomass

Description

Simulation data for several site and year (site-year) in Europe. This data are from run of the original maize crop model with the R function maize.model for the 30 French sites and 17 years included in the dataset weather_FranceWest of the package ZeBook. Our training dataset includes 510 (30 sites * 17 years) simulated biomass values and the 510 corresponding series of input values. The input values are the three average temperatures T1, T2, T3 and the three average radiations RAD1, RAD2, RAD3 computed on 3 periods of the growing season. Period 1: from day 1 to dat 50 (day of the year), period 2: from day 51 to day 100, period 3: from day 101 to day 150.

Usage

`maize.data_EuropeEU`

Format

a RangedData instance, 1 row per simulation. Site, Year, T1, T2, T3, RAD1, RAD2, RAD3, B
maize.define.param

Source

NA

See Also

maize.model, weather_FranceWest

maize.define.param Define values of the parameters for the Maize model

Description

Define parameters values

Usage

maize.define.param()

Value

matrix with parameter values (nominal, binf, bsup)

maize.model The basic Maize model.

Description

Model description. This model is a dynamic model of crop growth for Maize cultivated in potential conditions. The crop growth is represented by three state variables, leaf area per unit ground area (leaf area index, LAI), total biomass (B) and cumulative thermal time since plant emergence (TT). It is based on key concepts included in most crop models, at least for the "potential production" part. In fact, this model does not take into account any effects of soil water, nutrients, pests, or diseases,...

Usage

maize.model(Tbase, RUE, K, alpha, LAImax, TTM, TTL, weather, sdate, ldate)
Arguments

- **Tbase**: parameter the baseline temperature for growth (degreeCelsius)
- **RUE**: parameter radiation use efficiency (?)
- **K**: parameter extinction coefficient (relation between leaf area index and intercepted radiation) (-)
- **alpha**: parameter the relative rate of leaf area index increase for small values of leaf area index (?)
- **LAImax**: parameter maximum leaf area index (-)
- **TTM**: parameter temperature sum for crop maturity (degreeC.day)
- **TTL**: parameter temperature sum at the end of leaf area increase (degreeC.day)
- **weather**: weather data.frame for one single year
- **sdate**: sowing date
- **ldate**: last date

Details

The tree state variables are dynamic variables depending on days after emergence: TT(day), B(day), and LAI(day). The model has a time step \(dt \) of one day.

The model is defined by a few equations, with a total of seven parameters for the described process.

1. \(TT(day + 1) = TT(day) + dTT(day) \)
2. \(B(day + 1) = B(day) + dB(day) \)
3. \(LAI(day + 1) = LAI(day) + dLAI(day) \)
4. \(dTT(day) = \max(\frac{TMIN(day)+TMAX(day)}{2} - Tbase; 0) \)
5. \(dB(day) = RUE \times (1 - e^{-K \times LAI(day) \times I(day)}), \text{ if } TT(day) \leq TTM \)
6. \(dB(day) = 0, \text{ if } TT(day) > TTM \)
7. \(dLAI(day) = \alpha \times dTT(day) \times LAI(day) \times \max(LAI_{max} - LAI(day); 0), \text{ if } TT(day) \leq TTL \)
8. \(dLAI(day) = 0, \text{ if } TT(day) > TTL \)

Value

data.frame with daily TT, LAI, B

See Also

maize.model2, maize.define.param, maize.simule, maize.multisy, maize.simule240, maize.simule_multisy240

Examples

```r
weather = maize.weather(working.year=2010, working.site=30, weather_all=weather_EuropeEU)
maize.model(Tbase=7, RUE=1.85, K=0.7, alpha=0.00243, LAI_{max}=7, TTM=1200, TTL=700, weather, sdate=100, ldate=250)
```
maize.model2

The basic Maize model for use with maize.simule

Description

Wrapper pour maize.model

Usage

maize.model2(param, weather, sdate, ldate)

Arguments

param : a vector of parameters
weather : weather data.frame for one single year
sdate : sowing date
ldate : last date

Value

data.frame with daily TT, LAI, B

Examples

weather = maize.weather(working.year=2010, working.site=30,weather_all=weather.EuropeEU)
maize.model2(maize.define.param()"nominal" [, weather, sdate=100, ldate=250)

maize.muchow.graph

Plot dynamic output of Muchow Maize model.

Description

Plot 6 graphs of main output variables of the Muchow Maize model.

Usage

maize.muchow.graph(res)

Arguments

res : list of result from maize.muchow.model

See Also

mm.A.fct, mm.LN.fct, mm.FAS.fct, maize.multisy, mm.HI.fct, maize.muchow.model
Examples

```r
# not run in package test
# res = maize.muchow.model(weather=maize.weather(working.year=2010, working.site=1))
# maize.muchow.graph(res)
```

Description

Usage

```r
maize.muchow.model(Tbase1 = 8, TTE = 87, TTS = 67, Tbase2 = 0,
                    TTRUE = 500, TTM = 1150, TLN = 20, AM = 596, RUE1 = 1.6,
                    RUE2 = 1.2, K = 0.4, HImax = 0.5, Population = 7, sdate = 100,
                    ldate = 365, weather)
```

Arguments

- `Tbase1`: base temperature before silking (degC)
- `TTE`: Thermal units from sowing to emergence/leaf growth (degC.day)
- `TTS`: Thermal units from end of leaf growth to silking (degC.day)
- `Tbase2`: base temperature after silking (degC)
- `TTRUE`: Thermal units from silking for RUE change (degC.day)
- `TTM`: Thermal units from silking to physiological maturity (degC.day)
- `TLN`: total number of leaves initiated (-)
- `AM`: area of the largest leaf (cm2)
- `RUE1`: radiation use efficiency (g.MJ-1) from crop emergence until 500 thermal units (base 0 °C) after silking
- `RUE2`: radiation use efficiency (g.MJ-1) from 500 thermal units (base 0 °C) after silking
- `K`: radiation extinction coefficient (-)
- `HImax`: maximum harvest index - genetic potential (-)
- `Population`: number of plant per square meter (-)
- `sdate`: sowing date (day)
- `ldate`: end of simulation (day)
- `weather`: daily weather dataframe
maize.multisy

Value
data.frame with TT1, TT2, STADE, LN, LAI, B, HI, YIELD

See Also
mm.A.fct, mm.LN.fct, mm.FAS.fct, maize.multisy, mm.HI.fct, maize.muchow.graph

Examples

not run in package test
res = maize.muchow.model(weather=maize.weather(working.year=2010, working.site=1))
res$FinalYield

maize.multisy Wrapping function to run maize model on several site-years

Description
Wrapping function to run maize model on several site-years

Usage

maize.multisy(param, list_site_year, sdate, ldate,
 weather_all = weather_EuropeEU)

Arguments

param : a vector of parameters
list_site_year : vector of site-year
sdate : sowing date
ldate : last date
weather_all : weather data.frame for corresponding site-years

Value

a data.frame with simulation for all site-years, with the first column sy indicating the site-years
maize.multisy240

Wrapper function to run Maize model for multiple sets of input variables (site-year) and give Biomass at day240.

Description

Wrapper function to run Maize model for multiple sets of input variables (site-year) and give Biomass at day240.

Usage

maize.multisy240(param, liste_sy, sdate, ldate, weather_all = weather_EuropeEU)

Arguments

- param : a vector of parameters
- liste_sy : vector of site-year
- sdate : sowing date
- ldate : last date
- weather_all : weather data table used

Value

mean biomass at day=240

Examples

maize.multisy240(maize.define.param()[,c("nominal",,"18-2006","64-2004")], sdate=100, ldate=250)

maize.RUEtemp

Calculate effect of temperature on RUE for Maize

Description

Function to compute effect of temperature on RUE

Usage

maize.RUEtemp(T, RUE_max, T0, T1, T2, T3)
Arguments

- **T**: temperature
- **RUE_max**: maximum value for RUE
- **T0**: temperature parameter
- **T1**: temperature parameter
- **T2**: temperature parameter
- **T3**: temperature parameter

Value

- RUE value

maize.simule

Wrapper function to run Maize model for multiple sets of parameter values

Description

Wrapper for `maize.model2`

Usage

`maize.simule(X, weather, sdate, ldate, all = FALSE)`

Arguments

- **X**: matrix of n row vectors of 7 parameters
- **weather**: weather data.frame for one single year
- **sdate**: sowing date
- **ldate**: last date
- **all**: if you want a matrix combining X and output (default = FALSE)

Value

matrix with maximum biomass for each parameter vector
maize.simule240
Wrapper function to run Maize model multiple times for multiple sets of parameter values and give Biomass at day 240

Description
Wrapper function for multiple simulation with Maize model

Usage
maize.simule240(X, weather, sdate, ldate, all = FALSE)

Arguments
- X : matrix of n row vectors of 7 parameters
- weather : weather data.frame for one single year
- sdate : sowing date
- ldate : last date
- all : if you want a matrix combining X and output (default = FALSE)

Value
a matrix of biomass at day=240 for all combinations of parameters of X

Examples
```r
sy = "18-2006"
weather = maize.weather(working.year=strsplit(sy,"-")[[1]][2],
                      working.site=strsplit(sy,"-")[[2]][1],weather_all=weather_EuropeEU)
maize.simule240(maize.define.param(),weather, sdate=100, ldate=250, all=FALSE)
```

maize.simule_multisy240
Wrapper function to run Maize model multiple times for multiple sets of parameter values (virtual design) and multiple sets of input variables (site-year) and give Biomass at day 240

Description
Wrapper function to run Maize model for multiple sets of input variables (site-year) and give Biomass at day 240.

Usage
maize.simule_multisy240(X, liste_sy, sdate, ldate, all = FALSE)
maize.weather

Arguments

- **X**: matrix of n row vectors of 7 parameters
- **liste.sy**: vector of site-year
- **sdate**: sowing date
- **ldate**: last date
- **all**: if you want a matrix combining X and output (default = FALSE)

Value

a matrix of mean biomass at day=240 for all combinations of parameters of X

Examples

```r
maize.simule_multisy240(maize.define.param(),c("18-2006","64-2004"),
 sdate=100, ldate=250, all=FALSE)
```

maize.weather

Read weather data for the Maize model

Description

Function to read weather data and format them for maize.model

Usage

```r
maize.weather(working.year = NA, working.site = NA,
 weather_all = weather_FranceWest)
```

Arguments

- **working.year**: year for the subset of weather data (default=NA : all the year)
- **working.site**: site for the subset of weather data (default=NA : all the site)
- **weather_all**: weather data base (default=weather_FranceWest)

Value

data.frame with daily weather data for one or several site(s) and for one or several year(s)
maize_cir_rue.model

The Maize model with additional state variable CumInt

Description

Variant of the maize model

Usage

```r
maize_cir_rue.model(Tbase, RUE, K, alpha, LAImax, TTM, TTL, weather, sdate, ldate)
```

Arguments

- `Tbase` : parameter the baseline temperature for growth (degreeCelsius)
- `RUE` : parameter radiation use efficiency (％)
- `K` : parameter extinction coefficient (relation between leaf area index and intercepted radiation) (-1)
- `alpha` : parameter the relative rate of leaf area index increase for small values of leaf area index (％)
- `LAImax` : parameter maximum leaf area index (-1)
- `TTM` : parameter temperature sum for crop maturity (degreeC.day)
- `TTL` : parameter temperature sum at the end of leaf area increase (degreeC.day)
- `weather` : weather data.frame for one single year
- `sdate` : sowing date
- `ldate` : last date

Value

data.frame with daily TT, LAI, B

maize_cir_rue.model

The Maize model with temperature dependent RUE and CumInt

Description

Variant of the maize model

Usage

```r
maize_cir_rue.model(Tbase, RUE_max, K, alpha, LAImax, TTM, TTL, weather, sdate, ldate)
```
The Maize model with temperature dependent RUE, CumInt and ear growth

Arguments

- `Tbase`: parameter the baseline temperature for growth (degree Celsius)
- `RUE_max`: parameter maximum radiation use efficiency (?)
- `K`: parameter extinction coefficient (relation between leaf area index and intercepted radiation) (-)
- `alpha`: parameter the relative rate of leaf area index increase for small values of leaf area index (?)
- `LAI_max`: parameter maximum leaf area index (-)
- `TTM`: parameter temperature sum for crop maturity (degree C. day)
- `TTL`: parameter temperature sum at the end of leaf area increase (degree C. day)
- `weather`: weather data.frame for one single year
- `sdate`: sowing date
- `ldate`: last date

Value

data.frame with daily TT, LAI, B

Description

Variant of the maize.model

Usage

`maize_cir_rue_ear.model(Tbase, RUE_max, K, alpha, LAI_max, TTM, TTL, weather, sdate, ldate)`
mm.A.fct

Expanded leaf area function for Muchow et al. (1990) Maize model

Description

Compute fully expanded area by leaf number (A, cm2)

Usage

mm.A.fct(LN, AM, LNM, a1 = -0.0344, a2 = 0.000731)

Arguments

LN : Leaf number
AM : area of the largest leaf (cm2)
LNM : leaf number having the largest area (-)
a1 : coefficient of the statistical relation (default : -0.0344)
a2 : coefficient of the statistical relation (default : 0.000731)

Value

vector of Expanded leaf area

See Also

maize.muchow.model, mm.LN.fct, mm.FAS.fct, maize.multisy, mm.HI.fct, maize.muchow.graph

Examples

barplot(mm.A.fct(LN=1:20, AM=750, LNM=12),names.arg=1:20, horiz=TRUE,xlab="leaf area (cm2)",ylab="leaf number")
mm.FAS.fct

Senescence function for Muchow et al. (1990) Maize model

Description

Senesced fraction of total leaf area (FAS) increase with thermal units (TU) from emergence

Usage

```r
mm.FAS.fct(TT, TTE, c1 = 0.00161, c2 = 0.00328)
```

Arguments

- **TT**: Thermal time (degC.day)
- **TTE**: Thermal units from sowing to emergence/leaf growth (degC.day)
- **c1**: coefficient of the statistical relation (default: 0.00161)
- **c2**: coefficient of the statistical relation (default: 0.00328)

Value

Senesced fraction of total leaf area

See Also

`maize.muchow.model`, `mm.A.fct`, `mm.LN.fct`, `maize.multisy`, `mm.HI.fct`, `maize.muchow.graph`

Examples

```r
plot(1:2500, mm.FAS.fct(1:2500, TTE=87))
```

mm.HI.fct

Harvest index function for Muchow et al. (1990) Maize model

Description

Compute the harvest index.

Usage

```r
mm.HI.fct(day, daysilking, HImax, d1 = 0.015, d2 = 3)
```
Arguments

- `day`: day of the year
- `daysilking`: day of the year for silking (day)
- `HImax`: maximum harvest index - genetic potential (-)
- `d1`: coefficient of the statistical relation (day-1, default: 0.015)
- `d2`: coefficient of the statistical relation (day, default: 3)

Value

Harvest index

See Also

`maize.muchow.model`, `mm.A.fct`, `mm.LN.fct`, `maize.multisy`, `mm.FAS.fct`, `maize.muchow.graph`

Examples

```r
plot(1:350, mm.HI.fct(1:350, 200, 0.75), type="l")
```

`mm.LN.fct`
Leaf number function for Muchow et al. (1990) Maize model

Description

Leaf number as a function of thermal time

Usage

`mm.LN.fct(TT1, TTE, b1 = 2.5, b2 = 0.00225, TLN = 20)`

Arguments

- `TT1`: Thermal time from sowing (degC.day)
- `TTE`: Thermal units from sowing to emergence/leaf growth (degC.day)
- `b1`: coefficient of the statistical relation (default: 2.5)
- `b2`: coefficient of the statistical relation (default: 0.00225)
- `TLN`: total number of leaves initiated (-)

Value

Leaf number

See Also

`maize.muchow.model`, `mm.A.fct`, `mm.FAS.fct`, `maize.multisy`, `mm.HI.fct`, `maize.muchow.graph`
Examples

plot(1:1000, mm.LN.fct(1:1000, TTE=87))

param.rtriangle

Generate a random plan as a data frame. Columns are parameters. Values have triangle distribution

Description

according to nominal, minimal and maximal values defined in a model.factors matrix

Usage

`param.rtriangle(model.factors, N)`

Arguments

- `model.factors`: matrix defining nominal, minimal (binf), maximal values (bsup) for a set of p parameters
- `N`: size of sample

Value

parameter matrix of dim = (N, p)

param.runif

Generate a random plan as a data frame. Columns are parameters. Values have uniform distribution

Description

according to minimal and maximal values defined in a model.factors matrix

Usage

`param.runif(model.factors, N)`

Arguments

- `model.factors`: matrix defining minimal (binf) and maximal values (bsup) for a set of p parameters
- `N`: size of sample

Value

parameter matrix of dim = (N, p)
The PopulationAge model (Population Dynamics with Age Classes) - matrix form

Description

Population Dynamics Model with Age Classes for an insect. Exactly the same model as population.age.model, but written as a matrix computation. It's possible for this model. It's really more efficient and reduce computer time by 6! 7 states variables E : egg stage. homogenous population (density) (number per ha) L1 : larve1 stage. homogenous population (density) (number per ha) L2 : larvae2 stage. homogenous population (density) (number per ha) L3 : larvae3 stage. homogenous population (density) (number per ha) L4 : larvae4 stage. homogenous population (density) (number per ha) P : pupae stage. homogenous population (density) (number per ha) A : adult stage. homogenous population (density) (number per ha)

Usage

population.age.matrix.model(rb = 3.5, mE = 0.017, rE = 0.172,
 m1 = 0.06, r12 = 0.217, m2 = 0.032, r23 = 0.313, m3 = 0.022,
 r34 = 0.222, m4 = 0.02, r4P = 0.135, mP = 0.02, rPA = 0.099,
 mA = 0.027, iA = 0, duration = 100, dt = 1)

Arguments

rb : eggs laid per adult per unit area (day-1)
mE : relative mortality rate of egg (day-1)
rE : eggs hatch (day-1)
m1 : relative mortality rate of larvae L1 (day-1)
r12 : relative rate L1->L2 (day-1)
m2 : relative mortality rate of larvae L2 (day-1)
r23 : relative rate L2->L3 (day-1)
m3 : relative mortality rate of larvae L3 (day-1)
r34 : relative rate L3->L4 (day-1)
m4 : relative mortality rate of larvae L4 (day-1)
r4P : relative rate L4->P (day-1)
mP : relative mortality rate of pupae (day-1)
rPA : relative rate P->A (day-1)
mA : relative mortality rate of adult L1 (day-1)
iA : input rate of adult (unit.day-1)
duration : simulation duration
dt : time step for integration
The `population.age.model` function (Population Dynamics with Age Classes)

Description
Population Dynamics Model with Age Classes for an insect

Usage
```r
population.age.model(rb = 3.5, mE = 0.017, rE = 0.172, m1 = 0.06, 
  r12 = 0.217, m2 = 0.032, r23 = 0.313, m3 = 0.022, r34 = 0.222, 
  m4 = 0.02, r4P = 0.135, mP = 0.02, rPA = 0.099, mA = 0.027, 
  iA = 0, duration = 100, dt = 1)
```

Arguments
- `rb` : eggs laid per adult per unit area (day-1)
- `mE` : relative mortality rate of egg (day-1)
- `rE` : eggs hatch (day-1)
- `m1` : relative mortality rate of larvae L1 (day-1)
- `r12` : relative rate L1->L2 (day-1)
- `m2` : relative mortality rate of larvae L2 (day-1)
- `r23` : relative rate L2->L3 (day-1)
- `m3` : relative mortality rate of larvae L3 (day-1)
- `r34` : relative rate L3->L4 (day-1)
- `m4` : relative mortality rate of larvae L4 (day-1)
- `r4P` : relative rate L4->P (day-1)
- `mP` : relative mortality rate of purpae (day-1)
- `rPA` : relative rate P->A (day-1)
- `mA` : relative mortality rate of adult L1 (day-1)
- `iA` : input rate of adult (unit.day-1)
- `duration` : simulation duration
- `dt` : time step for integration

Value
data.frame with values for state variables for each time step.
The PopulationAge model (Population Dynamics with Age Classes) - ode form

Description
Population Dynamics Model with Age Classes for an insect. Exactly the same model as population.age.model, but written as an ordinary differential equation system (ode) with deSolve package. 7 states variables E: egg stage, homogenous population (density) (number per ha) L1: larvae1 stage, homogenous population (density) (number per ha) L2: larvae2 stage, homogenous population (density) (number per ha) L3: larvae3 stage, homogenous population (density) (number per ha) L4: larvae4 stage, homogenous population (density) (number per ha) P: pupae stage, homogenous population (density) (number per ha) A: adult stage, homogenous population (density) (number per ha)

Usage
population.age.model.ode(rb = 3.5, mE = 0.017, rE = 0.172,
m1 = 0.06, r12 = 0.217, m2 = 0.032, r23 = 0.313, m3 = 0.022,
r34 = 0.222, m4 = 0.02, r4P = 0.135, mP = 0.02, rPA = 0.099,
mA = 0.027, iA = 0, duration = 100, dt = 1, method = "euler")

Arguments
- rb: eggs laid per adult per unit area (day-1)
- mE: relative mortality rate of egg (day-1)
- rE: eggs hatch (day-1)
- m1: relative mortality rate of larvae L1 (day-1)
- r12: relative rate L1->L2 (day-1)
- m2: relative mortality rate of larvae L2 (day-1)
- r23: relative rate L2->L3 (day-1)
- m3: relative mortality rate of larvae L3 (day-1)
- r34: relative rate L3->L4 (day-1)
- m4: relative mortality rate of larvae L4 (day-1)
- r4P: relative rate L4->P (day-1)
- mP: relative mortality rate of pupae (day-1)
- rPA: relative rate P->A (day-1)
- mA: relative mortality rate of adult L1 (day-1)
- iA: input rate of adult (unit.day-1)
- duration: simulation duration
- dt: time step for integration
- method: integration method (euler, rk4,...)
predator.prey.model

Value
data.frame with values for state variables for each time step.

Description

Predator-Prey Lotka-Volterra model (with logistic prey)

Usage

predator.prey.model(grH = 1, kH = 10, mrH = 0.2, eff = 0.5,
 mrA = 0.2, H0 = 1, A0 = 2, duration = 200, dt = 1,
 method = "euler")

Arguments

<table>
<thead>
<tr>
<th>grH</th>
<th>: relative rate of prey population growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>kH</td>
<td>: environment carrying capacity for prey (number per ha)</td>
</tr>
<tr>
<td>mrH</td>
<td>: maximum predation rate (number per predator and per prey per day)</td>
</tr>
<tr>
<td>eff</td>
<td>: efficiency, growth of predator population depending on predation (-)</td>
</tr>
<tr>
<td>mrA</td>
<td>: mortality of predator (-)</td>
</tr>
<tr>
<td>H0</td>
<td>: size of population of prey, at time 0</td>
</tr>
<tr>
<td>A0</td>
<td>: size of population of predator, at time 0</td>
</tr>
<tr>
<td>duration</td>
<td>: simulation duration</td>
</tr>
<tr>
<td>dt</td>
<td>: time step for integration</td>
</tr>
<tr>
<td>method</td>
<td>: integration method</td>
</tr>
</tbody>
</table>

Value
data.frame with daily H and A
q.arg.fast.runif

Build the q.arg argument for the FAST function (sensitivity analysis)

Description

according to minimal and maximal values defined in a model.factors matrix

Usage

q.arg.fast.runif(model.factors)

Arguments

model.factors : matrix defining minimal (binf) and maximal values (bsup) for a set of p parameters

Value

a list of list

seedweight.data

Wheat grain weight measurements after anthesis

Description

Darroch and Baker (1990) studied grain filling in three spring wheat genotypes. The data are seed weights of the spring wheat cultivar Neepawa in three different years 1986, 1987, 1988. These data were numerised from figure of the article, so they present slight difference with original data.

Usage

seedweight.data

Format

a RangedData instance, 1 row per measurement. DD = Degree Days after anthesis; seedweight = Wheat grain weight (mg)

Source

seedweight.model

The SeedWeight model

Description

The SeedWeight model is a logistic model of grain weight over time in wheat. The model was proposed by Darroch & Baker (1990) in a study of grain filling in three spring wheat genotypes. This model has a single input variable, degree days after anthesis noted DD, and three parameters, noted W, B and C. Parameters are estimated from observations.

Usage

seedweight.model(DD, W, B, C)

Arguments

- **DD**: degree days after anthesis
- **W**: parameter of the model
- **B**: parameter of the model
- **C**: parameter of the model

Value

Seed Weight for each TT

Examples

plot(1:500,seedweight.model(1:500, W=30,B=4,C=0.020),type="l", xlab="degree days after anthesis", ylab="grain weight")

Sunflower_Phomopsis

Phomopsis stem canker observations for Sunflower

Description

This dataset contains fraction intercepted photosynthetically active radiation (IPAR) and corresponding percent of girdling lesions at harvest (pclesions) for 43 fields. Phomopsis stem canker is a worldwide fungal disease of sunflower, which causes stem girdling lesions and a consequent reduction in yield. One wants to decide if the number of girdling lesions at harvest in the absence of early treatment will exceed 15 This data frame consist of a sample of fields with values for IPAR (ipar) and for the percent of girdling lesions at harvest (pclesions).

Usage

Sunflower_Phomopsis
Format

a RangedData instance, 1 row per observation.

Source

threshold.measures

Computation of threshold.measures

Description

Computation of threshold.measures

Usage

threshold.measures(Yobs, Ypred, p, d, units = "")

Arguments

- **Yobs**: observed values
- **Ypred**: prediction values from the model
- **p**: TO COMPLETE
- **d**: TO COMPLETE
- **units**: units

Value

data.frame with the different evaluation criteria

Examples

```r
# observed and simulated values
obs<-c(78,110,92,75,110,108,113,155,158)
sim<-c(126,126,126,105,105,105,147,147,147)
threshold.measures(obs,sim,80,1.0)
```
Description

The Verhulst (logistic) model - calculate daily values over designated time period

Usage

verhulst.model(a, k, Y0, duration)

Arguments

- **a**: growth rate
- **k**: capacity
- **Y0**: initial condition
- **duration**: duration of simulation

Value

data.frame with daily Y

See Also

verhulst.update for the update function of the Verhulst model.

Examples

```r
plot(verhulst.model(0.08,100,1,100), type="l", ylim=c(0,115),
xlab="day", ylab="Y, population density",lwd=2)
```

Description

The Verhulst (logistic) model - calculate change for one day

Usage

verhulst.update(Y, a, k)
Arguments

Y : state variable Y(t=day)
a : growth rate
k : capacity

Value

state variable at Y(t=day+1)

See Also

verhulst.model for the integration loop function of the Verhulst model.

watbal.define.param Define values of the parameters for the WaterBalance model

Description

Define values of the parameters for the WaterBalance model

Usage

watbal.define.param()

Value

matrix with parameter values (nominal, binf, bsup)

watbal.model WaterBalance model - calculate soil water over designated time period

Description

WaterBalance model - calculate soil water over designated time period

Usage

watbal.model(param, weather, WP, FC, WAT0 = NA)
watbal.model.arid

Arguments

- param : a vector of parameters
- weather : weather data.frame for one single year
- WP : Water content at wilting Point (cm3cm$^{-3}$)
- FC : Water content at field capacity (cm3cm$^{-3}$)
- WAT0 : Initial Water content (mm). If NA WAT0=z*FC

Value

data.frame with daily RAIN, ETR, Water at the beginning of the day (absolute : WAT, mm and relative value : WATp, -)

Description

WaterBalance model - Variant with another order of calculation and ARID index

Usage

watbal.model.arid(whc, muf, dc, z, cn, weather, wp, fc, wato = NA)

Arguments

- WHC : Water Holding Capacity of the soil (cm3 cm$^{-3}$)
- MUF : Water Uptake coefficient (mm3 mm$^{-3}$)
- DC : Drainage coefficient (mm3 mm$^{-3}$)
- z : root zone depth (mm)
- CN : Runoff curve number
- weather : weather data.frame for one single year
- WP : Water content at wilting Point (cm3.cm$^{-3}$)
- FC : Water content at field capacity (cm3.cm$^{-3}$)
- WAT0 : Initial Water content (mm). If NA WAT0=z*FC

Value

data.frame with daily RAIN, ETR, Water at the beginning of the day (absolute : WAT, mm and relative value : WATp, -)
watbal.simobsdata

Soil water content measurements and associated simulations with WaterBalance model

Description
Data of soil water content from Luc Champolivier (CETIOM), in En Crambade (31, France), on canola without irrigation in 2008. Sonde Diviner 2000 (from Sentek Pty Ltd) Simulation are from watbal.model, with an initial water content estimated from measurement with Diviner 2000.

Usage
watbal.simobsdata

Format
a RangedData instance, 1 row per day: Weather: day / RAIN / ETr / simulation: WAT / WATp / ARID observation: t1_WATp_0_40cm / t2_WATp_0_40cm / t3_WATp_0_40cm / WATp_SF.mean / WATp_SF.var

Source

watbal.update

WaterBalance model - calculate change in soil water for one day

Description
WaterBalance model - calculate change in soil water for one day

Usage
watbal.update(WAT0, RAIN, ETr, param, WP, FC)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAT0</td>
<td>Water at the beginning of the day (mm).</td>
</tr>
<tr>
<td>RAIN</td>
<td>Rainfall of day (mm)</td>
</tr>
<tr>
<td>ETr</td>
<td>Evapotranspiration of day (mm)</td>
</tr>
<tr>
<td>param</td>
<td>a vector of parameters</td>
</tr>
<tr>
<td>WP</td>
<td>Water content at wilting Point (cm^3.cm^-3)</td>
</tr>
<tr>
<td>FC</td>
<td>Water content at field capacity (cm^3.cm^-3)</td>
</tr>
</tbody>
</table>

Value
WAT1: Water at the beginning of the day+1 (mm).
watbal.weather

Read weather data for the WaterBalance model (West of France Weather)

Description

Read weather data for the WaterBalance model (West of France Weather)

Usage

watbal.weather(working.year = NA, working.site = NA)

Arguments

working.year : year for the subset of weather data (default=NA: all the year)
working.site : site for the subset of weather data (default=NA: all the site)

Value

data.frame with daily weather data for one or several site(s) and for one or several year(s)

weather_EuropeEU

Weather serie for Europe EU from NASA POWER agroclimatology

Description

This contemporary daily climate dataset for Europe covers the period 1st January 2001 to 31 December 2010 with 10 complete years of data. It cover a part of Europe) with an elevation less than 500m. The dataset was was extraced from the NASA Langley Research Center POWER Project which provide agroclimatology dataset (Chandler et al., 2004). It was funded through the NASA Earth Science Directorate Applied Science Program This climate dataset contains daily estimates of precipitation, mean, minimum and maximum temperature, relative humidity, dew point, solar radiation and wind speed with global coverage at one degree resolution (approximately 111 km at the equator). The NASA POWER agroclimatology data are derived from various sources: solar radiation from satellite observations, meteorological data from the Goddard Earth Observing System global assimilation model version 4 (GEOS-4), and precipitation from the Global Precipitation Climate Project and Topical Rainfall Measurement Mission. A full description can be found at https://power.larc.nasa.gov/common/php/POWER_AboutAgroclimatology.php Elevation (Altitude) were retrive from Aster Global Digital Elevation Model by using the Webservice api.geonames.org/astergdem? Sample are: ca 30m x 30m, between 83N and 65S latitude. Result : a single number giving the elevation in meters according to aster gdem, ocean areas have been masked as "no data" and have been assigned a value of -9999 Example http://api.geonames.org/astergdem?lat=50.01&lng=10.2&username=demo

Usage

weather_EuropeEU
Format

a RangedData instance, 1 row per day. SRAD daily Insolation Incident On A Horizontal Surface (MJ/m^2/day) T2M Average Air Temperature At 2 m Above The Surface Of The Earth (degrees C) TMIN Minimum Air Temperature At 2 m Above The Surface Of The Earth (degrees C) TMAX Maximum Air Temperature At 2 m Above The Surface Of The Earth (degrees C) RH2M Relative Humidity At 2 m (TDEW Dew/Frost Point Temperature At 2 m (degrees C) RAIN Average Precipitation (mm/day) WIND Wind Speed At 10 m Above The Surface Of The Earth (m/s)

Source

weather_FranceWest Weather series for western France from NASA POWER agroclimatology

Description

This contemporary daily climate dataset for West of France covers the period 1st January 1984 to 31 December 2011. The precipitation data is limited to the period Jan-1997 Aug-2009, thus only 12 complete years of data were available for analysis involving precipitation(1997 to 2009). It cover main part of West part of France defined as a rectangle. The dataset was extracted from the NASA Langley Research Center POWER Project which provide agroclimatology dataset (Chandler et al., 2004). It was funded through the NASA Earth Science Directorate Applied Science Program This climate dataset contains daily estimates of precipitation, mean, minimum and maximum temperature, relative humidity, dew point, solar radiation and wind speed with global coverage at one degree resolution (approximately 111 km at the equator). The NASA POWER agroclimatology data are derived from various sources: solar radiation from satellite observations, meteorological data from the Goddard Earth Observing System global assimilation model version 4 (GEOS-4), and precipitation from the Global Precipitation Climate Project and Topical Rainfall Measurement Mission. A full description can be found at https://power.larc.nasa.gov/common/php/POWER_AboutAgroclimatology.php

Usage

weather_FranceWest

Format

a RangedData instance, 1 row per day.

Source

http://power.larc.nasa.gov/
weather_GNS
Weather series for Gainesville (FL, USA) years 1982 and 1983

Description
This daily climate dataset for Gainesville (FL, USA) years 1982 and 1983 covers the period 1st January 1982 to 31 December 1983 with 2 complete years of data with precipitation. The dataset was provide by JJW Jones and the university of Florida to run simulation of the publication of Muchow et al. (1990). This climate dataset contains daily estimates of precipitation (RAIN), minimum (Tmin) and maximum temperature (Tmax), solar radiation (I), photosynthetically active radiation (PAR).

Usage
weather_GNS

Format
a RangedData instance, 1 row per day.

Source
University of Florida

weather_SouthAsia
Weather series for southern Asia from NASA POWER agroclimatology

Description
This contemporary daily climate dataset for South Asia covers the period 1st January 1997 to 31 December 2008 with 12 complete years of data with precipitation. It cover a part of South Asia (North-East of India, Bangladesh, Myanmar, Neapal) with an elevation less than 2500m. The dataset was extracted from the NASA Langley Research Center POWER Project which provide agroclimatology dataset (Chandler et al., 2004). It was funded through the NASA Earth Science Directorate Applied Science Program This climate dataset contains daily estimates of precipitation, mean, minimum and maximum temperature, relative humidity, dew point, solar radiation and wind speed with global coverage at one degree resolution (approximately 111 km at the equator). The NASA POWER agroclimatology data are derived from various sources: solar radiation from satellite observations, meteorological data from the Goddard Earth Observing System global assimilation model version 4 (GEOS-4), and precipitation from the Global Precipitation Climate Project and Topical Rainfall Measurement Mission. A full description can be found at https://power.larc.nasa.gov/common/php/POWER_AboutAgroclimatology.php Elevation (Altitude) were retrive from Aster Global Digital Elevation Model by using the Webservice api.geonames.org/astergdem? Sample are: ca 30m x 30m, between 83N and 65S latitude. Result : a single number giving the elevation in meters according to aster gdem, ocean areas have been masked as "no data" and have been assigned a value of -9999 Example http://api.geonames.org/astergdem?lat=50.01&lng=10.2&username=demo
weed.model

Usage

weather_SouthAsia

Format

a RangedData instance, 1 row per day.

Source

weed.define.param Define parameter values of the Weed model

Description

Define parameter values of the Weed model

Usage

weed.define.param()

Value

matrix with parameter values (nominal, binf, bsup)

weed.model The Weed model - calculate daily values over designated time period

Description

The Weed model - calculate daily values over designated time period

Usage

weed.model(param, weed.deci)

Arguments

param : vector of the 16 parameters
weed.deci : decisions table for Soil, Crop et Herbicide

Value

data.frame with annual values of yield
weed.simule

Wrapper function to run the Weed model multiple times (for multiple sets of inputs)

Description

Wrapper function to run the Weed model multiple times (for multiple sets of inputs)

Usage

```r
weed.simule(X, weed.deci)
```

Arguments

- `X` : parameter matrix
- `weed.deci` : decisions table for Soil, Crop et Herbicide

Value

matrix with Yield for year 3 for each parameter vector

weed.update

The Weed model - calculate change for one year

Description

The Weed model - calculate change for one year

Usage

```r
weed.update(d, S, SSBa, DSBa, Soil, Crop, Herb, param)
```

Arguments

- `d` : weed density at seed emergence (plants/m²) - value for year
- `S` : seed production per m² - value for year
- `SSBa` : surface seedbank after tillage (grains/m²) - value for year
- `DSBa` : deep seedbank after tillage (grains/m²) - value for year
- `Soil` : value for soil decision (1 or 0)
- `Crop` : value for crop decision (1 or 0)
- `Herb` : value for herbicide treatment decision (1 or 0)
- `param` : vector of the 16 parameters

Value

a vector with values of state variables for year+1
WheatGreece

National Wheat Yield evolution for Greece from FAO

Description

Wheat yield time series data in Greece from 1961 to 2010 yield.

Usage

WheatGreece

Format

a RangedData instance, 1 row per measurement. Year, Yield : Wheat Yield (hectogram/hectare = 0.0001 ton/hectare)

Source

Wheat_GPC

Grain Protein Contents in Wheat Grains

Description

This dataset contains data for 43 plots. The column GPC corresponds to measured data. GPC.model1 and GPC.model2 correspond to the results obtained by two models. The other columns contain other information for each plot (technical practices) : number, tillage, max_water, preceding_crop, sow_date, Nendwinter, Nfertilizer, SPAD, NNI, Yield.

Usage

Wheat_GPC

Format

a RangedData instance, 1 row per plot.

Source

Barbottin et al. 2008
Description

Model description. This model is a classical SEIR model for plant disease. It was written from the description included in the original publication of Zadoks (1971).

Usage

```r
zakoks.original.model(nlpd = 4 * 10, nipd = 1 * 10, dmfr = 16,
                        SITE0 = 5 * 10^9, weather, sdate = 145, ldate = 145 + 50,
                        XLAT0 = 1)
```

Arguments

- `nlpd`: latent period (in degree.day) - default value for Puccinia triticina: ~10 days at 20degC
- `nipd`: infectious period (in degree.day) - default value for Puccinia triticina: ~20 days at 20degC
- `dmfr`: daily multiplication factor - default value number of effective spores produced by lesion
- `SITE0`:
- `weather`: weather data.frame for one single year
- `sdate`: starting date
- `ldate`: ending date
- `XLAT0`:

Details

This model is a classical SEIR model proposed by Zadoks (1971) to simulate epidemics of diseases of crops. It is a Susceptible-Exposed-Infectious-Removed (SEIR) model. This simple model of an epidemic is based on the epidemiological concepts "latent period", "infectious period", and "multiplication factor". The crop is considered to consist of a large but finite number of infectious sites. The physical dimensions of an infectious site roughly coincide with the reproductive unit of the parasite studied. Different pathosystems (with different infectious site definitions) can be considered with this model. A full description is available in the original paper: The model has four essential state variables representing the number of sites in each state XVAC for vacant (healthy) sites, XLAT for latent site, XINF for infectant sites and XCTR for the cumulative total of removal (post infectious) sites. Two supplementary variables based on the state variables are used defined as XTO1 = XLAT+XINF+XCTR and XSEV = XINF+XCTR. Fluxes or rates between the state variables are defined as rocc for occupation, rapp for apparition and rrem for removal. The model has a time step of one day (dt=1). The system modeled is one hectare of a wheat crop.
Value

list with a data.frame with daily day, DACE, XVAC, XLAT, XINF, XCTR, XTO1, XSEV= XSEV, severity and a vector of parameter value (nlpd, nipd, dmfr, SITE0).

Source

See Also

epirice.model

Examples

```r
weather_subset(weather_FranceWest, WEYR==1997 & idsite==39)
out=zakoks.original.model(nlpd=4*10,nipd=1*10,dmfr=16,SITE0 = 5*10^9, weather, sdate = 145, ldate = 145+50 , XLAT0=1)
plot(out$sim$DACE,out$sim$severity, type="1")
```
Index

†Topic agricultural
ZeBook-package, 3
†Topic agronomy
ZeBook-package, 3
†Topic assimilation
ZeBook-package, 3
†Topic bayesian
ZeBook-package, 3
†Topic crop
ZeBook-package, 3
†Topic environment
ZeBook-package, 3
†Topic estimation
ZeBook-package, 3
†Topic evaluation
ZeBook-package, 3
†Topic methods
ZeBook-package, 3
†Topic models
ZeBook-package, 3
†Topic parameter
ZeBook-package, 3
†Topic sensitivity
ZeBook-package, 3
†Topic tools
ZeBook-package, 3
†Topic uncertainty
ZeBook-package, 3

AICf, 4
Bean, 5
carbonsoil.model, 6
carbonsoil.update, 7
carcass.define.param, 7
carcass.EM1.model, 8
carcass.EM1.model2, 9
carcass.EM1.multi, 10
carcass.EM1.simule, 10
carcass.model, 11
carcass_data, 12
carrot.weevil.model, 12
chicks_data, 13
cotton.model, 14
epirice.define.param, 15
epirice.model, 15, 16, 62
epirice.multi.simule, 15, 16
epirice.weather, 16
evaluation.criteria, 17
exponential.model, 17
exponential.model.bis, 18
exponential.model.ie, 19
goodness.of.fit, 19
graph_epid, 20
graph_epid_s, 21
lactation.calf.model, 21
lactation.calf.model2, 22
lactation.calf.simule, 23
lactation.define.param, 23
lactation.machine.model, 24
lactation.machine.model2, 25
magarey.define.param, 26
magarey.model, 26
magarey.model2, 27
magarey.simule, 27
maize.data.EuropeEU, 28
maize.data.MetaModelling, 28
maize.define.param, 29, 30
maize.model, 29, 29
maize.model2, 30, 31
maize.muchow.graph, 31, 33, 40–42
maize.muchow.model, 31, 32, 40–42
maize.multisy, 30, 31, 33, 40–42
maize.multisy240, 34
maize.RUtemp, 34
maize.simule, 30, 35
maize.simule240, 30, 36
maize.simule_multisy240, 30, 36
maize.weather, 37
maize.cir.model, 38
maize.cir.rue.model, 38
maize.cir.rue_ear.model, 39
mm.A.fct, 31, 33, 40, 41, 42
mm.FAS.fct, 31, 33, 40, 41, 42
mm.HI.fct, 31, 33, 40, 41, 42
mm.LN.fct, 31, 33, 40–42, 42
param.rtriangle, 43
param.runif, 43
population.age.matrix.model, 44
population.age.model, 45
population.age.model.ode, 46
predator.prey.model, 47
q.arg.fast.runif, 48
seedweight.data, 48
seedweight.model, 49
Sunflower_Phomopsis, 49
threshold.measures, 50
verhulst.model, 51, 52
verhulst.update, 18, 19, 51, 51
watbal.define.param, 52
watbal.model, 52
watbal.model.arid, 53
watbal.simobsdatal, 54
watbal.update, 54
watbal.weather, 55
weather_EuropeEU, 55
weather_FranceWest, 29, 56
weather_GNS, 57
weather_SouthAsia, 57
weed.define.param, 58
weed.model, 58
weed.simule, 59
weed.update, 59
Wheat_GPC, 60
WheatYieldGreece, 60
zakoks.original.model, 20, 21, 61
ZeBook (ZeBook-package), 3
ZeBook-package, 3