Package ‘aIc’

October 12, 2022

Type Package
Title Testing for Compositional Pathologies in Datasets
Version 1.0
Date 2022-09-27
Author Greg Gloor
Maintainer Greg Gloor <ggloor@uwo.ca>
License GPL (>= 3)
Encoding UTF-8
URL https://github.com/ggloor/aIc
BugReports https://github.com/ggloor/aIc/issues
RoxygenNote 7.2.1
VignetteBuilder knitr
Imports matrixcalc, zCompositions, shiny, edgeR, ALDEx2, vegan
Suggests BiocStyle, knitr, rmarkdown
Depends R (>= 3.5.0),
NeedsCompilation no
Repository CRAN
Date/Publication 2022-10-04 23:40:04 UTC
 calculate the subcompositional coherence of samples in a dataset for a given correction.

Description

'alc.coherent' compares the correlation coefficients of features in common of the full dataset and a subset of the dataset. This is expected to be false for all compositional datasets and transforms.

Usage

```r
alc.coherent(
  data,
  norm.method = "prop",
  zero.remove = 0.95,
  zero.method = "prior",
  log = FALSE,
  group = NULL,
  cor.test = "spearman"
)
```

Arguments

data can be any dataframe or matrix with samples by column
norm.method can be prop, clr, RLE, TMM, TMMwsp, Ivha, iqlr
zero.remove is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.
aIc.dominant

log is a logical. log transform the prop, RLE or TMM outputs, default=FALSE

group is a vector containing group information. Required for clr, RLE,
cor.test is either the pearson or spearman method (default)

Value

Returns a list with the correlation in cor, a yes/no binary decision in is.coherent, the x and y values for a scatterplot of the correlations in the full and subcompositions, and the plot and axis labels in main xlab and ylab.

Author(s)

Greg Gloor

Examples

data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.coherent(selex, group=group, norm.method='clr', zero.method='prior')
plot(x$plot[,1], x$plot[,2], main=x$main, ylab=x$ylab, xlab=x$xlab)

Description

aIc.dominant calculates the subcompositional dominance of a sample in a dataset for a given correction. This compares the distances of samples of the full dataset and a subset of the dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.

Usage

```r
aIc.dominant(
  data,
  norm.method = "prop",
  zero.remove = 0.95,
  zero.method = "prior",
  log = FALSE,
  distance = "euclidian",
  group = NULL
)
```
Arguments

data can be any dataframe or matrix with samples by column
norm.method can be prop, clr, RLE, TMM, TMMwsp
zero.remove is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.
log is a logical. log transform the RLE or TMM outputs, default=FALSE
distance can be euclidian, bray, or jaccard. euclidian on log-ratio transformed data is the same as the Aitchison distance. default=euclidian
group is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with the overlap between distances in the full and subcomposition in ol (expect 0), a yes/no binary decision in is.dominant and the table of distances for the whole and subcomposition in dist.all and dist.sub, a plot showing a histogram of the resulting overlap in distances in plot, and the plot and axis labels in main xlab and ylab

Author(s)

Greg Gloor

Examples

data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.dominant(selex, group=group, norm.method='clr', distance='euclidian', zero.method='prior')
plot(x$plot, main=x$main, ylab=x$ylab, xlab=x$xlab)

aIc.perturb

aIc.perturb calculates the perturbation invariance of distance for samples with a given correction. This compares the distances of samples of the full dataset and a the perturbed dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.

Description

aIc.perturb calculates the perturbation invariance of distance for samples with a given correction. This compares the distances of samples of the full dataset and a the perturbed dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.
usage

AIC.perturb(
 data,
 norm.method = "prop",
 zero.remove = 0.95,
 zero.method = "prior",
 distance = "euclidian",
 log = FALSE,
 group = NULL
)

Arguments

data: can be any dataframe or matrix with samples by column
norm.method: can be prop, clr, RLE, TMM, TMMwsp
zero.remove: is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method: can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.
distance: can be euclidian, bray, or jaccard. euclidian on log-ratio transformed data is the same as the Aitchison distance. default=euclidian
log: is a logical. log transform the RLE or TMM outputs, default=FALSE
group: is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with the maximum proportional perturbation in ol (expect 0, but values up to 1 is.perturb, the table of distances for the whole and perturbation in dist.all and dist.perturb, the histogram of the perturbations in plot, and the plot and axis labels in main xlab and ylab.

Author(s)

Greg Gloor

Examples

data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- AIC.perturb(selex, group=group, norm.method='clr', distance='euclidian', zero.method='prior')
plot(x$plot, main=x$main, ylab=x$ylab, xlab=x$xlab)
Description

`aIC.plot` plots the result of the distance tests.

Usage

```r
aIC.plot(test.out)
```

Arguments

- `test.out` is the output from either `aIC.dominant`, `aIC.scale`, `aIC.perturb`

Value

returns a plot of the density of the distance test results.

Author(s)

Greg Gloor

Examples

```r
data(selex)
group = c(rep('N', 7), rep('S', 7))
test.out <- aIC.dominant(selex, norm.method='prop', group=group)
aIC.plot(test.out)
```

Description

`aIC.runExample` loads the associated shiny app. This will load the selex example dataset with the default group sizes, the user can upload their own local dataset and adjust groups accordingly.

Usage

```r
aIC.runExample()
```
aIc.scale

Value

No return value, but instead opens a shiny connection to your default web browser with the selex dataset as an example.

Author(s)

Greg Gloor

Examples

```r
library(aIc)
aIc.runExample()
```

```r
aIc.scale
```

aIc.scale calculates the scaling invariance of a sample in a dataset for a given correction. This compares the distances of samples of the full dataset and a scaled version of the dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.

Description

aIc.scale calculates the scaling invariance of a sample in a dataset for a given correction. This compares the distances of samples of the full dataset and a scaled version of the dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.

Usage

```r
aIc.scale(
  data,                  # can be any dataframe or matrix with samples by column
  norm.method = "prop",# can be prop, clr, iqlr, lvha, RLE, TMM, TMMwsp
  zero.remove = 0.95,    # is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
  zero.method = "prior",
  distance = "euclidian",
  log = FALSE,
  group = NULL
)
```

Arguments

- **data**
- **norm.method**
- **zero.remove**
zero.method: can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.

distance: can be euclidian, bray, or jaccard. euclidian on log-ratio transformed data is the same as the Aitchison distance. default=eucledian

log: is a logical. log transform the RLE or TMM outputs, default=FALSE

group: is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with the overlap between distances in the full and scaled composition in ol (expect 0), a yes/no binary decision in is.scale and the table of distances for the whole and scaled composition in dist.all and dist.scale, a plot showing a histogram of the resulting overlap in distances in plot, and the plot and axis labels in main xlab and ylab.

Author(s)

Greg Gloor

Examples

data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.scale(selex, group=group, norm.method='clr', zero.method='prior')
plot(x$plot, main=x$main, ylab=x$ylab, xlab=x$xlab)

Description

aIc.singular tests for singular data. This is expected to be true if the transform is behaving rationally in compositional datasets and also true in the case of datasets with more features than samples.

Usage

aIc.singular(
 data,
 norm.method = "prop",
 zero.remove = 0.95,
 zero.method = "prior",
 log = FALSE,
 group = NULL
)
Arguments

data can be any dataframe or matrix with samples by column
norm.method can be prop, clr, RLE, TMM, TMMwsp
zero.remove is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.
log is a logical. log transform the RLE or TMM outputs, default=FALSE
group is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with a yes/no binary decision in is.singular and the covariance matrix in cov.matrix

Author(s)

Greg Gloor

Examples

data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.singular(selex, group=group, norm.method='clr', zero.method='prior')

Description

A count table of a 16S rRNA amplicon data Two groups, pupils and centenarians are represented with 198 and 161 samples per group respectively. samples are by column and OTU ids are by row.

Usage

data(meta16S)

Format

A data frame with 359 columns and 860 rows

Source

doi: 10.1128/mSphere.00327-17

meta16S

16S rRNA tag-sequencing data
Description
A count table of a mixed population or metatranscriptome experiment. Two groups, H and BV are represented with 7 and 10 samples per group respectively. Samples are by column and functions are by row.

Usage
```
data(metaTscome)
```

Format
A data frame with 17 columns and 3647 rows

Source

selex

Selection-based differential sequence variant abundance dataset

Description
This data set gives the differential abundance of 1600 enzyme variants grown under selective (NS) and selective (S) conditions.

Usage
```
data(selex)
```

Format
A data frame with 14 columns and 1600 rows

Source
DOI:10.1073/pnas.1322352111
singleCell

Description
A count table of a single cell transcriptome data subset from the count table from doi:10.1038/s41592-019-0372-4. Two groups memory T cells, and cytotoxic T cells, 1000 cells per group. samples are by column and genes are by row.

Usage
data(singleCell)

Format
A data frame with 2000 columns and 1508 rows

Source
https://www.nature.com/articles/s41592-019-0372-4

transcriptome

Description
A count table of a highly replicated RNA-seq experiment with samples by column and genes by row. Two groups composed of SNF2 knockout and WT, 48 samples in each.

Usage
data(transcriptome)

Format
A data frame with 96 columns and 5892 rows

Source
DOI: 10.1261/rna.053959.115 and PRJEB5348
Index

* datasets
 - meta16S, 9
 - metaTscome, 10
 - selex, 10
 - singleCell, 11
 - transcriptome, 11

aIc.coherent, 2
aIc.dominant, 3
aIc.perturb, 4
aIc.plot, 6
aIc.runExample, 6
aIc.scale, 7
aIc.singular, 8

meta16S, 9
metaTscome, 10

selex, 10
singleCell, 11

transcriptome, 11