Package ‘abn’

September 6, 2023

Version 3.0.0

Date 2023-09-01

Title Modelling Multivariate Data with Additive Bayesian Networks

Author Matteo Delucchi [aut, cre] (<https://orcid.org/0000-0002-9327-1496>),
Reinhard Furrer [aut] (<https://orcid.org/0000-0002-6319-2332>),
Gilles Kratzer [aut] (<https://orcid.org/0000-0002-5929-8935>),
Fraser Iain Lewis [aut] (<https://orcid.org/0000-0003-4580-2712>),
Marta Pittavino [ctb] (<https://orcid.org/0000-0002-1232-1034>),
Kalina Cherneva [ctb]

Maintainer Matteo Delucchi <matteo.delucchi@math.uzh.ch>

Depends R (>= 4.0.0)

Imports methods, rjags, nnet, lme4, graph, Rgraphviz, doParallel,
foreach, mclogit, stringi, Rcpp

LinkingTo Rcpp, RcppArmadillo

Suggests INLA, knitr, R.rsp, testthat (>= 3.0.0), entropy, moments,
boot, brglm

VignetteBuilder R.rsp

SystemRequirements Gnu Scientific Library version >= 1.12

Description Bayesian network analysis is a form of probabilistic graphical models which derives from empirical data a directed acyclic graph, DAG, describing the dependency structure between random variables.

An additive Bayesian network model consists of a form of a DAG where each node comprises a generalized linear model, GLM. Additive Bayesian network models are equivalent to Bayesian multivariate regression using graphical modelling, they generalise the usual multivariable regression, GLM, to multiple dependent variables.

'abn' provides routines to help determine optimal Bayesian network models for a given data set, where these models are used to identify statistical dependencies in messy, complex data. The additive formulation of these models is equivalent to multivariate generalised linear modelling (including mixed models with iid random effects).

The usual term to describe this model selection process is structure discovery.
The core functionality is concerned with model selection - determining the most robust empirical model of data from interdependent variables. Laplace approximations are used to estimate goodness of fit metrics and model parameters, and wrappers are also included to the INLA package which can be obtained from <https://www.r-inla.org>. The computing library JAGS <https://mcmc-jags.sourceforge.io> is used to simulate 'abn'-like data. A comprehensive set of documented case studies, numerical accuracy/quality assurance exercises, and additional documentation are available from the 'abn' website <http://r-bayesian-networks.org>.

License GPL (>= 2)
LazyData true
URL http://r-bayesian-networks.org
BugReports https://git.math.uzh.ch/mdeluc/abn/-/issues
Config/testthat/edition 3
RoxygenNote 7.2.2
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-06 08:50:05 UTC

R topics documented:

- abn.version ... 4
- adg .. 5
- AIC.abnFit .. 6
- BIC.abnFit .. 6
- build.control .. 7
- buildScoreCache .. 11
- calc.node.inla.glm 18
- calc.node.inla.glmm 19
- Cfunctions .. 21
- check.valid.buildControls 21
- check.valid.dag .. 22
- check.valid.data ... 22
- check.valid.fitControls 23
- check.valid.groups 24
- check.valid.parents 24
- check.which.valid.nodes 25
- coef.abnFit .. 25
- compareDag .. 26
- compareEG ... 28
- discretization ... 30
- entropyData .. 32
- essentialGraph ... 33
R topics documented:

- `ex0.dag.data` .. 34
- `ex1.dag.data` .. 36
- `ex2.dag.data` .. 37
- `ex3.dag.data` .. 38
- `ex4.dag.data` .. 39
- `ex5.dag.data` .. 39
- `ex6.dag.data` .. 40
- `ex7.dag.data` .. 40
- `expit` .. 41
- `expit_cpp` ... 41
- `family.abnFit` ... 42
- `FCV` .. 42
- `fit.control` ... 43
- `fitAbn` .. 48
- `get.var.types` ... 56
- `getmarginals` .. 57
- `infoDag` .. 60
- `linkStrength` .. 61
- `logit` .. 63
- `logit_cpp` ... 63
- `logLik.abnFit` ... 64
- `mb` .. 64
- `miData` .. 65
- `mostProbable` ... 66
- `nobs.abnFit` ... 69
- `odds` .. 69
- `or` ... 70
- `pigs.vienna` ... 70
- `plot.abnDag` ... 71
- `plot.abnFit` .. 72
- `plot.abnHeuristic` .. 72
- `plot.abnHillClimber` 73
- `plot.abnMostprobable` 73
- `plotAbn` .. 74
- `print.abnCache` .. 76
- `print.abnDag` .. 77
- `print.abnFit` ... 78
- `print.abnHeuristic` ... 78
- `print.abnHillClimber` 79
- `print.abnMostprobable` 79
- `scoreContribution` .. 80
- `searchHeuristic` ... 81
- `searchHillClimber` ... 83
- `simulateAbn` .. 85
- `simulateDag` .. 87
- `skewness` .. 88
- `summary.abnDag` ... 88
- `summary.abnFit` .. 89
Description

`abn.version()` provides detailed information about the running version of `abn` or the `abn` components.

Usage

`abn.version(what = c("abn", "system"))`

Arguments

what detailed information about the version of `abn` or the system (see returns).

Value

`abn.version(what = "system")` is a list with character-string components

- `R.version.string`
- abnessentially `abn.version$version.string`
- GSL, JAGS, INLAversion numbers thereof

`abn.version(what = "abn")` is a list with character-string components

- status the status of the version (e.g., "beta")
- major the major version number
- minor the minor version number
- year the year the version was released
- month the month the version was released
- day the day the version was released
- version.string a character string concatenating the info above, useful for plotting, etc.

`abn.version` is a list of class "simple.list" which has a print method.

See Also

`R.version`
Examples

```r
abn.version()$version.string
## Not run:
abn.version("system")
## End(Not run)
```

Description

The case study dataset is about growth performance and abattoir findings in pigs commercial production in a selected set of 15 Canadian farms collected in March 1987.

Usage

```r
adg
```

Format

An adapted data frame of the original dataset which consists of 341 observations of 8 variables and a grouping variable (farm).

- AR: presence of atrophic rhinitis.
- pneumS: presence of moderate to severe pneumonia.
- female: sex of the pig (1=female, 0=castrated).
- livdam: presence of liver damage (parasite-induced white spots).
- eggs: presence of fecal/gastrointestinal nematode eggs at time of slaughter.
- wormCount: count of nematodes in small intestine at time of slaughter.
- agedays: elapsed from birth to slaughter (days).
- adg: average daily weight gain (grams).
- farm: farm ID.

Details

When using the data to fit an additive Bayesian network, the variables AR, pneumS, female, livdam, eggs are considered binomial, wormCount Poisson, age and adg Gaussian. The variable farm can be used to adjust for grouping.

References

AIC.abnFit

Print AIC of objects of class abnFit

Description
Print AIC of objects of class abnFit

Usage
S3 method for class 'abnFit'
AIC(object, digits = 3L, verbose = TRUE, ...)

Arguments

- object: Object of class abnFit
- digits: number of digits of the results.
- verbose: print additional output.
- ...: additional parameters. Not used at the moment.

BIC.abnFit

Print BIC of objects of class abnFit

Description
Print BIC of objects of class abnFit

Usage
S3 method for class 'abnFit'
BIC(object, digits = 3L, verbose = TRUE, ...)

Arguments

- object: Object of class abnFit
- digits: number of digits of the results.
- verbose: print additional output.
- ...: additional parameters. Not used at the moment.
build.control

Control the iterations in buildScoreCache

Description

Allow the user to set restrictions in the `buildScoreCache` for both the Bayesian and the MLE approach. Control function similar to `fit.control`.

Usage

```r
build.control(
  method = "bayes",
  max.mode.error = 10,
  mean = 0,
  prec = 0.001,
  loggam.shape = 1,
  loggam.inv.scale = 5e-05,
  max.iters = 100,
  epsabs = 1e-07,
  error.verbose = FALSE,
  trace = 0L,
  epsabs.inner = 1e-06,
  max.iters.inner = 100,
  finite.step.size = 1e-07,
  hessian.params = c(1e-04, 0.01),
  max.iters.hessian = 10,
  max.hessian.error = 0.5,
  factor.brent = 100,
  maxiters.hessian.brent = 100,
  num.intervals.brent = 100,
  n.grid = 250,
  ncores = 0,
  max.irls = 100,
  tol = 1e-08,
  tolPwrss = 1e-07,
  check.rankX = "message+drop.cols",
  check.scaleX = "message+rescale",
  check.conv.grad = "message",
  check.conv.singular = "message",
  check.conv.hess = "message",
  xtol_abs = 1e-06,
  ftol_abs = 1e-06,
  trace.mblogit = FALSE,
  catcov.mblogit = "free",
  epsilon = 1e-06,
  seed = 9062019L
)
```
Arguments

method
a character that takes one of two values: "bayes" or "mle". Overrides method argument from `buildScoreCache`.

max.mode.error
if the estimated modes from INLA differ by a factor of `max.mode.error` or more from those computed internally, then results from INLA are replaced by those computed internally. To force INLA always to be used, then `max.mode.error=100`, to force INLA never to be used `max.mode.error=0`. See also `fitAbn`.

mean
the prior mean for all the Gaussian additive terms for each node. INLA argument `control.fixed=list(mean.intercept=...)` and `control.fixed=list(mean=...)`.

prec
the prior precision ($\tau = \frac{1}{\sigma^2}$) for all the Gaussian additive term for each node. INLA argument `control.fixed=list(prec.intercept=...)` and `control.fixed=list(prec=...)`.

loggam.shape
the shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument `control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))`.

loggam.inv.scale
the inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument `control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))`.

max.iters
total number of iterations allowed when estimating the modes in Laplace approximation. passed to `.Call("fit_single_node", ...)`.

epsabs
absolute error when estimating the modes in Laplace approximation for models with no random effects. Passed to `.Call("fit_single_node", ...)`.

error.verbose
logical, additional output in the case of errors occurring in the optimization. Passed to `.Call("fit_single_node", ...)`.

trace
Non-negative integer. If positive, tracing information on the progress of the "L-BFGS-B" optimization is produced. Higher values may produce more tracing information. (There are six levels of tracing. To understand exactly what these do see the source code.). Passed to `.Call("fit_single_node", ...)`.

epsabs.inner
absolute error in the maximization step in the (nested) Laplace approximation for each random effect term. Passed to `.Call("fit_single_node", ...)`.

max.iters.inner
total number of iterations in the maximization step in the nested Laplace approximation. Passed to `.Call("fit_single_node", ...)`.

finite.step.size
suggested step length used in finite difference estimation of the derivatives for the (outer) Laplace approximation when estimating modes. Passed to `.Call("fit_single_node", ...)`.

hessian.params
a numeric vector giving parameters for the adaptive algorithm, which determines the optimal stepsize in the finite-difference estimation of the hessian. First entry is the initial guess, second entry absolute error. Passed to `.Call("fit_single_node", ...)`.

max.iters.hessian
integer, maximum number of iterations to use when determining an optimal finite difference approximation (Nelder-Mead). Passed to `.Call("fit_single_node", ...)`.
max.hessian.error
if the estimated log marginal likelihood when using an adaptive 5pt finite-difference
rule for the Hessian differs by more than max.hessian.error from when using
an adaptive 3pt rule then continue to minimize the local error by switching to the
Brent-Dekker root bracketing method. Passed to .Call("fit_single_node",
...).

factor.brent
if using Brent-Dekker root bracketing method then define the outer most in-
terval end points as the best estimate of \(h \) (stepsize) from the Nelder-Mead as
\(h / \text{factor.brent}, h * \text{factor.brent} \). Passed to .Call("fit_single_node",
...).

max.iters.hessian.brent
maximum number of iterations allowed in the Brent-Dekker method. Passed to
.Call("fit_single_node", ...).

num.intervals.brent
the number of initial different bracket segments to try in the Brent-Dekker method.
Passed to .Call("fit_single_node", ...).

n.grid
recompute density on an equally spaced grid with n.grid points.

ncores
The number of cores to parallelize to, see 'Details'. If >0, the number of CPU
cores to be used. -1 for all available -1 core. Only for method="mle".

max.irls
total number of iterations for estimating network scores using an Iterative Reweighed
Least Square algorithm. Is this DEPRECATED?

tol
real number giving the minimal tolerance expected to terminate the Iterative
Reweighed Least Square algorithm to estimate network score. Passed to irls_binomial_cpp_fast_br
and irls_poisson_cpp_fast.

tolPwrss
numeric scalar passed to glmerControl - the tolerance for declaring conver-
gence in the penalized iteratively weighted residual sum-of-squares step. Simi-
lar to tol.

check.rankX
character passed to lmerControl and glmerControl - specifying if rankMatrix(X)
should be compared with ncol(X) and if columns from the design matrix should
possibly be dropped to ensure that it has full rank. Defaults to message+drop.cols.

check.scaleX
character passed to lmerControl and glmerControl - check for problematic
scaling of columns of fixed-effect model matrix, e.g. parameters measured on
very different scales. Defaults to message+rescale.

check.conv.grad
character passed to lmerControl and glmerControl - checking the gradient
of the deviance function for convergence. Defaults to message but can be one of
"ignore" - skip the test; "warning" - warn if test fails; "message" - print a message if test fails; "stop" - throw an error if test fails.

check.conv.singular
character passed to lmerControl and glmerControl - checking for a singular
fit, i.e. one where some parameters are on the boundary of the feasible space (for
example, random effects variances equal to 0 or correlations between random
effects equal to +/- 1.0). Defaults to message but can be one of "ignore" - skip
the test; "warning" - warn if test fails; "message" - print a message if test fails; "stop" - throw an error if test fails.
check.conv.hess
 character passed to lmerControl and glmerControl - checking the Hessian
 of the deviance function for convergence. Defaults to message but can be one
 of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a
 message if test fails; "stop" - throw an error if test fails.

xtol_abs
 Defaults to 1e-6 stop on small change of parameter value. Only for method='mle',
 group.var=.... Default convergence tolerance for fitted (g)lmer models is re-
 duced to the value provided here if default values did not fit. This value here is
 passed to the optCtrl argument of (g)lmer (see help of lme4::convergence()).

ftol_abs
 Defaults to 1e-6 stop on small change in deviance. Similar to xtol_abs.

trace.mblogit
 logical indicating if output should be produced for each iteration. Directly
 passed to trace argument in mclogit.control. Is independent of verbose.

catcov.mblogit
 Defaults to "free" meaning that there are no restrictions on the covariances of
 random effects between the logit equations. Set to "diagonal" if random effects
 pertinent to different categories are uncorrelated or "single" if random effect
 variances pertinent to all categories are identical.

epsilon
 Defaults to 1e-8. Positive convergence tolerance ϵ that is directly passed to
 the control argument of mclogit::mblogit as mclogit.control. Only for
 method='mle', group.var=....

seed
 a non-negative integer which sets the seed in set.seed(seed).

Details

Parallelization over all children is possible via the function foreach of the package doParallel.
ncores=0 or ncores=1 use single threaded foreach. ncores=-1 uses all available cores but one.

Value

Named list according the provided arguments.

See Also

fit.control.

Other buildScoreCache: buildScoreCache()

Examples

ctrlml <- abn::build.control(method = "mle",
 ncores = 0,
 max.irls = 100,
 tol = 10^-11,
 tolPwrss = 1e-7,
 check.rankX = "message+drop.cols",
 check.scaleX = "message+rescale",
 check.conv.grad = "message",
 check.conv.singular = "message",
 check.conv.hess = "message",
 xtol_abs = 1e-6,
buildScoreCache <- build.control(
 method = "bayes",
 max.mode.error = 10,
 mean = 0, prec = 0.001,
 loggam.shape = 1,
 loggam.inv.scale = 5e-05,
 max.iters = 100,
 epsabs = 1e-07,
 error.verbose = FALSE,
 epsabs.inner = 1e-06,
 max.iters.inner = 100,
 finite.step.size = 1e-07,
 hessian.params = c(1e-04, 0.01),
 max.iters.hessian = 10,
 max.hessian.error = 0.5,
 factor.brent = 100,
 maxiters.hessian.brent = 100,
 num.intervals.brent = 100,
 tol = 10^-8,
 seed = 9062019L)

buildScoreCache <- buildScoreControl(
 method = "bayes",
 max.mode.error = 10,
 mean = 0, prec = 0.001,
 loggam.shape = 1,
 loggam.inv.scale = 5e-05,
 max.iters = 100,
 epsabs = 1e-07,
 error.verbose = FALSE,
 epsabs.inner = 1e-06,
 max.iters.inner = 100,
 finite.step.size = 1e-07,
 hessian.params = c(1e-04, 0.01),
 max.iters.hessian = 10,
 max.hessian.error = 0.5,
 factor.brent = 100,
 maxiters.hessian.brent = 100,
 num.intervals.brent = 100,
 tol = 10^-8,
 seed = 9062019L)

buildScoreCache

Build a cache of goodness of fit metrics for each node in a DAG, possibly subject to user-defined restrictions

Description

Iterates over all valid parent combinations - subject to ban, retain, and max.parent limits - for each node, or a subset of nodes, and computes a cache of scores (AIC, BIC, log marginal likelihood). This cache can then be used in different DAG structural search algorithms.

Usage

buildScoreCache(data.df = NULL,
data.dists = NULL,
method = "bayes",
group.var = NULL,
adj.vars = NULL,
cor.vars = NULL,
dag.banned = NULL,
dag.retained = NULL,
max.parents = NULL,
which.nodes = NULL,
defn.res = NULL,
centre = TRUE,
dry.run = FALSE,
control = NULL,
verbose = FALSE,
...)

buildScoreCache.bayes(
 data.df = NULL,
 data.dists = NULL,
 group.var = NULL,
 cor.vars = NULL,
 dag.banned = NULL,
 dag.retained = NULL,
 max.parents = NULL,
 which.nodes = NULL,
 defn.res = NULL,
 dry.run = FALSE,
 centre = TRUE,
 force.method = NULL,
 mylist = NULL,
 grouped.vars = NULL,
 group.ids = NULL,
 control = build.control(method = "bayes"),
 verbose = FALSE
)

forLoopContent(
 row.num,
 mycache,
 data.dists,
 data.df.multi,
 adj.vars,
 data.df,
 data.df.lvl,
 group.var,
 group.ids,
 control,
 n,
 verbose
)

buildScoreCache.mle(
 data.df = NULL,
 data.dists = NULL,
 max.parents = NULL,
 adj.vars = NULL,
 cor.vars = NULL,
 dag.banned = NULL,
dag.retained = NULL,
which.nodes = NULL,
centre = TRUE,
defn.res = NULL,
dry.run = FALSE,
verbose = FALSE,
force.method = NULL,
group.var = NULL,
grouped.vars = NULL,
group.ids = NULL,
control = build.control(method = "mle")
)

Arguments

data.df a data frame containing the data used for learning each node. Binary variables
must be declared as factors.

data.dists a named list giving the distribution for each node in the network, see ‘Details’.

method should a "Bayes" or "mle" approach be used, see ‘Details’.

group.var variable name for nodes to be fitted as variable intercept as in a mixed-effects
model ("Bayes" and "mle") and gives the column name in data.df of the group-
ing variable which must be a factor denoting group membership.

adj.vars a character vector giving the column names in data.df for which the network
score has to be adjusted for, see ‘Details’.

cor.vars a character vector giving the column names in data.df for which a mixed model
should be used to adjust for within group correlation or pure adjustment ("bayes"
only).

dag.banned a matrix or a formula statement (see ‘Details’ for format) defining which arcs
are not permitted - banned - see ‘Details’ for format. Note that colnames and
rownames must be set, otherwise same row/column names as data.df will be
assumed. If set as NULL an empty matrix is assumed.

dag.retained a matrix or a formula statement (see ‘Details’ for format) defining which arcs
are must be retained in any model search, see ‘Details’ for format. Note that col-
names and rownames must be set, otherwise same row/column names as data.df
will be assumed. If set as NULL an empty matrix is assumed.

max.parents a constant or named list giving the maximum number of parents allowed, the
list version allows this to vary per node (only for method="bayes"). A constant
can be a single integer, a numeric vector of the length of variables with the same
integer for all variable (e.g. c(2, 2)) or a named list with all values being the
same (e.g. list("A"=2, "B"=2)).

which.nodes a vector giving the column indices of the variables to be included, if ignored all
variables are included. This is used to subset data.df.

defn.res an optional user-supplied list of child and parent combinations, see ‘Details’.

centre should the observations in each Gaussian node first be standardized to mean zero
and standard deviation one, defaults to TRUE.
buildScoreCache

dry.run if TRUE then a list of the child nodes and parent combinations are returned but without estimation of node scores (log marginal likelihoods).

control a list of control parameters. See build.control for the names of the settable control values and their effect.

verbose if TRUE then provides some additional output.

... additional arguments passed for optimization.

force.method "notset", "INLA" or "C". This is specified in buildScoreCache(control=list(max.mode.error=...))

mylist result returned from check.valid.data.

grouped.vars result returned from check.valid.groups.

group.ids result returned from check.valid.groups.

row.num number of child-node (mostly corresponds to child node index e.g. in dag).

mycache prepared cache.

data.df.multi extended data.df for one-hot-encoded multinomial variables.

data.df.lvl copy of original data.df.

n corresponds to nvars, number of variables in data.dists.

Details

The function computes a cache of scores based on possible restrictions (maximum complexity, retained and banned arcs). This function is very similar to fitAbn - see that help page for details of the type of models used and in particular data.dists specification - but rather than fit a single complete DAG buildScoreCache iterates over all different parent combinations for each node, creating a cache of scores. This cache of score could be used to select the optimal network in other function such as searchHeuristic or mostProbable. ‘dag.banned’ and ‘dag.retained’ specify which arcs are forced to be absent or present in the DAG, respectively. If provided as matrix, rows represent child nodes and columns their parents for elements with a value $=1$.

Two very different approaches are implemented: a Bayesian and frequentist approaches. They can be selected using the method argument.

If method="bayes":

This function is used to calculate all individual node scores (log marginal likelihoods). Internal code is used by default for numerical estimation in nodes without random effects, and INLA is the default for nodes with random effects. This default behavior can be overridden using control=list(max.mode.error=...). The default is max.mode.error=10, which means that the modes estimated from INLA output must be within 10\Otherwise, the internal code is used rather than INLA. To force the use of INLA on all nodes, use max.mode.error=100, which then ignores this check, to force the use of internal code then use max.mode.error=0. For more details, see fitAbn. The variable which.nodes is to allow the computation to be separated by node, for example, over different CPUs using say R CMD BATCH. This may useful and indeed likely essential with larger problems or those with random effects. Note that in this case, the results must then be combined back into a list of identical formats to that produced by an individual call to buildScoreCache, comprising of all nodes (in the same order as the columns in data.df) before sending it to any search routines. Using dry.run can be useful here.
If method="mle"::

This function is used to calculate all individual information-theoretic node scores. The possible information-theoretic based network scores computed in buildScoreCache are the maximum likelihood (mlik, called marginal likelihood in this context as it is computed node wise), the Akaike Information Criteria (aic), the Bayesian Information Criteria (bic) and the Minimum distance Length (mdl). The classical definitions of those metrics are given in Kratzer and Furrer (2018). This function computes a cache that can be fed into a model search algorithm. The numerical routines used here are identical to those in fitAbn and see that help page for further details and also the quality assurance section on the r-bayesian-networks.org of the abn website for more details.

Value

A named list of class abnCache.

- children a vector of the child node indexes (from 1) corresponding to the columns in data.df (ignoring any grouping variable)
- node.defn a matrix giving the parent combination
- mlik log marginal likelihood value for each node combination. If the model cannot be fitted then NA is returned.
- error.code if non-zero then either the root finding algorithm (glm nodes) or the maximisation algorithm (glmm nodes) terminated in an unusual way suggesting a possible unreliable result, or else the finite difference hessian estimation produced and error or warning (glmm nodes). NULL if method="mle".
- error.code.desc a textual description of the error.code. NULL if method="mle"
- hessian.accuracy An estimate of the error in the final mlik value for each parent combination - this is the absolute difference between two different adaptive finite difference rules where each computes the mlik value. NULL if method="mle"
- data.df a version of the original data (for internal use only in other functions such as mostProbable).
- data.dists the named list of nodes distributions (for internal use only in other functions such as mostProbable).
- max.parents the maximum number of parents (for internal use only in other functions such as mostProbable).
- dag.retained the matrix encoding the retained arcs (for internal use only in other functions such as searchHeuristic).
- dag.banned the matrix encoding the banned arcs (for internal use only in other functions such as searchHeuristic).
- aic aic value for each node combination. If the model cannot be fitted then NaN is returned. NULL if method="bayes".
- bic bic value for each node combination. If the model cannot be fitted then NaN is returned. NULL if method="bayes".
- mdl mdl value for each node combination. If the model cannot be fitted then NaN is returned. NULL if method="bayes".
Functions

- `buildScoreCache.bayes()`: Fit a given DAG to data with method="bayes".
- `forLoopContent()`: Internal function called by `buildScoreCache.mle()`.
- `buildScoreCache.mle()`: Fit a given DAG to data with method="mle".

References

Further information about `abn` can be found at: r-bayesian-networks.org.

See Also

- `fitAbn`
- Other `buildScoreCache`: `build.control()`
- Other Bayes: `calc.node.inla.glmm()`, `calc.node.inla.glm()`, `fitAbn()`, `getmarginals()`

Examples

```r
## Not run:

# Example 1
mydat <- ex0.dag.data[,c("b1","b2","g1","g2","b3","g3")] ## take a subset of cols

# Structural constraints
# ban arc from b2 to b1
# always retain arc from g2 to g1

max.par <- list("b1"=2, "b2"=2, "g1"=2, "g2"=2, "b3"=2, "g3"=2)

# now build the cache of pre-computed scores accordingly to the structural constraints
res.c <- buildScoreCache(data.df=mydat, data.dists=mydists,
```
repeat but using R-INLA. The mlik's should be virtually identical.

now build cache:
if(requireNamespace("INLA", quietly = TRUE)){
 res.inla <- buildScoreCache(data.df=mydat, data.dists=mydists,
 dag.banned= ~b1|b2, dag.retained= ~g1|g2, max.parents=max.par,
 control=list(max.mode.error=100))

 ## comparison - very similar
 difference <- res.c$mlik - res.inla$mlik
}

Comparison Bayes with MLE (unconstrained):
res.mle <- buildScoreCache(data.df=mydat, data.dists=mydists,
 max.parents=3, method="mle")
res.abn <- buildScoreCache(data.df=mydat, data.dists=mydists,
 max.parents=3, method="Bayes")

of course different, but same order:
plot(-res.mle$bic, res.abn$mlik)

Example 2 - mle with several cores

Many variables, few observations
mydat <- ex0.dag.data
mydists <- as.list(rep(c("binomial", "gaussian", "poisson"), each=10))
names(mydists) <- names(mydat)

system.time({
res.mle1 <- buildScoreCache(data.df=mydat, data.dists=mydists,
max.parents=2, method="mle", ncores=2) })
system.time({
res.mle2 <- buildScoreCache(data.df=mydat, data.dists=mydists,
max.parents=2, method="mle") })

Example 3 - grouped data - random effects example e.g. glmm

mydat <- ex3.dag.data ## this data comes with abn see ?ex3.dag.data
mydists <- list(b1="binomial", b2="binomial", b3="binomial",
 b4="binomial", b5="binomial", b6="binomial", b7="binomial",
 b8="binomial", b9="binomial", b10="binomial", b11="binomial",
 b12="binomial", b13="binomial")
max.par <- 2

in this example INLA is used as default since these are glmm nodes
when running this at node-parent combination 71 the default accuracy check on the
calc.node.inla.glm

Fit a given regression using INLA

Description

Internal wrapper to INLA and are called from fitAbn.bayes and buildScoreCache.bayes.

Usage

```r
calc.node.inla.glm(
  child.loc, 
  dag.m.loc, 
  data.df.loc, 
  data.dists.loc, 
  ntrials.loc, 
  exposure.loc, 
  compute.fixed.loc, 
  mean.intercept.loc, 
  prec.intercept.loc, 
  mean.loc, 
  prec.loc, 
  loggam.shape.loc, 
  loggam.inv.scale.loc, 
  verbose.loc
)
```

Arguments

- **child.loc**: index of current child node.
- **dag.m.loc**: dag as matrix.
- **data.df.loc**: data df.
- **data.dists.loc**: list of distributions.
- **ntrials.loc**: `rep(1,dim(data.df)[1])`.
- **exposure.loc**: `rep(1,dim(data.df)[1])`.

Notes

INLA modes is exceeded (default is a max. of 10 percent difference from
modes estimated using internal code) and a message is given that internal code
will be used in place of INLA's results.

```r
# mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, group.var="group", 
# cor.vars=c("b1","b2","b3","b4","b5","b6","b7", 
# "b8","b9","b10","b11","b12","b13"), 
# max.parents=max.par, which.nodes=c(1))
```

End(Not run)
compute.fixed.loc
TRUE.

mean.intercept.loc
the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...).

prec.intercept.loc
the prior precision for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...).

mean.loc
the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...). Same as mean.intercept.loc.

prec.loc
the prior precision for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...). Same as prec.intercept.loc.

loggam.shape.loc
the shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).

loggam.inv.scale.loc
the inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).

verbose.loc
FALSE to not print additional output.

Value
If INLA failed, FALSE or an error is returned. Otherwise, the direct output from INLA is returned.

See Also
Other Bayes: buildScoreCache(), calc.node.inla.glmm(), fitAbn(), getmarginals()

calc.node.inla.glmm
Fit a given regression using INLA

Description
Internal wrapper to INLA and are called from fitAbn.bayes and buildScoreCache.bayes.

Usage
calc.node.inla.glmm(
child.loc,
dag.m.loc,
data.df.loc,
data.dists.loc,
ntrials.loc,
exposure.loc,
compute.fixed.loc,
mean.intercept.loc,
prec.intercept.loc,
mean.loc,
prec.loc,
loggam.shape.loc,
loggam.inv.scale.loc,
verbose.loc
)

Arguments

child.loc index of current child node.
dag.m.loc dag as matrix.
data.df.loc data df.
data.dists.loc list of distributions.
ntrials.loc rep(1,dim(data.df)[1]).
exposure.loc rep(1,dim(data.df)[1]).
compute.fixed.loc TRUE.
mean.intercept.loc the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...).
prec.intercept.loc the prior precision for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...).
mean.loc the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...). Same as mean.intercept.loc.
prec.loc the prior precision for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...). Same as prec.intercept.loc.
loggam.shape.loc the shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))).
loggam.inv.scale.loc the inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))).
verbose.loc FALSE to not print additional output.

Value

If INLA failed, FALSE or an error is returned. Otherwise, the direct output from INLA is returned.
Cfunctions Documentation of C Functions

Description

This is mainly to circumvent issues in R CMD check.

check.valid.buildControls

Simple check on the control parameters

Description

Simple check on the control parameters

Usage

check.valid.buildControls(control, method = "bayes", verbose = FALSE)

Arguments

- control: list of control arguments with new parameters supplied to buildScoreCache or fitAbn.
- method: "bayes" or "mle" strategy from argument method=... in buildScoreCache or fitAbn. Defaults to "bayes".
- verbose: when TRUE additional information is printed. Defaults to FALSE.

Value

list with all control arguments with respect to the method but with new values.
check.valid.dag

Set of simple commonsense validity checks on the directed acyclic graph definition matrix

Description

Set of simple commonsense validity checks on the directed acyclic graph definition matrix

Usage

```
check.valid.dag(
    dag = NULL,
    data.df = NULL,
    is.ban.matrix = FALSE,
    group.var = NULL
)
```

Arguments

- **dag**: Named square matrix or a formula statement specifying a directed acyclic graph. If NULL an empty network is assumed.
- **data.df**: data frame with names corresponding to variable/node names.
- **is.ban.matrix**: Diagonals and cycles are not checked for ban-matrices. Defaults to FALSE.
- **group.var**: not yet implemented

Value

dag as named square matrix

check.valid.data

Set of simple commonsense validity checks on the data.df and data.dists arguments

Description

Set of simple commonsense validity checks on the data.df and data.dists arguments

Usage

```
check.valid.data(data.df = NULL, data.dists = NULL, group.var = NULL)
```
check.valid.fitControls

Simple check on the control parameters

Description

Simple check on the control parameters

Usage

check.valid.fitControls(control, method = "bayes", verbose = FALSE)

Arguments

control list of control arguments with new parameters supplied to buildScoreCache or fitAbn.

method "bayes" or "mle" strategy from argument method=... in buildScoreCache or fitAbn. Defaults to "bayes".

verbose when TRUE additional information is printed. Defaults to FALSE.

Value

list with all control arguments with respect to the method but with new values.
check.valid.groups

Simple check on the grouping variable

Description

Simple check on the grouping variable

Usage

```r
check.valid.groups(
  group.var = NULL,
  data.df = NULL,
  cor.vars = NULL,
  verbose = FALSE
)
```

Arguments

- `group.var` Name of grouping variable.
- `data.df` data frame of all variables including the variable specified in `group.var` as factor.
- `cor.vars` Name(s) of variables to which the grouping should be applied to.
- `verbose` when TRUE additional information is printed. Defaults to FALSE.

Value

list with `data.df`, indexes of variables to which the grouping should be applied to and the associated group for each observation as integer.

check.valid.parents

Set of simple checks on the given parent limits

Description

Set of simple checks on the given parent limits

Usage

```r
check.valid.parents(data.df = NULL, max.parents = NULL, group.var = NULL)
```

Arguments

- `data.df` data frame
- `max.parents` single integer for one overall max parent limit. A list with names corresponding to variable/column names of `data.df` and individual parent limits. NULL for no parent limit restriction(s).
- `group.var` not yet implemented
check.which.valid.nodes

Value

numeric vector of max number of parents per variable

Description

Set of simple checks on the list given as parent limits

Usage

check.which.valid.nodes(data.df = NULL, which.nodes = NULL, group.var = NULL)

Arguments

data.df: data frame
which.nodes: a vector giving the column indices of the variables to be included, if ignored all variables are included.
group.var: not yet implemented

Value

integer vector of column indexes of valid nodes in data.df

calc.abnFit

Description

Print coefficients of objects of class abnFit

Usage

S3 method for class 'abnFit'
coef(object, digits = 3L, verbose = TRUE, ...)

Arguments

object: Object of class abnFit
digits: number of digits of the results.
verbose: print additional output.
...: additional parameters. Not used at the moment.
compareDag

Compare two DAGs or EGs

Description

Function that returns multiple graph metrics to compare two DAGs or essential graphs, known as confusion matrix or error matrix.

Usage

```r
compareDag(ref, test, node.names = NULL, checkDAG = TRUE)
```

Arguments

- `ref`: a matrix or a formula statement (see details for format) defining the reference network structure, a directed acyclic graph (DAG). Note that row names must be set or given in `node.names` if the DAG is given via a formula statement.
- `test`: a matrix or a formula statement (see details for format) defining the test network structure, a directed acyclic graph (DAG). Note that row names must be set or given in `node.names` if the DAG is given via a formula statement.
- `node.names`: a vector of names if the DAGs are given via formula, see details.
- `checkDAG`: should the DAGs be tested for DAGs (default).

Details

This R function returns standard Directed Acyclic Graph comparison metrics. In statistical classification, those metrics are known as a confusion matrix or error matrix.

Those metrics allow visualization of the difference between different DAGs. In the case where comparing TRUTH to learned structure or two learned structures, those metrics allow the user to estimate the performance of the learning algorithm. In order to compute the metrics, a contingency table is computed of a pondered difference of the adjacency matrices of the two graphs.

The `ref` or `test` can be provided using a formula statement (similar to GLM input). A typical formula is `~ node1|parent1:parent2 + node2:node3|parent3`. The formula statement have to start with `~`. In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same parent3. The parents names have to exactly match those given in `node.names`. `:` is the separator between either children or parents, `|` separates children (left side) and parents (right side), `+` separates terms, `.` replaces all the variables in `node.names`.

To test for essential graphs (or graphs) in general, the test for DAG need to be switched off `checkDAG=FALSE`. The function `compareEG()` is a wrapper to `compareDag(, checkDAG=FALSE)`.

Value

- TP True Positive
- TN True Negative
- FP False Positive
- FN False Negative
- CP Condition Positive (ref)
- CN Condition Negative (ref)
- PCP Predicted Condition Positive (test)
- PCN Predicted Condition Negative (test)
- True Positive Rate
 \[\frac{\sum TP}{\sum CP} \]
- False Positive Rate
 \[\frac{\sum FP}{\sum CN} \]
- Accuracy
 \[\frac{\sum TP + \sum TN}{Total population} \]
- G-measure
 \[\sqrt{\frac{TP}{TP + FP} \cdot \frac{TP}{TP + FN}} \]
- F1-Score
 \[\frac{2 \sum TP}{2 \sum TP + \sum FN + \sum FP} \]
- Positive Predictive Value
 \[\frac{\sum TP}{\sum PCP} \]
- False Ommision Rate
 \[\frac{\sum FN}{\sum PCN} \]
- Hamming Distance Number of changes needed to match the matrices.

References

Examples
```r
test.m <- matrix(data = c(0,1,0, 0,0,0, 1,0,0), nrow = 3, ncol = 3)
ref.m <- matrix(data = c(0,0,0, 1,0,0, 1,0,0), nrow = 3, ncol = 3)
colnames(test.m) <- rownames(test.m) <- colnames(ref.m) <- colnames(ref.m) <- c("a", "b", "c")
unlist(compareDag(ref = ref.m, test = test.m))
```
compareEG

Compare two DAGs or EGs

Description

Function that returns multiple graph metrics to compare two DAGs or essential graphs, known as confusion matrix or error matrix.

Usage

compareEG(ref, test)

Arguments

ref a matrix or a formula statement (see details for format) defining the reference network structure, a directed acyclic graph (DAG). Note that row names must be set or given in node.names if the DAG is given via a formula statement.

test a matrix or a formula statement (see details for format) defining the test network structure, a directed acyclic graph (DAG). Note that row names must be set or given in node.names if the DAG is given via a formula statement.

Details

This R function returns standard Directed Acyclic Graph comparison metrics. In statistical classification, those metrics are known as a confusion matrix or error matrix.

Those metrics allows visualization of the difference between different DAGs. In the case where comparing TRUTH to learned structure or two learned structures, those metrics allow the user to estimate the performance of the learning algorithm. In order to compute the metrics, a contingency table is computed of a pondered difference of the adjacency matrices of the two graphs.

The ref or test can be provided using a formula statement (similar to GLM input). A typical formula is ~ node1|parent1:parent2 + node2|node3|parent3. The formula statement have to start with ~. In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same parent3. The parents names have to exactly match those given in node.names. : is the separator between either children or parents, | separates children (left side) and parents (right side), + separates terms, . replaces all the variables in node.names.

To test for essential graphs (or graphs) in general, the test for DAG need to be switched off checkDAG=FALSE. The function compareEG() is a wrapper to compareDag(, checkDAG=FALSE).

Value

- TP True Positive
- TN True Negative
- FP False Positive
- FN False Negative
- CP Condition Positive (ref)
• CN Condition Negative (ref)
• PCP Predicted Condition Positive (test)
• PCN Predicted Condition Negative (test)

• True Positive Rate
 \[\frac{\sum TP}{\sum CP}\]

• False Positive Rate
 \[\frac{\sum FP}{\sum CN}\]

• Accuracy
 \[\frac{\sum TP + \sum TN}{Totalpopulation}\]

• G-measure
 \[\sqrt{\frac{TP}{TP + FP} \cdot \frac{TP}{TP + FN}}\]

• F1-Score
 \[\frac{2\sum TP}{2\sum TP + \sum FN + \sum FP}\]

• Positive Predictive Value
 \[\frac{\sum TP}{\sum PCP}\]

• False Ommision Rate
 \[\frac{\sum FN}{\sum PCN}\]

• Hamming-Distance Number of changes needed to match the matrices.

References

Examples
```r
test.m <- matrix(data = c(0,1,0, 
                         0,0,0, 
                         1,0,0), nrow = 3, ncol = 3)
ref.m <- matrix(data = c(0,0,0, 
                         1,0,0, 
                         1,0,0), nrow = 3, ncol = 3)
colnames(test.m) <- rownames(test.m) <- colnames(ref.m) <- colnames(ref.m) <- c("a", "b", "c")
unlist(compareDag(ref = ref.m, test = test.m))
```
discretization

Discretization of a Possibly Continuous Data Frame of Random Variables based on their distribution

Description

This function discretizes a data frame of possibly continuous random variables through rules for discretization. The discretization algorithms are unsupervised and univariate. See details for the complete list of discretization rules (the number of state of each random variable could also be provided).

Usage

discretization(data.df = NULL,
data.dists = NULL,
discretization.method = "sturges",
nb.states = FALSE)

Arguments

data.df a data frame containing the data to discretize, binary and multinomial variables must be declared as factors, others as a numeric vector. The data frame must be named.
data.dists a named list giving the distribution for each node in the network.
discretization.method a character vector giving the discretization method to use; see details. If a number is provided, the variable will be discretized by equal binning.
nb.states logical variable to select the output. If set to TRUE a list with the discretized data frame and the number of state of each variable is returned. If set to FALSE only the discretized data frame is returned.

Details

fd Freedman Diaconis rule. IQR() stands for interquartile range. The number of bins is given by

\[
\frac{\text{range}(x) \times n^{1/3}}{2 \times \text{IQR}(x)}
\]

The Freedman Diaconis rule is known to be less sensitive than the Scott’s rule to outlier.
doane Doane’s rule. The number of bins is given by

\[
1 + \log_2 n + \log_2 1 + \frac{|g|}{\sigma_g}
\]

This is a modification of Sturges’ formula, which attempts to improve its performance with non-normal data.
The number of bins is given by:

\[\sqrt{n} \]

cencov Cencov’s rule. The number of bins is given by:

\[n^{1/3} \]

rice Rice’ rule. The number of bins is given by:

\[2n^{1/3} \]

terrell-scott Terrell-Scott’s rule. The number of bins is given by:

\[(2n)^{1/3} \]

It is known that Cencov, Rice, and Terrell-Scott rules over-estimates k, compared to other rules due to its simplicity.

sturges Sturges’s rule. The number of bins is given by:

\[1 + \log_2(n) \]

scott Scott’s rule. The number of bins is given by:

\[\frac{\text{range}(x)}{\sigma(x)n^{-1/3}} \]

Value

The discretized data frame or a list containing the table of counts for each bin the discretized data frame.

References

Examples

```r
## Generate random variable
rv <- rnorm(n = 100, mean = 5, sd = 2)
dist <- list("gaussian")
names(dist) <- c("rv")

## Compute the entropy through discretization
entropyData(freqs.table = discretization(data.df = rv, data.dists = dist, discretization.method = "sturges", nb.states = FALSE))
```
entropyData

Computes an Empirical Estimation of the Entropy from a Table of Counts

Description

This function empirically estimates the Shannon entropy from a table of counts using the observed frequencies.

Usage

```r
entropyData(freqs.table)
```

Arguments

- `freqs.table`
 a table of counts.

Details

The general concept of entropy is defined for probability distributions. The `entropyData()` function estimates empirical entropy from data. The probability is estimated from data using frequency tables. Then the estimates are plug-in in the definition of the entropy to return the so-called empirical entropy. A common known problem of empirical entropy is that the estimations are biased due to the sampling noise. It is also known that the bias will decrease as the sample size increases.

Value

Shannon’s entropy estimate on natural logarithm scale.

References

See Also

- `discretization`

Examples

```r
## Generate random variable
rv <- rnorm(n = 100, mean = 5, sd = 2)
dist <- list("gaussian")
names(dist) <- c("rv")

## Compute the entropy through discretization
entropyData(freqs.table = discretization(data.df = rv, data.dists = dist,
discretization.method = "sturges", nb.states = FALSE))
```
Construct the essential graph

Description

Constructs different versions of the essential graph from a given DAG. External function that computes essential graph of a dag Minimal PDAG: The only directed edges are those who participate in v-structure Completed PDAG: very directed edge corresponds to a compelled edge, and every undirected edge corresponds to a reversible edge.

Usage

essentialGraph(dag, node.names = NULL, PDAG = "minimal")

Arguments

dag a matrix or a formula statement (see ‘Details’ for format) defining the network structure, a directed acyclic graph (DAG).

node.names a vector of names if the DAG is given via formula, see ‘Details’.

PDAG a character value that can be: minimal or complete, see ‘Details’.

Details

This function returns an essential graph from a DAG, aka acyclic partially directed graph (PDAG). This can be useful if the learning procedure is defined up to a Markov class of equivalence. A minimal PDAG is defined as only directed edges are those who participate in v-structure. Whereas the completed PDAG: every directed edge corresponds to a compelled edge, and every undirected edge corresponds to a reversible edge.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~ node1|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~. In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same parent3. The parents names have to exactly match those given in node.names. : is the separator between either children or parents, | separates children (left side) and parents (right side), + separates terms, . replaces all the variables in node.names.

Value

A matrix giving the PDAG.

References

Examples

dag <- matrix(c(0,0,0, 1,0,0, 1,1,0), nrow = 3, ncol = 3)
dist <- list(a="gaussian", b="gaussian", c="gaussian")
colnames(dag) <- rownames(dag) <- names(dist)

essentialGraph(dag)

ex0.dag.data

Synthetic validation data set for use with abn library examples

Description

300 observations simulated from a DAG with 10 binary variables, 10 Gaussian variables and 10 poisson variables.

Usage

ex0.dag.data

Format

A data frame, binary variables are factors. The relevant formulas are given below (note these do not give parameter estimates just the form of the relationships, e.g. logit()=1 means a logit link function and comprises of only an intercept term).

- b1binary, logit()=1
- b2binary, logit()=1
- b3binary, logit()=1
- b4binary, logit()=1
- b5binary, logit()=1
- b6binary, logit()=1
- b7binary, logit()=1
- b8binary, logit()=1
- b9binary, logit()=1
- b10binary, logit()=1
- g1gaussian, identity()=1
- g2gaussian, identity()=1
- g3gaussian, identity()=1
- g4gaussian, identity()=1
- g5gaussian, identity()=1
- g6gaussian, identity()=1
- g7gaussian, identity()=1
• g8gaussian, identity()=1
• g9gaussian, identity()=1
• g10gaussian, identity()=1
• p1poisson, log()=1
• p2poisson, log()=1
• p3poisson, log()=1
• p4poisson, log()=1
• p5poisson, log()=1
• p6poisson, log()=1
• p7poisson, log()=1
• p8poisson, log()=1
• p9poisson, log()=1
• p10poisson, log()=1

Examples

Not run:
The dataset was (essentially) generated using the following code:
datasize <- 300
tmp <- c(rep("y", as.integer(datasize/2)), rep("n", as.integer(datasize/2)))
set.seed(1)
ex0.dag.data <- data.frame(b1=sample(tmp, size=datasize, replace=TRUE),
b2=sample(tmp, size=datasize, replace=TRUE),
b3=sample(tmp, size=datasize, replace=TRUE),
b4=sample(tmp, size=datasize, replace=TRUE),
b5=sample(tmp, size=datasize, replace=TRUE),
b6=sample(tmp, size=datasize, replace=TRUE),
b7=sample(tmp, size=datasize, replace=TRUE),
b8=sample(tmp, size=datasize, replace=TRUE),
b9=sample(tmp, size=datasize, replace=TRUE),
b10=sample(tmp, size=datasize, replace=TRUE),
g1=rnorm(datasize, mean=0, sd=1),
g2=rnorm(datasize, mean=0, sd=1),
g3=rnorm(datasize, mean=0, sd=1),
g4=rnorm(datasize, mean=0, sd=1),
g5=rnorm(datasize, mean=0, sd=1),
g6=rnorm(datasize, mean=0, sd=1),
g7=rnorm(datasize, mean=0, sd=1),
g8=rnorm(datasize, mean=0, sd=1),
g9=rnorm(datasize, mean=0, sd=1),
g10=rnorm(datasize, mean=0, sd=1),
p1=rpois(datasize, lambda=10),
p2=rpois(datasize, lambda=10),
p3=rpois(datasize, lambda=10),
p4=rpois(datasize, lambda=10),
p5=rpois(datasize, lambda=10),
p6=rpois(datasize, lambda=10),
p7=rpois(datasize, lambda=10),
p8=rpois(datasize, lambda=10),
p9=rpois(datasize, lambda=10),
p10=rpois(datasize, lambda=10))

End(Not run)

Description

10000 observations simulated from a DAG with 10 variables from Poisson, Bernoulli and Gaussian distributions.

Usage

ex1.dag.data

Format

A data frame, binary variables are factors. The relevant formulas are given below (note these do not give parameter estimates just the form of the relationships, like in glm(), e.g. logit()=1+p1 means a logit link function and comprises of an intercept term and a term involving p1).

- b1binary, logit()=1
- p1poisson, log()=1
- g1gaussian, identity()=1
- b2binary, logit()=1
- p2poisson, log()=1+b1+p1
- b3binary, logit()=1+b1+g1+b2
- g2gaussian, identity()=1+p1+g1+b2
- b4binary, logit()=1+g1+p2
- b5binary, logit()=1+g1+g2
- g3gaussian, identity()=1+g1+b2

Examples

```r
## The data is one realisation from the the underlying DAG:
ex1.true.dag <- matrix(data=c(
  0,0,0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,0,0,
  1,1,0,0,0,0,0,0,0,0,
  1,0,1,1,0,0,0,0,0,0,
  1,0,1,0,0,0,0,0,0,0),
  ncol=10, byrow=TRUE)
ex1.true.dag
```

```r
## End(Not run)
```
ex2.dag.data

0,1,1,0,0,0,0,0,
0,0,1,0,1,0,0,0,
0,0,1,0,0,1,0,0,0,
0,0,1,0,0,0,0,0,0), ncol=10, byrow=TRUE)
colnames(ex1.true.dag) <- rownames(ex1.true.dag) <-
c("b1","p1","g1","b2","p2","b3","g2","b4","b5","g3")

Description

10000 observations simulated from a DAG with 18 variables three sets each from Poisson, Bernoulli and Gaussian distributions.

Usage

ex2.dag.data

Format

A data frame, binary variables are factors. The relevant formulas are given below (note these do not give parameter estimates just the form of the relationships, e.g. logit()=1 means a logit link function and comprises of only an intercept term).

- b1\text{binary, logit()=1+g1+b2+b3+p3+b4+g4+b5}
- g1\text{gaussian, identity()=1}
- p1\text{poisson, log()=1+g6}
- b2\text{binary, logit()=1+p3+b4+p6}
- g2\text{gaussian, identify()=1+b2}
- p2\text{poisson, log()=1+b2}
- b3\text{binary, logit()=1+g1+g2+p2+g3+p3+g4}
- g3\text{gaussian, identify()=1+g1+p3+b4}
- p3\text{poisson, log()=1}
- b4\text{binary, logit()=1+g1+p3+p5}
- g4\text{gaussian, identify()=1+b4;}
- p4\text{poisson, log()=1+g1+b2+g2+b5}
- b5\text{binary, logit()=1+b2+g2+b3+p3+g4}
- g5\text{gaussian, identify()=1}
- p5\text{poisson, log()=1+g1+g5+b6+g6}
- b6\text{binary, logit()=1}
- g6\text{gaussian, identify()=1}
- p6\text{poisson, log()=1+g5}
Examples

```r
## The true underlying stochastic model has DAG - this data is a single realisation.
ex2.true.dag <- matrix(data = c(
0,1,0,1,0,1,0,1,1,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
ncol = 18, byrow = TRUE)

colnames(ex2.true.dag) <- rownames(ex2.true.dag) <- c("b1","g1","p1","b2",
"g2","p2","b3","g3",
"p3","b4","g4","p4",
"b5","g5","p5","b6",
"g6","p6")
```

ex3.dag.data

Validation data set for use with abn library examples

Description

1000 observations across with 13 binary variables and one grouping variable. Real (anonymised) data of unknown structure.

Usage

`ex3.dag.data`

Format

A data frame with 14 columns, where b1, b2, ..., b13 are binary variables encoded as factors and group is a factor with 100 factors defining the sampling groups (10 observations each).
ex4.dag.data

Validation data set for use with abn library examples

Description

2000 observations across with 10 binary variables and one grouping variable. Real (anonymised) data of unknown structure.

Usage

ex4.dag.data

Format

A data frame with eleven columns: `group` factor with 85 levels defining sampling groups; `b1, ..., b10` binary variables encoded as factors.

ex5.dag.data

Validation data set for use with abn library examples

Description

434 observations across with 18 variables, 6 binary and 12 continuous, and one grouping variable. Real (anonymised) data of unknown structure.

Usage

ex5.dag.data

Format

A data frame with 19 columns: `b1, ..., b6` binary variables, encoded as factors; `g1, ..., g12` continuous variables. Finally, the column `group` defines sampling groups (encoded as a factor as well).
ex6.dag.data

Validation data set for use with abn library examples

Description

800 observations across with 8 variables, 1 count, 2 binary and 4 continuous, and 1 grouping variable. Real (anonymised) data of unknown structure.

Usage

ex6.dag.data

Format

A data frame with eight columns. Binary variables are factors

- p1count
- g1continuous
- g2continuous
- b1binary
- b2binary
- g3continuous
- g4continuous
- groupfactor, defines sampling groups

ex7.dag.data

Validation data set for use with abn library examples

Description

10648 observations across with 3 variables, 2 binary and 1 grouping variable. Real (anonymised) data of unknown structure.

Usage

ex7.dag.data

Format

A data frame, binary variables are factors

- b1binary
- b2binary
- groupfactor, defines sampling groups
expit

expit of proportions

Description

See also the C implementation ?abn::expit_cpp().

Usage

expit(x)

Arguments

x numeric with values between [0,1].

Value

numeric vector of same length as x.

expit_cpp

expit function

Description

transform x either via the logit, or expit.

Usage

expit_cpp(x)

Arguments

x a numeric vector
family.abnFit

Description
Print family of objects of class abnFit

Usage
S3 method for class 'abnFit'
family(object, ...)

Arguments

object Object of class abnFit

... additional parameters. Not used at the moment.

FCV

Dataset related to Feline calicivirus infection among cats in Switzerland.

Description
The dataset is about the Feline calicivirus (FCV) infection among cats in Switzerland. FCV is a virus that occurs worldwide in domestic cats but also in exotic felids. FCV is a highly contagious virus that is the major cause of upper respiratory disease or cat flue that affects felids. This is a complex disease caused by different viral and bacterial pathogens, i.e., FCV, FHV-1, Mycoplasma felis, Chlamydia felis and Bordetella bronchiseptica. It can be aggravated by retrovirus infections such as FeLV and FIV. This composite dynamic makes it very interesting for a BN modeling approach. The data were collected between September 2012 and April 2013.

Usage
FCV

Format
An adapted data frame of the original dataset, which consists of 300 observations of 15 variables.

• FCVFeline Calici Virus status (0/1).
• FHV_1Feline Herpes Virus 1 status (0/1).
• C_felisC-felis and Chlamydia felis status (0/1).
• M_felisMycoplasma felis status (0/1).
• B_bronchisepticaB-bronchiseptica & Bordetella bronchispetica status (0/1).
fit.control

Control the iterations in fitAbn

Description

Allow the user to set restrictions in the fitAbn for both the Bayesian and the MLE approach. Control function similar to build.control.

Usage

fit.control(
 method = "bayes",
 max.mode.error = 10,
 mean = 0,
 prec = 0.001,
 loggam.shape = 1,
 loggam.inv.scale = 5e-05,
 max.iters = 100,
 epsabs = 1e-07,
 error.verbose = FALSE,
 trace = 0L,
 epsabs.inner = 1e-06,
 max.iters.inner = 100,
 finite.step.size = 1e-07,
 hessian.params = c(1e-04, 0.01),
 max.iters.hessian = 10,
)
max.hessian.error = 1e-04,
factor.brent = 100,
maxiters.hessian.brent = 10,
num.intervals.brent = 100,
min.pdf = 0.001,
n.grid = 250,
std.area = TRUE,
marginal.quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),
max.grid.iter = 1000,
marginal.node = NULL,
marginal.param = NULL,
variate.vec = NULL,
ncores = 1,
max.irls = 100,
tol = 1e-11,
tolPwrss = 1e-07,
check.rankX = "message+drop.cols",
check.scaleX = "message+rescale",
check.conv.grad = "message",
check.conv.singular = "message",
check.conv.hess = "message",
xtol_abs = 1e-06,
ftol_abs = 1e-06,
trace.mblogit = FALSE,
catcov.mblogit = "free",
espsilon = 1e-06,
seed = 9062019L
)

Arguments

method

A character that takes one of two values: "bayes" or "mle". Overrides method argument from buildScoreCache.

max.mode.error

If the estimated modes from INLA differ by a factor of max.mode.error or more from those computed internally, then results from INLA are replaced by those computed internally. To force INLA always to be used, then max.mode.error=100, to force INLA never to be used max.mode.error=0. See also fitAbn.

mean

The prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...).

prec

The prior precision ($\tau = \frac{1}{\sigma^2}$) for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...).

loggam.shape

The shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).

loggam.inv.scale

The inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).
max.iters: total number of iterations allowed when estimating the modes in Laplace approximation. Passed to `.Call("fit_single_node", ...)`.

epsabs: absolute error when estimating the modes in Laplace approximation for models with no random effects. Passed to `Call("fit_single_node", ...)`.

error.verbose: logical, additional output in the case of errors occurring in the optimization. Passed to `Call("fit_single_node", ...)`.

trace: Non-negative integer. If positive, tracing information on the progress of the "L-BFGS-B" optimization is produced. Higher values may produce more tracing information. (There are six levels of tracing. To understand exactly what these do see the source code.). Passed to `Call("fit_single_node", ...)`.

epsabs.inner: absolute error in the maximization step in the (nested) Laplace approximation for each random effect term. Passed to `Call("fit_single_node", ...)`.

max.iters.inner: total number of iterations in the maximization step in the nested Laplace approximation. Passed to `Call("fit_single_node", ...)`.

finite.step.size: suggested step length used in finite difference estimation of the derivatives for the (outer) Laplace approximation when estimating modes. Passed to `Call("fit_single_node", ...)`.

hessian.params: a numeric vector giving parameters for the adaptive algorithm, which determines the optimal stepsize in the finite-difference estimation of the hessian. First entry is the initial guess, second entry absolute error. Passed to `Call("fit_single_node", ...)`.

max.iters.hessian: integer, maximum number of iterations to use when determining an optimal finite difference approximation (Nelder-Mead). Passed to `Call("fit_single_node", ...)`.

max.hessian.error: if the estimated log marginal likelihood when using an adaptive 5pt finite-difference rule for the Hessian differs by more than `max.hessian.error` from when using an adaptive 3pt rule then continue to minimize the local error by switching to the Brent-Dekker root bracketing method. Passed to `Call("fit_single_node", ...)`.

factor.brent: if using Brent-Dekker root bracketing method then define the outer most interval end points as the best estimate of \(h \) (stepsize) from the Nelder-Mead as \(h/factor.brent, h \times factor.brent \). Passed to `Call("fit_single_node", ...)`.

maxiters.hessian.brent: maximum number of iterations allowed in the Brent-Dekker method. Passed to `Call("fit_single_node", ...)`.

num.intervals.brent: the number of initial different bracket segments to try in the Brent-Dekker method. Passed to `Call("fit_single_node", ...)`.

min.pdf: the value of the posterior density function below which we stop the estimation only used when computing marginals, see details.
n.grid recompute density on an equally spaced grid with n.grid points.
std.area logical, should the area under the estimated posterior density be standardized to
 exactly one, useful for error checking.
marginal.quantiles vector giving quantiles at which to compute the posterior marginal distribution at.
max.grid.iter gives number of grid points to estimate posterior density at when not explicitly specifying a grid used to avoid excessively long computation.
marginal.node used in conjunction with marginal.param to allow bespoke estimate of a marginal density over a specific grid. value from 1 to the number of nodes.
marginal.param used in conjunction with marginal.node. value of 1 is for intercept, see modes entry in results for the appropriate number.
variate.vec a vector containing the places to evaluate the posterior marginal density, must be supplied if marginal.node is not null.
ncores The number of cores to parallelize to, see ‘Details’. If >0, the number of CPU cores to be used. -1 for all available -1 core. Only for method=“mle”.
max.irls total number of iterations for estimating network scores using an Iterative Reweighed Least Square algorithm. Is this DEPRECATED?
tol real number giving the minimal tolerance expected to terminate the Iterative Reweighed Least Square algorithm to estimate network score. Passed to irls_binomial_cpp_fast_br and irls_poisson_cpp_fast.
tolPwrss numeric scalar passed to glmerControl - the tolerance for declaring convergence in the penalized iteratively weighted residual sum-of-squares step. Similar to tol.
check.rankX character passed to lmerControl and glmerControl - specifying if rankMatrix(X) should be compared with ncol(X) and if columns from the design matrix should possibly be dropped to ensure that it has full rank. Defaults to message+drop.cols.
check.scaleX character passed to lmerControl and glmerControl - check for problematic scaling of columns of fixed-effect model matrix, e.g. parameters measured on very different scales. Defaults to message+rescale.
check.conv.grad character passed to lmerControl and glmerControl - checking the gradient of the deviance function for convergence. Defaults to message but can be one of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a message if test fails; "stop" - throw an error if test fails.
check.conv.singular character passed to lmerControl and glmerControl - checking for a singular fit, i.e. one where some parameters are on the boundary of the feasible space (for example, random effects variances equal to 0 or correlations between random effects equal to +/- 1.0). Defaults to message but can be one of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a message if test fails; "stop" - throw an error if test fails.
check.conv.hess character passed to lmerControl and glmerControl - checking the Hessian of the deviance function for convergence. Defaults to message but can be one
fit.control of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a message if test fails; "stop" - throw an error if test fails.

xtol_abs Defaults to 1e-6 stop on small change of parameter value. Only for method=’mle’, group.var=.... Default convergence tolerance for fitted (g)lmer models is reduced to the value provided here if default values did not fit. This value here is passed to the optCtrl argument of (g)lmer (see help of lme4::convergence()).

ftol_abs Defaults to 1e-6 stop on small change in deviance. Similar to xtol_abs.

trace.mblogit logical indicating if output should be produced for each iteration. Directly passed to trace argument in mclogit.control. Is independent of verbose.

catcov.mblogit Defaults to "free" meaning that there are no restrictions on the covariances of random effects between the logit equations. Set to "diagonal" if random effects pertinent to different categories are uncorrelated or "single" if random effect variances pertinent to all categories are identical.

epsilon Defaults to 1e-8. Positive convergence tolerance ϵ that is directly passed to the control argument of mclogit::mblogit as mclogit.control. Only for method=’mle’, group.var=....

seed a non-negative integer which sets the seed in set.seed(seed).

Details
Parallelization over all children is possible via the function foreach of the package doParallel. ncores=0 or ncores=1 use single threaded foreach. ncores=-1 uses all available cores but one.

Value
Named list according the provided arguments.

See Also
build.control.
Other fitAbn: fitAbn()

Examples
ctrlmle <- abn::fit.control(method = "mle",
 max.irls = 100,
 tol = 10^-11,
 tolPwrss = 1e-7,
 xtol_abs = 1e-6,
 ftol_abs = 1e-6,
 epsilon = 1e-6,
 ncores = 2,
 seed = 9062019L)

ctrlbayes <- abn::fit.control(method = "bayes",
 mean = 0,
 prec = 0.001,
 loggam.shape = 1,
 loggam.inv.scale = 5e-05,
max.mode.error = 10,
max.iters = 100,
epsabs = 1e-07,
error.verbose = FALSE,
epsabs.inner = 1e-06,
max.iters.inner = 100,
finite.step.size = 1e-07,
hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10,
max.hessian.error = 1e-04,
factor.brent = 100,
maxiters.hessian.brent = 10,
num.intervals.brent = 100,
min.pdf = 0.001,
n.grid = 100,
std.area = TRUE,
marginal.quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),
max.grid.iter = 1000,
marginal.node = NULL,
marginal.param = NULL,
variate.vec = NULL,
ncores = 1,
seed = 9062019L)

fitAbn

Fit an additive Bayesian network model

Description

Fits an additive Bayesian network to observed data and is equivalent to Bayesian or information-theoretic multi-dimensional regression modeling. Two numerical options are available in the Bayesian settings, standard Laplace approximation or else an integrated nested Laplace approximation provided via a call to the R INLA library (see r-inla.org - this is not hosted on CRAN).

Usage

```r
fitAbn(object = NULL, 
dag = NULL, 
data.df = NULL, 
data.dists = NULL, 
method = NULL, 
group.var = NULL, 
adj.vars = NULL, 
cor.vars = NULL, 
centre = TRUE, 
compute.fixed = FALSE, 
control = NULL, 
verbose = FALSE,
```
debugging = FALSE,
...
)

fitAbn.bayes(
 dag = NULL,
 data.df = NULL,
 data.dists = NULL,
 group.var = NULL,
 cor.vars = NULL,
 centre = TRUE,
 compute.fixed = FALSE,
 control = fit.control(method = "bayes"),
 mylist = NULL,
 grouped.vars = NULL,
 group.ids = NULL,
 force.method = NULL,
 verbose = FALSE
)

fitAbn.mle(
 dag = NULL,
 data.df = NULL,
 data.dists = NULL,
 group.var = NULL,
 grouped.vars = NULL,
 group.ids = NULL,
 adj.vars = NULL,
 cor.vars = NULL,
 centre = TRUE,
 control = fit.control(method = "mle"),
 verbose = FALSE,
 debugging = FALSE
)

regressionLoop(
 i = NULL,
 dag = NULL,
 data.df = NULL,
 data.df.multi = NULL,
 data.dists = NULL,
 group.var = NULL,
 grouped.vars = NULL,
 group.ids = NULL,
 control = NULL,
 nvars = NULL,
 nobs = NULL,
 dag.multi = NULL,
 verbose = NULL
Arguments

object: an object of class abnLearned produced by `mostProbable`, `searchHeuristic` or `searchHillClimber`.

dag: a matrix or a formula statement (see details) defining the network structure, a directed acyclic graph (DAG), see details for format. Note that column names and row names must be set up.

data.df: a data frame containing the data used for learning the network, binary variables must be declared as factors, and no missing values all allowed in any variable.

data.dists: a named list giving the distribution for each node in the network, see details.

method: if NULL, takes method of object, otherwise "bayes" or "mle" for the method to be used, see details.

group.var: only applicable for mixed models and gives the column name in data.df of the grouping variable (which must be a factor denoting group membership).

adj.vars: a character vector giving the column names in data.df for which the network score has to be adjusted for, see details.

cor.vars: a character vector giving the column names in data.df for which a mixed model should be used (method = 'bayes' only).

centre: should the observations in each Gaussian node first be standardised to mean zero and standard deviation one.

compute.fixed: a logical flag, set to TRUE for computation of marginal posterior distributions, see details.

control: a list of control parameters. See `fit.control` for the names of the settable control values and their effect.

verbose: if TRUE then provides some additional output, in particular the code used to call INLA, if applicable.

debugging: if TRUE and method = 'mle' this enables to step into the for-loop.

...: additional arguments passed for optimization.

mylist: result returned from `check.valid.data`.

grouped.vars: result returned from `check.valid.groups`. Column indexes of all variables which are affected from grouping effect.

group.ids: result returned from `check.valid.groups`. Vector of group allocation for each observation (row) in 'data.df'.

force.method: "notset", "INLA" or "C". This is specified in `buildScoreCache(control=list(max.mode.error=...))`.

i: number of child-node (mostly corresponds to child node index e.g. in dag).

data.df.multi: extended data.df for one-hot-encoded multinomial variables.

numvars: number of variables in data.dists.

.obs: number of observations in data.df.

dag.multi: extended dag for one-hot-encoded multinomial variables.
Details

If `method="Bayes"`:

The procedure `fitAbn` fits an additive Bayesian network model to data where each node (variable - a column in `data.df`) can be either: presence/absence (Bernoulli); continuous (Gaussian); or an unbounded count (Poisson). Multinomial distributions are only supported with `method = "mle"` (see below). The model comprises of a set of conditionally independent generalized linear regressions with or without random effects. Internal code is used by default for numerical estimation in nodes without random effects, and INLA is the default for nodes with random effects. This default behavior can be overridden using `control=list(max.mode.error=...)`. The default is `max.mode.error=10`, which means that the modes estimated from INLA output must be within 10. Otherwise, the internal code is used rather than INLA. To force the use of INLA on all nodes, use `max.mode.error=100`, which then ignores this check, to force the use of internal code then use `max.mode.error=0`. For the numerical reliability and perform of `abn` see http://r-bayesian-networks.org. Generally speaking, INLA can be swift and accurate, but in several cases, it can perform very poorly and so some care is required (which is why there is an internal check on the modes). Binary variables must be declared as factors with two levels, and the argument `data.dists` must be a list with named arguments, one for each of the variables in `data.df` (except a grouping variable - if present!), where each entry is either "poisson", "binomial", "multinomial" or "gaussian", see examples below. The "poisson" and "binomial" distributions use log and logit link functions, respectively. Note that "binomial" here actually means only binary, one Bernoulli trial per row in `data.df`.

If the data are grouped into correlated blocks - wherein a standard regression context a mixed model might be used - then a network comprising of one or more nodes where a generalized linear mixed model is used (but limited to only a single random effect). This is achieved by specifying parameters `group.var` and `cor.vars`. Where the former defines the group membership variable, which should be a factor indicating which observations belong to the same grouping. The parameter `cor.vars` is a character vector that contains the names of the nodes for which a mixed model should be used. This is not yet implemented with `method = "mle"`. For example, in some problems, it may be appropriate for all variables (except `group.var`) in `data.df` to be parametrized as a mixed model while in others it may only be a single variable for which grouping adjustment is required (as the remainder of variables are covariates measured at group level).

In the network structure definition, `dag`, each row represents a node in the network, and the columns in each row define the parents for that particular node, see the example below for the specific format. The `dag` can be provided using a formula statement (similar to GLM). A typical formula is `~ node1|parent1:parent2 + node2:node3|parent3`. The formula statement have to start with `~`. In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same parent3. The parents names must match those given in `data.df`. : is the separator between either children or parents, | separates children (left side) and parents (right side), + separates terms, . replaces all the variables in `data.df`.

If `compute.fixed=TRUE` then the marginal posterior distributions for all parameters are computed. Note the current algorithm used to determine the evaluation grid is rather crude and may need to be manually refined using `variate.vec` (one parameter at a time) for publication-quality density estimates. Note that a manual grid can only be used with internal code and not INLA (which uses its own grid). The end points are defined as where the value of the marginal density drops below a given threshold `pdf.min`. When estimating the log marginal likelihood in models with random effects (using internal code rather than INLA), an attempt is made to minimize the error by comparing the estimates given between a 3pt and 5pt rule when estimating the Hessian in the Laplace...
approximation. The modes used in each case are identical. The first derivatives are computed using gsl's adaptive finite difference function, and this is embedding inside the standard 3pt and 5pt rules for the second derivatives. In all cases, a central difference approximation is tried first with a forward difference being a fall back (as the precision parameters are strictly positive). The error is minimized through choosing an optimal step size using gsl's Nelder-Mead optimization, and if this fails, (e.g., is larger than max.hessian.error) then the Brent-Dekker root bracketing method is used as a fallback. If the error cannot be reduced to below max.hessian.error, then the step size, which gave the lowest error during the searches (across potentially many different initial bracket choices), is used for the final Hessian evaluations in the Laplace approximation.

**If method="mle"::
**

The procedure *fitAbn* with the argument *method= "mle"* fits an additive Bayesian network model to data where each node (variable - a column in data.df) can be either: presence/absence (Bernoulli); continuous (Gaussian); an unbounded count (Poisson); or a discrete variable (Multinomial). The model comprises of a set of conditionally independent generalized linear regressions with or without adjustment. Binary and discrete variables must be declared as factors and the argument *data.dists* must be a list with named arguments, one for each of the variables in data.df, where each entry is either "poisson", "binomial", "multinomial" or "gaussian", see examples below. The "poisson" and "binomial" distributions use log and logit link functions, respectively. Note that "binomial" here actually means only binary, one Bernoulli trial per row in data.df.

If the data are grouped into correlated blocks - wherein a standard regression context a mixed-effect model might be used - then a network comprising of one or more nodes where a generalized linear mixed model is used (but limited to only a single random intercept). This is achieved by specifying parameter group.var (cor.vars as with method = "bayes" is not yet implemented with method = "mle"). The parameter group.var defines the group membership variable, which should be a factor indicating which observations belong to the same grouping. This corresponds to "1|group.var" in the formula notation of e.g. *lme4*.

In the context of *fitAbn* adjustment means that irrespective to the adjacency matrix the adjustment variable set (adj.vars) will be add as covariate to every node defined by cor.vars.

In the network structure definition, *dag*, each row represents a node in the network, and the columns in each row define the parents for that particular node, see the example below for the specific format. The dag can be provided using a formula statement (similar to GLM). A typical formula is \(\sim \) node1|parent1:parent2 + node2:node3|parent3. The formula statement have to start with \(\sim \). In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same parent3. The parents names have to exactly match those given in data.df. \(: \) is the separator between either children or parents, \(| \) separates children (left side) and parents (right side), \(+ \) separates terms, \(. \) replaces all the variables in data.df.

The Information-theoretic based network scores used in *fitAbn* with argument method="mle" are the maximum likelihood (mlik, called marginal likelihood in this context as it is computed node wise), the Akaike Information Criteria (aic), the Bayesian Information Criteria (bic) and the Minimum distance Length (mdl). The classical definitions of those metrics are given in Kratzer and Furrer (2018).

The numerical routine is based on an iterative scheme to estimate the regression coefficients. The Iterative Reweighed Least Square (IRLS) programmed using Rcpp/RcppArmadillo. One hard coded feature of *fitAbn* with argument method="mle" is a conditional use of a bias reduced binomial regression when a classical Generalized Linear Model (GLM) fails to estimate the maximum likelihood of the given model accurately. Additionally, a QR decomposition is performed to check for rank deficiency. If the model is rank deficient and the BR GLM fails to estimate it,
then predictors are sequentially removed. This feature aims at better estimating network scores when data sparsity is present.

A special care should be taken when interpreting or even displaying p-values computed with fitAbn. Indeed, the full model is already selected using goodness of fit metrics based on the (same) full dataset.

The control argument is a list with separate arguments for the Bayesian and MLE implementation. See fit.control for details.

Value

An object of class abnFit. A named list. One entry for each of the variables in data.df (excluding the grouping variable, if present) which contains an estimate of the log marginal likelihood for that individual node. An entry "mlik" which is the total log marginal likelihood for the full ABN model. A vector of error.codes - non-zero if a numerical error or warning occurred, and a vector error.code.desc giving a text description of the error. A list modes, which contains all the mode estimates for each parameter at each node. A vector called Hessian accuracy, which is the estimated local error in the log marginal likelihood for each node. If compute.fixed=TRUE then a list entry called marginals which contains a named entry for every parameter in the ABN and each entry in this list is a two-column matrix where the first column is the value of the marginal parameter, say x, and the second column is the respective density value, pdf(x). Also, a list called marginal.quantiles is produced, giving the quantiles for each marginal posterior distribution.

Functions

- fitAbn.bayes(): Internal function called by fitAbn.
- fitAbn.mle(): Internal function called by fitAbn.
- regressionLoop(): Internal function called by fitAbn.mle().

Author(s)

Fraser Iain Lewis and Gilles Kratzer.

References

Further information about abn can be found at: r-bayesian-networks.org.

See Also

buildScoreCache

Other fitAbn: fit.control()

Other Bayes: buildScoreCache(), calc.node.inla.glmm(), calc.node.inla.glm(), getmarginals()
Examples

Built-in dataset with a subset of cols
mydat <- ex0.dag.data[,c("b1","b2","b3","g1","b4","p2","p4")]

setup distribution list for each node
mydists <- list(b1="binomial", b2="binomial", b3="binomial", g1="gaussian",
 b4="binomial", p2="poisson", p4="poisson")

Null model - all independent variables
mydag.empty <- matrix(0, nrow=7, ncol=7)
colnames(mydag.empty) <- rownames(mydag.empty) <- names(mydat)

Now fit the model to calculate its goodness-of-fit
myres <- fitAbn(dag=mydag.empty, data.df=mydat, data.dists=mydists)

Log-marginal likelihood goodness-of-fit for complete DAG
print(myres$mlik)

fit using the formula statement
including the creation of the graph of the DAG via Rgraphviz
myres <- fitAbn(dag=~b1|b2+b2|p4:g1+g1|p2+b3|g1+b4|b1+p4|g1,
 data.df=mydat, data.dists=mydists)
print(myres$mlik) # a much weaker fit than full independence DAG

plotAbn(dag=myres$abnDag$dag, data.dists=mydists, fitted.values=myres$modes)

Or equivalently using the formula statement, with plotting
Now repeat but include some dependencies first
mydag <- mydag.empty
mydag["b1","b2"] <- 1 # b1<-b2 and so on
mydag["b2","p4"] <- mydag["b2","g1"] <- mydag["g1","p2"] <- 1
mydag["b3","g1"] <- mydag["b4","b1"] <- mydag["p4","g1"] <- 1
myresAlt <- fitAbn(dag=mydag, data.df=mydat, data.dists=mydists)
plot(myresAlt)

This function contains an MLE implementation accessible through a method parameter
use built-in simulated data set

myres.mle <- fitAbn(dag=~b1|b2+b2|p4+g1+g1|p2+b3|g1+b4|b1+p4|g1,
 data.df=mydat, data.dists=mydists, method="mle")

Print the output for mle first then for Bayes:
print(myres.mle)
print(myres)

Not run:
A simple plot of some posterior densities the algorithm which chooses
density points is very simple any may be rather sparse so also recompute
the density over an equally spaced grid of 50 points between the two
end points which had at f=min.pdf
max.mode.error=0 foes to use the internal c code
myres.c <- fitAbn(dag=mydag, data.df=mydat, data.dists=mydists,
 compute.fixed=TRUE,
 control=list(max.mode.error=0))

print(names(myres.c$marginals)) ## gives all the different parameter names

Repeat but use INLA for the numerics using max.mode.error=100
as using internal code is the default here rather than INLA
myres.inla <- fitAbn(dag=mydag, data.df=mydat, data.dists=mydists,
 compute.fixed=TRUE,
 control=list(max.mode.error=100))

Plot posterior densities
par(mfrow=c(2,2), mai=c(.7,.7,.2,.1))
plot(myres.c$marginals$b1[["b1|(Intercept)"]], type="l", xlab="b1|(Intercept)"
lines(myres.inla$marginals$b1[["b1|(Intercept)"]], col="blue")
plot(myres.c$marginals$b2[["b2|p4"]], type="l", xlab="b2|p4"
lines(myres.inla$marginals$b2[["b2|p4"]], col="blue")
plot(myres.c$marginals$g1[["g1|precision"]], type="l", xlab="g1|precision"
lines(myres.inla$marginals$g1[["g1|precision"]], col="blue")
plot(myres.c$marginals$b4[["b4|b1"]], type="l", xlab="b4|b1"
lines(myres.inla$marginals$b4[["b4|b1"]], col="blue")

An elementary mixed model example using built-in data specify DAG,
only two variables using a subset of variables from ex3.dag.data
both variables are assumed to need (separate) adjustment for the
group variable, i.e., a binomial GLMM at each node
mydists <- list(b1="binomial", b2="binomial")

Compute marginal likelihood - use internal code via max.mode.error=0
as using INLA is the default here.
Model where b1 <- b2
myres.c <- fitAbn(dag=~b1|b2, data.df=ex3.dag.data[,c(1,2,14)], data.dists=mydists,
 group.var="group", cor.vars=c("b1","b2"),
 control=list(max.mode.error=0))
print(myres.c) ## show all the output

compare mode for node b1 with glmer(), lme4::glmer is automatically attached.

Now for marginals - INLA is strongly preferable for estimating marginals for nodes
with random effects as it is far faster, but may not be reliable
see http://r-bayesian-networks.org

INLA's estimates of the marginals, using high n.grid=500
as this makes the plots smoother - see below.
myres.inla <- fitAbn(dag=~b1|b2, data.df=ex3.dag.data[,c(1,2,14)],
 data.dists=mydists,
 group.var="group", cor.vars=c("b1","b2"),
 compute.fixed=TRUE, n.grid=500,
control=list(max.mode.error=100, max.hessian.error=10E-02))

this is NOT recommended - marginal density estimation using fitAbn in mixed models
is really just for diagnostic purposes, better to use fitAbn.inla() here
but here goes...be patient
myres.c <- fitAbn(dag=~b1|b2, data.df=ex3.dag.data[,c(1,2,14)], data.dists=mydists,
group.var="group", cor.vars=c("b1", "b2"), compute.fixed=TRUE,
control=list(max.mode.error=0, max.hessian.error=10E-02))

compare marginals between internal and INLA.
par(mfrow=c(2,3))
5 parameters - two intercepts, one slope, two group level precisions
plot(myres.inla$marginals$b1[[1]], type="l", col="blue")
lines(myres.c$marginals$b1[[1]], col="brown", lwd=2)
plot(myres.inla$marginals$b1[[2]], type="l", col="blue")
lines(myres.c$marginals$b1[[2]], col="brown", lwd=2)
the precision of group-level random effects
plot(myres.inla$marginals$b1[[3]], type="l", col="blue", xlim=c(0,2))
lines(myres.c$marginals$b1[[3]], col="brown", lwd=2)
plot(myres.inla$marginals$b2[[1]], type="l", col="blue")
lines(myres.c$marginals$b2[[1]], col="brown", lwd=2)
plot(myres.inla$marginals$b2[[2]], type="l", col="blue")
lines(myres.c$marginals$b2[[2]], col="brown", lwd=2)
these are very similar although not exactly identical
use internal code but only to compute a single parameter over a specified grid
This can be necessary if the simple auto grid finding functions does a poor job
myres.c <- fitAbn(dag=~b1|b2, data.df=ex3.dag.data[,c(1,2,14)], data.dists=mydists,
group.var="group", cor.vars=c("b1", "b2"),
centre=FALSE, compute.fixed=TRUE,
control=list(marginal.node=1, marginal.param=3,# precision term in node 1
variate.vec=seq(0.05, 1.5, len=25), max.hessian.error=10E-02))

End(Not run)

these are very similar although not exactly identical
use internal code but only to compute a single parameter over a specified grid
This can be necessary if the simple auto grid finding functions does a poor job
myres.c <- fitAbn(dag=~b1|b2, data.df=ex3.dag.data[,c(1,2,14)], data.dists=mydists,
group.var="group", cor.vars=c("b1", "b2"),
centre=FALSE, compute.fixed=TRUE,
control=list(marginal.node=1, marginal.param=3,# precision term in node 1
variate.vec=seq(0.05, 1.5, len=25), max.hessian.error=10E-02))

End(Not run)
getmarginals

Description

gaussian = 1, binomial = 2, poisson = 3, multinomial = 4

Usage

get.var.types(data.dists = NULL)

Arguments

data.dists list specifying each columns distribution type. Names correspond to column names and values must be one of "gaussian", "binomial", "poisson", "multinomial".

Value

numeric encoding of distribution corresponding to its list element number in data.dists.

getmarginals

Internal function called by fitAbn.bayes.

Description

Function for computing marginal posterior densities using C and is called from fit.dag() Only to be called internally.

Usage

getmarginals(
 res.list,
 data.df,
 dag.m,
 var.types,
 max.parents,
 mean,
 prec,
 loggam.shape,
 loggam.inv.scale,
 max.iters,
 epsabs,
 verbose,
 error.verbose,
 trace,
 grouped.vars,
 group.ids,
 epsabs.inner,
 max.iters.inner,
 finite.step.size,
getmarginals

hessian.params, max.iters.hessian, min.pdf, marginal.node, marginal.param, variate.vec, n.grid, INLA.marginals, iter.max, max.hessian.error, factor.brent, maxiters.hessian.brent, num.intervals.brent
)

Arguments

res.list rest of arguments as for call to C fitabn
data.df a data frame containing the data used for learning the network, binary variables must be declared as factors, and no missing values all allowed in any variable.
dag.m adjacency matrix
dvar.types distributions in terms of a numeric code
max.parents max number of parents over all nodes in dag (different from other max.parents definitions).
mean the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...).
prec the prior precision (\(\tau = \frac{1}{\sigma^2} \)) for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...).
loggam.shape the shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).
loggam.inv.scale the inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).
max.iters total number of iterations allowed when estimating the modes in Laplace approximation. passed to .Call("fit_single_node", ...).
epsabs absolute error when estimating the modes in Laplace approximation for models with no random effects. Passed to .Call("fit_single_node", ...).
verbose if TRUE then provides some additional output, in particular the code used to call INLA, if applicable.
error.verbose logical, additional output in the case of errors occurring in the optimization. Passed to .Call("fit_single_node", ...).
trace Non-negative integer. If positive, tracing information on the progress of the "L-BFGS-B" optimization is produced. Higher values may produce more tracing
information. (There are six levels of tracing. To understand exactly what these
do see the source code.). Passed to .Call("fit_single_node", ...).

grouped.vars result returned from check.valid.groups. Column indexes of all variables
which are affected from grouping effect.

group.ids result returned from check.valid.groups. Vector of group allocation for each
observation (row) in ’data.df’.

esabs.inner absolute error in the maximization step in the (nested) Laplace approximation
for each random effect term. Passed to .Call("fit_single_node", ...).

max.iters.inner total number of iterations in the maximization step in the nested Laplace ap-
proximation. Passed to .Call("fit_single_node", ...).

finite.step.size suggested step length used in finite difference estimation of the derivatives for
the (outer) Laplace approximation when estimating modes. Passed to .Call("fit_single_node",
...).

hessian.params a numeric vector giving parameters for the adaptive algorithm, which determines
the optimal stepsize in the finite-difference estimation of the hessian. First entry
is the initial guess, second entry absolute error. Passed to .Call("fit_single_node",
...).

max.iters.hessian integer, maximum number of iterations to use when determining an optimal fi-
nite difference approximation (Nelder-Mead). Passed to .Call("fit_single_node",
...).

min.pdf the value of the posterior density function below which we stop the estimation
only used when computing marginals, see details.

marginal.node used in conjunction with marginal.param to allow bespoke estimate of a marginal
density over a specific grid. value from 1 to the number of nodes.

marginal.param used in conjunction with marginal.node. value of 1 is for intercept, see modes
entry in results for the appropriate number.

variate.vec a vector containing the places to evaluate the posterior marginal density, must
be supplied if marginal.node is not null.

n.grid recompute density on an equally spaced grid with n.grid points.

INLA.marginals vector - TRUE if INLA used false otherwise

iter.max same as max.iters in fit.control. Total number of iterations allowed when
estimating the modes in Laplace approximation. Passed to .Call("fit_single_node",
...).

max.hessian.error if the estimated log marginal likelihood when using an adaptive 5pt finite-difference
rule for the Hessian differs by more than max.hessian.error from when using
an adaptive 3pt rule then continue to minimize the local error by switching to the
Brent-Dekker root bracketing method. Passed to .Call("fit_single_node",
...).

factor.brent if using Brent-Dekker root bracketing method then define the outer most in-
terval end points as the best estimate of h (stepsize) from the Nelder-Mead as
h/factor.brent, h * factor.brent). Passed to .Call("fit_single_node",
...).
maxiters.hessian.brent
maximum number of iterations allowed in the Brent-Dekker method. Passed to .Call("fit_single_node", ...).

num.intervals.brent
the number of initial different bracket segments to try in the Brent-Dekker method. Passed to .Call("fit_single_node", ...).

See Also
Other Bayes: buildScoreCache(), calc.node.inla.glmm(), calc.node.inla.glm(), fitAbn()

infoDag

Description
This function returns standard metrics for DAG description. A list that contains the number of
nodes, the number of arcs, the average Markov blanket size, the neighborhood average set size, the
parent average set size and children average set size.

Usage
infoDag(object, node.names = NULL)

Arguments

object an object of class abnLearned, abnFit. Alternatively, a matrix or a formula
statement defining the network structure, a directed acyclic graph (DAG). Note
that row names must be set up or given in node.names.

node.names a vector of names if the DAG is given via formula, see details.

Details
This function returns a named list with the following entries: the number of nodes, the number of
arcs, the average Markov blanket size, the neighborhood average set size, the parent average set
size, and the children’s average set size.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
node1|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~.
In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same
parent3. The parents names have to exactly match those given in node.names. : is the separa-
tor between either children or parents, | separates children (left side) and parents (right side), +
separates terms, . replaces all the variables in node.names.

Value
A named list that contains following entries: the number of nodes, the number of arcs, the average
Markov blanket size, the neighborhood average set size, the parent average set size and children
average set size.
linkStrength

References

Examples

```r
## Creating a dag:
dag <- matrix(c(0,0,0,0, 1,0,0,0, 1,1,0,1, 0,1,0,0), nrow = 4, ncol = 4)
dist <- list(a="gaussian", b="gaussian", c="gaussian", d="gaussian")
colnames(dag) <- rownames(dag) <- names(dist)

infoDag(dag)
plot(createAbnDag(dag))
```

linkStrength

Returns the strengths of the edge connections in a Bayesian Network learned from observational data

Description

A flexible implementation of multiple proxy for strength measures useful for visualizing the edge connections in a Bayesian Network learned from observational data.

Usage

```r
linkStrength(dag,
data.df = NULL,
data.dists = NULL,
method = c("mi.raw",
          "mi.raw.pc",
          "mi.corr",
          "ls",
          "ls.pc",
          "stat.dist"),
discretization.method = "doane")
```

Arguments

- **dag**: a matrix or a formula statement (see details for format) defining the network structure, a directed acyclic graph (DAG). Note that rownames must be set or given in data.dist if the DAG is given via a formula statement.
- **data.df**: a data frame containing the data used for learning each node, binary variables must be declared as factors.
- **data.dists**: a named list giving the distribution for each node in the network, see ‘Details’.
- **method**: the method to be used. See ‘Details’.
- **discretization.method**: a character vector giving the discretization method to use. See `discretization`.
Details

This function returns multiple proxies for estimating the connection strength of the edges of a possibly discretized Bayesian network’s dataset. The returned connection strength measures are: the Raw Mutual Information \((\text{mi.raw})\), the Percentage Mutual information \((\text{mi.raw.pc})\), the Raw Mutual Information computed via correlation \((\text{mi.corr})\), the link strength \((\text{ls})\), the percentage link strength \((\text{ls.pc})\) and the statistical distance \((\text{stat.dist})\).

The general concept of entropy is defined for probability distributions. The probability is estimated from data using frequency tables. Then the estimates are plug-in in the definition of the entropy to return the so-called empirical entropy. A standard known problem of empirical entropy is that the estimations are biased due to the sampling noise. This is also known that the bias will decrease as the sample size increases. The mutual information estimation is computed from the observed frequencies through a plug-in estimator based on entropy. For the case of an arc going from the node X to the node Y and the remaining set of parent of Y is denoted as Z.

The mutual information is defined as \(I(X, Y) = H(X) + H(Y) - H(X, Y)\), where \(H()\) is the entropy.

The Percentage Mutual information is defined as \(\text{PI}(X,Y) = \frac{I(X,Y)}{H(Y|Z)}\).

The Mutual Information computed via correlation is defined as \(\text{MI}(X,Y) = -0.5 \log(1-\text{cor}(X,Y)^2)\).

The link strength is defined as \(\text{LS}(X\rightarrow Y) = H(Y|Z)-H(Y|X,Z)\).

The percentage link strength is defined as \(\text{PLS}(X\rightarrow Y) = \frac{\text{LS}(X\rightarrow Y)}{H(Y|Z)}\).

The statistical distance is defined as \(\text{SD}(X,Y) = 1- \frac{\text{MI}(X,Y)}{\max(H(X),H(Y))}\).

Value

The function returns a named matrix with the requested metric.

References

Examples

```r
# Gaussian
N <- 1000
mydists <- list(a="gaussian",
                b="gaussian",
                c="gaussian")
a <- rnorm(n = N, mean = 0, sd = 1)
b <- 1 + 2*rnorm(n = N, mean = 5, sd = 1)
c <- 2 + 1*a + 2*b + rnorm(n = N, mean = 2, sd = 1)
mydf <- data.frame("a" = a,
                  "b" = b,
                  "c" = c)
mycache.mle <- buildScoreCache(data.df = mydf,
                               data.dists = mydists,
                               method = "mle",
                               max.parents = 2)
mydag.mp <- mostProbable(score.cache = mycache.mle, verbose = FALSE)
```
linkstr <- linkStrength(dag = mydag.mp$dag,
data.df = mydf,
data.dists = mydists,
method = "ls",
discretization.method = "sturges")

logit

Logit of proportions

Description
See also the C implementation ?abn::logit_cpp().

Usage
logit(x)

Arguments
x numeric with values between [0,1].

Value
numeric vector of same length as x.

logit_cpp

logit functions

Description
transform x either via the logit, or expit.

Usage
logit_cpp(x)

Arguments
x a numeric vector
logLik.abnFit
Print logLik of objects of class abnFit

Description

Print logLik of objects of class abnFit

Usage

```r
## S3 method for class 'abnFit'
logLik(object, digits = 3L, verbose = TRUE, ...)
```

Arguments

- `object`: Object of class abnFit
- `digits`: number of digits of the results.
- `verbose`: print additional output.
- `...`: additional parameters. Not used at the moment.

mb
Compute the Markov blanket

Description

This function computes the Markov blanket of a set of nodes given a DAG (Directed Acyclic Graph).

Usage

```r
mb(dag, node, data.dists = NULL)
```

Arguments

- `dag`: a matrix or a formula statement (see details for format) defining the network structure, a directed acyclic graph (DAG).
- `node`: a character vector of the nodes for which the Markov Blanket should be returned.
- `data.dists`: a named list giving the distribution for each node in the network, see details.

Details

This function returns the Markov Blanket of a set of nodes given a DAG.
The dag can be provided using a formula statement (similar to glm). A typical formula is ~ node1|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~. In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same parent3. The parents names have to exactly match those given in name. : is the separator between either children or parents, | separates children (left side) and parents (right side), + separates terms, . replaces all the variables in name.
Value

character vector of node names from the Markov blanket.

Examples

```r
# Defining distribution and dag
dist <- list(a="gaussian", b="gaussian", c="gaussian", d="gaussian",
e="binomial", f="binomial")
dag <- matrix(c(0,1,1,0,1,0,
                0,0,0,0,0,0,
                0,0,0,0,0,0,
                0,0,0,0,0,1,
                0,0,0,0,0,0), nrow = 6L, ncol = 6L, byrow = TRUE)
colnames(dag) <- rownames(dag) <- names(dist)

mb(dag, node = "b")
mb(dag, node = c("b","e"))

mb(~a|b:c:e+b|c:d:f+e|f, node = "e", data.dists = dist)
```

miData

Empirical Estimation of the Entropy from a Table of Counts

Description

This function empirically estimates the Mutual Information from a table of counts using the observed frequencies.

Usage

```r
miData(freqs.table, method = c("mi.raw", "mi.raw.pc"))
```

Arguments

- **freqs.table**
 - a table of counts.

- **method**
 - a character determining if the Mutual Information should be normalized.

Details

The mutual information estimation is computed from the observed frequencies through a plugin estimator based on entropy.

The plugin estimator is

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

where

$$H()$$

is the entropy computed with `entropyData`.
mostProbable

Value

Mutual information estimate.

References

See Also

discretization

Examples

```r
## Generate random variable
Y <- rnorm(n = 100, mean = 0, sd = 2)
X <- rnorm(n = 100, mean = 5, sd = 2)
dist <- list(Y="gaussian", X="gaussian")

miData(discretization(data.df = cbind(X,Y), data.dists = dist,
    discretization.method = "fd", nb.states = FALSE),
    method = "mi.raw")
```

mostProbable

Find most probable DAG structure

Description

Find most probable DAG structure using exact order based approach due to Koivisto and Sood, 2004.

Usage

```r
mostProbable(score.cache, score="bic", prior.choice=1, verbose=TRUE, ...)
```

Arguments

- `score.cache`: object of class abnCache typically outputted by from buildScoreCache().
- `score`: which score should be used to score the network. Possible choices are aic, bic, mdl, mlik.
- `prior.choice`: an integer, 1 or 2, where 1 is a uniform structural prior and 2 uses a weighted prior, see details
- `verbose`: if TRUE then provides some additional output.
- `...`: further arguments passed to or from other methods.
Details

The procedure runs the exact order based structure discovery approach of Koivisto and Sood (2004) to find the most probable posterior network (DAG). The local.score is the node cache, as created using `buildScoreCache` (or manually provided the same format is used). Note that the scope of this search is given by the options used in local.score, for example, by restricting the number of parents or the ban or retain constraints given there.

This routine can take a long time to complete and is highly sensitive to the number of nodes in the network. It is recommended to use this on a reduced data set to get an idea as to the computational practicality of this approach. In particular, memory usage can quickly increase to beyond what may be available. For additive models, problems comprising up to 20 nodes are feasible on most machines. Memory requirements can increase considerably after this, but then so does the run time making this less practical. It is recommended that some form of over-modeling adjustment is performed on this resulting DAG (unless dealing with vast numbers of observations), for example, using parametric bootstrapping, which is straightforward to implement in MCMC engines such as JAGS or WinBUGS. See the case studies at http://r-bayesian-networks.org or the files provided in the package directories `inst/bootstrapping_example` and `inst/old_vignette` for details.

The parameter `prior.choice` determines the prior used within each node for a given choice of parent combination. In Koivisto and Sood (2004) p.554, a form of prior is used, which assumes that the prior probability for parent combinations comprising of the same number of parents are all equal. Specifically, that the prior probability for parent set G with cardinality |G| is proportional to \(1/[n-1 choose |G|]\) where there are n total nodes. Note that this favors parent combinations with either very low or very high cardinality, which may not be appropriate. This prior is used when `prior.choice=2`. When `prior.choice=1` an uninformative prior is used where parent combinations of all cardinalities are equally likely. The latter is equivalent to the structural prior used in the heuristic searches e.g., `searchHillclimber` or `searchHeuristic`.

Note that the network score (log marginal likelihood) of the most probable DAG is not returned as it can easily be computed using `fitAbn`, see examples below.

Value

An object of class `abnMostprobable`, which is a list containing: a matrix giving the DAG definition of the most probable posterior structure, the cache of pre-computed scores and the score used for selection.

References

Examples

```r
## Not run:
##############################
## Example 1
##############################
```

```r
## This data comes with `abn` see ?ex1.dag.data
```
mydat <- ex1.dag.data[1:5000, c(1:7,10)]

Setup distribution list for each node:
mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial",
p2="poisson", b3="binomial", g2="gaussian", g3="gaussian")

Parent limits, for speed purposes quite specific here:
max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2)
Now build cache (no constraints in ban nor retain)
mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par)

Find the globally best DAG:
mp.dag <- mostProbable(score.cache=mycache)
myres <- fitAbn(object=mp.dag,create.graph=TRUE)
myres$mlik
plot(myres) # plot the best model

last line is essentially equivalent to:
plotAbn(dag=mp.dag$dag, data.dists=mydists, fitted.values=myres$modes)

Fit the known true DAG (up to variables 'b4' and 'b5'):
true.dag <- matrix(data=0, ncol=8, nrow=8)
colnames(true.dag) <- rownames(true.dag) <- names(mydists)
true.dag["p2",c("b1","p1")]<- 1
true.dag["b3",c("b1","g1","b2")]<- 1
true.dag["g2",c("p1","g1","b2")]<- 1
true.dag["g3",c("g1","b2")]<- 1
fitAbn(dag=true.dag, data.df=mydat, data.dists=mydists)$mlik

###

Example 2 - models with random effects

This data comes with abn see ?ex3.dag.data
mydat <- ex3.dag.data[,c(1:4,14)]
mydists <- list(b1="binomial", b2="binomial", b3="binomial", b4="binomial")

This takes a few seconds and requires INLA:
mycache.mixed <- buildScoreCache(data.df=mydat, data.dists=mydists,
group.var="group", cor.vars=c("b1","b2","b3","b4"),
max.parents=2, which.nodes=c(1:4))

Find the most probable DAG:
mp.dag <- mostProbable(score.cache=mycache.mixed)

and get goodness of fit:
fitAbn(object=mp.dag, data.df=mydat, data.dists=mydists,
group.var="group", cor.vars=c("b1","b2","b3","b4"))$mlik

End(Not run)
nobs.abnFit

Print number of observations of objects of class abnFit

Description

Print number of observations of objects of class abnFit

Usage

S3 method for class 'abnFit'
nobs(object, ...)
Description

Compute the odds ratio from a contingency table or a matrix.

Usage

\texttt{or(x)}

Arguments

\begin{itemize}
 \item \texttt{x} \quad a 2x2 table or matrix.
\end{itemize}

Value

A real value.

\begin{itemize}
 \item \texttt{pigs.vienna} \quad \textit{Dataset related to diseases present in ‘finishing pigs’, animals about to enter the human food chain at an abattoir.}
\end{itemize}

Description

The data we consider here comprise of a randomly chosen batch of 50 pigs from each of 500 randomly chosen pig producers in the UK. The dataset consists of 25000 observations, 10 binary variables, and a grouping variable. These are ‘finishing pigs’, animals about to enter the human food chain at an abattoir. Further description of the data set is present on the vignette.

Usage

\texttt{pigs.vienna}

Format

A data frame with a mixture of 10 discrete variables, each of which is set as a factor, and a grouping variable.

\begin{itemize}
 \item PCBinary.
 \item PTBinary.
 \item MSBinary.
 \item HSBinary.
 \item TAILBinary.
 \item AbscessBinary.
\end{itemize}
• PyaemiaBinary.
• EPcatBinary.
• PDcatBinary.
• plbinaryBinary.
• batchGroup variable, corresponding to the 500 different pig producers

Details
This dataset was used in an older version of the vignette. See also the files provided in the package directories inst/bootstrapping_example and inst/old_vignette give a detailed analysis of the dataset and provide more details for a bootstrapping example thereof.

References

plot.abnDag

Plots DAG from an object of class abnDag

Description
Plots DAG from an object of class abnDag

Usage
S3 method for class 'abnDag'
plot(x, new = TRUE, ...)

Arguments
x Object of class abnDag
new defaults to TRUE for opening a new plot.
... additional parameters. Not used at the moment.

Value
Rgraphviz::plot

Examples
mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1))
plot(mydag)
plot.abnFit

Plot objects of class abnFit

Description

Plot objects of class abnFit

Usage

S3 method for class 'abnFit'
plot(x, which = "abnFit", ...)

Arguments

x Object of class abnFit
which defaults to "abnFit".
... additional parameters. Not used at the moment.

plot.abnHeuristic

Plot objects of class abnHeuristic

Description

Plot objects of class abnHeuristic

Usage

S3 method for class 'abnHeuristic'
plot(x, ...,)

Arguments

x Object of class abnHeuristic
... additional parameters. Not used at the moment.
plot.abnHillClimber

Plot objects of class abnHillClimber

Description

Plot objects of class abnHillClimber

Usage

S3 method for class 'abnHillClimber'
plot(x, new = TRUE, ...)

Arguments

x
Object of class abnHillClimber

new
defaults to TRUE for opening a new plot.

...
additional parameters. Not used at the moment.

plot.abnMostprobable

Plot objects of class abnMostprobable

Description

Plot objects of class abnMostprobable

Usage

S3 method for class 'abnMostprobable'
plot(x, new = TRUE, ...)

Arguments

x
Object of class abnMostprobable

new
defaults to TRUE for opening a new plot.

...
additional parameters. Not used at the moment.
plotAbn
Plot an ABN graphic

Description

Plot an ABN DAG using formula statement or a matrix in using Rgraphviz through the graphAM class.

Usage

```
plotAbn(dag, data.dists=NULL, markov.blanket.node=NULL, fitted.values=NULL,
        digits=2, edge.strength=NULL, edge.strength.lwd=5, edge.direction="pc",
        edge.color="black", edge.linetype="solid", edge.arrowsize=0.6,
        edge.fontsize=node.fontsize, node.fontsize=12,
        node.fillcolor=c("lightblue", "brown3", "chartreuse3"),
        node.fillcolor.list=NULL,
        node.shape=c("circle", "box", "ellipse", "diamond"),
        plot=TRUE , ...)
```

Arguments

- `dag` a matrix or a formula statement (see details for format) defining the network structure, a Directed Acyclic Graph (DAG). Note that rownames must be set or given in `data.dists`.
- `data.dists` a named list giving the distribution for each node in the network, see details.
- `markov.blanket.node` name of variables to display its Markov blanket.
- `fitted.values` modes or coefficients outputted from `fitAbn`.
- `digits` number of digits to display the `fitted.values`.
- `edge.strength` a named matrix containing evaluations of edge strength which will change the arcs width (could be Mutual information, p-values, number of bootstrap retrieve samples or the outcome of the `linkStrength`).
- `edge.strength.lwd` maximum line width for `edge.strength`.
- `edge.direction` character giving the direction in which arcs should be plotted, pc (parent to child) or cp (child to parent) or undirected.
- `edge.color` the colour of the edge.
- `edge.linetype` the linetype of the edge. Defaults to "solid". Valid values are the same as for the R's base graphic parameter lty.
- `edge.arrowsize` the thickness of the arrows. Not relevant if arc.strength is provided.
- `edge.fontsize` the font size of the arcs fitted values.
- `node.fontsize` the font size of the nodes names.
- `node.fillcolor` the colour of the node. Second and third element is used for the Markov blanket and node of the Markov blanket.
node.fillcolor.list
the list of node that should be coloured.
node.shape
the shape of the nodes according the Gaussian, binomial, Poisson and multinomial distributions.
plot
logical variable, if set to TRUE then the graph is plotted.
...
arguments passed to the plotting function.

Details
By default binomial nodes are squares, multinomial nodes are empty, Gaussian nodes are circles and poison nodes are ellipses.
The dag can be provided using a formula statement (similar to glm). A typical formula is ~ node1|parent1:parent2 + node2:node3|parent3.
The construction is based on the graph package. Properties of the graph can be changed after the construction, see ‘Examples’.

Value
A rendered graph, if plot=TRUE. The graphAM object is returned invisibly.

See Also
graphAM-class, edgeRenderInfo

Examples
#Define distribution list
dist <- list(a="gaussian", b="gaussian", c="gaussian", d="gaussian", e="binomial", f="binomial")

#Define a matrix formulation
edge.strength <- matrix(c(0,0.5,0.5,0.7,0.1,0,
0,0.03,0.1,0,0.8,
0,0,0.35,0.66,0,
0,0,0,0.9,0,
0,0,0,0,0.8,
0,0,0,0,0,0),nrow = 6L, ncol = 6L, byrow = TRUE)

Naming of the matrix
colnames(edge.strength) <- rownames(edge.strength) <- names(dist)

Plot form a matrix
plotAbn(dag = edge.strength, data.dists = dist)

Edge strength
plotAbn(dag = ~a|b:c:d:e+b|c:d:f+c|d:e+d|e+e|f, data.dists = dist, edge.strength = edge.strength)

Plot from a formula for a different DAG!
plotAbn(dag = ~a|b:c:e+b|c:d:f+e|f, data.dists = dist)

Markov blanket
plotAbn(dag = ~a|b:c:e+b|c:d:f+e|f, data.dists = dist, markov.blanket.node = "e")

Change col for all edges
tmp <- plotAbn(dag = ~a|b:c:e+b|c:d:f+e|f, data.dists = dist, plot=FALSE)
graph::edgeRenderInfo(tmp) <- list(col="blue")
Rgraphviz::renderGraph(tmp)

Change lty for individual ones. Named vector is necessary
tmp <- plotAbn(dag = ~a|b:c:e+b|c:d:f+e|f, data.dists = dist, plot=FALSE)
edgelty <- rep(c("solid","dotted"), c(6,1))
names(edgelty) <- names(graph::edgeRenderInfo(tmp, "col"))
graph::edgeRenderInfo(tmp) <- list(lty=edgelty)
Rgraphviz::renderGraph(tmp)

print.abnCache

Print objects of class abnCache

Description
Print objects of class abnCache

Usage
S3 method for class 'abnCache'
print(x, digits = 3, ...)

Arguments
x Object of class abnCache
digits number of digits of the results.
... additional parameters. Not used at the moment.

Value
summary statement of the class of abnCache.

Examples
Subset of the build-in dataset, see ?ex0.dag.data
mydat <- ex0.dag.data[,c("b1","b2","g1","g2","b3","g3")]
take a subset of cols

setup distribution list for each node
mydists <- list(b1="binomial", b2="binomial", g1="gaussian",
g2="gaussian", b3="binomial", g3="gaussian")

Structural constraints
ban arc from b2 to b1
always retain arc from g2 to g1
parent limits
max.par <- list("b1"=2, "b2"=2, "g1"=2, "g2"=2, "b3"=2, "g3"=2)

now build the cache of pre-computed scores accordingly to the structural constraints
res.c <- buildScoreCache(data.df=mydat, data.dists=mydists,
dag.banned= ~b1|b2, dag.retained= ~g1|g2, max.parents=max.par)
print(res.c)

print.abnDag

Print objects of class abnDag

Description

Print objects of class abnDag

Usage

S3 method for class 'abnDag'
print(x, digits = 3L, ...)

Arguments

x Object of class abnDag
digits number of digits of the adjacency matrix.
... additional parameters. Not used at the moment.

Value

outputs adjacency matrix and statement of the class of x.

Examples

mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1))
print(mydag)
print.abnFit

Print objects of class abnFit

Description

Print objects of class abnFit

Usage

S3 method for class 'abnFit'
print(x, digits = 3L, ...)

Arguments

x Object of class abnFit
digits number of digits of the results.
... additional parameters. Not used at the moment.

print.abnHeuristic

Print objects of class abnHeuristic

Description

Print objects of class abnHeuristic

Usage

S3 method for class 'abnHeuristic'
print(x, digits = 2L, ...)

Arguments

x Object of class abnHeuristic
digits number of digits of the results.
... additional parameters. Not used at the moment.
print_abnHillClimber

Description

Print objects of class abnHillClimber

Usage

```r
## S3 method for class 'abnHillClimber'
print(x, digits = 3L, ...)
```

Arguments

- `x`: Object of class abnHillClimber
- `digits`: number of digits of the results.
- `...`: additional parameters. Not used at the moment.

print_abnMostprobable

Description

Print objects of class abnMostprobable

Usage

```r
## S3 method for class 'abnMostprobable'
print(x, digits = 3L, ...)
```

Arguments

- `x`: Object of class abnMostprobable
- `digits`: number of digits of the results.
- `...`: additional parameters. Not used at the moment.
scoreContribution

Compute the score’s contribution in a network of each observation.

Description

This function computes the score’s contribution of each observation to the total network score.

Usage

```r
scoreContribution(object = NULL,
                   dag = NULL, data.df = NULL, data.dists = NULL,
                   verbose = FALSE)
```

Arguments

- `object`: an object of class ‘`abnLearned`’ produced by `mostProbable`, `searchHeuristic` or `searchHillClimber`.
- `dag`: a matrix or a formula statement (see details) defining the network structure, a directed acyclic graph (DAG), see details for format. Note that colnames and rownames must be set.
- `data.df`: a data frame containing the data used for learning the network, binary variables must be declared as factors and no missing values all allowed in any variable.
- `data.dists`: a named list giving the distribution for each node in the network, see details.
- `verbose`: if `TRUE` then provides some additional output.

Details

This function computes the score contribution of each observation to the total network score. This function is available only in the `mle` settings. To do so one uses the `glm` and `predict` functions. This function is an attempt to perform diagnostic for an ABN analysis.

Value

A named list that contains the scores contributions: maximum likelihood, aic, bic, mdl and diagonal values of the hat matrix.

Examples

```r
## Not run:
## Use a subset of a built-in simulated data set
mydat <- ex1.dag.data[,c("b1","g1","p1")]

## setup distribution list for each node
mydists <- list(b1="binomial", g1="gaussian", p1="poisson")

## now build cache
mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2, method = "mle")
```
Find the globally best DAG

```r
mp.dag <- mostProbable(score.cache=mycache, score="bic", verbose = FALSE)
```

```r
out <- scoreContribution(object = mp.dag)
```

Observations contribution per network node

```r
boxplot(out$bic)
```

End(Not run)

searchHeuristic

A family of heuristic algorithms that aims at finding high scoring directed acyclic graphs

Description

A flexible implementation of multiple greedy search algorithms to find high scoring network (DAG)

Usage

```r
searchHeuristic(score.cache, score = "mlik", 
    num.searches = 1, seed = 42L, start.dag = NULL, 
    max.steps = 100, 
    algo = "hc", tabu.memory = 10, temperature = 0.9, 
    verbose = FALSE, ...)
```

Arguments

- `score.cache` output from `buildScoreCache()`.
- `score` which score should be used to score the network. Possible choices are `aic`, `bic`, `mdl`, `mlik`.
- `num.searches` a positive integer giving the number of different search to run, see details.
- `seed` a non-negative integer which sets the seed.
- `start.dag` a DAG given as a matrix, see details for format, which can be used to explicity provide a starting point for the structural search.
- `max.steps` a constant giving the number of search steps per search, see details.
- `algo` which heuristic algorithm should be used. Possible choices are: `hc`, `tabu`, `sa`.
- `tabu.memory` a non-negative integer number to set the memory of the tabu search.
- `temperature` a real number giving the update in temperature for the `sa` (simulated annealing) search algorithm.
- `verbose` if TRUE then provides some additional output.
- `...` further arguments passed to or from other methods.
searchHeuristic

Details

This function is a flexible implementation of multiple greedy heuristic algorithms, particularly well adapted to the abn framework. It targets multi-random restarts heuristic algorithms. The user can select the num.searches and the maximum number of steps within by max.steps. The optimization algorithm within each search is relatively rudimentary.

The function searchHeuristic is different from the searchHillClimber in the sense that this function is fully written in R, whereas the searchHillClimber is written in C and thus expected to be faster. The function searchHillClimber at each hill-climbing step consider every information from the pre-computed scores cache while the function searchHeuristic performs a local stepwise optimization. This function chooses a structural move (or edge move) and compute the score’s change. On this point, it is closer to the MCMCMC algorithm from Madigan and York (1995) and Giudici and Castelo (2003) with a single edge move.

If the user select random, then a random valid DAG is selected. The routine used favourise low density structure. The function implements three algorithm selected with the parameter algo: hc, tabu or sa.

If algo=hc: The Hill-climber algorithm (hc) is a single move algorithm. At each Hill-climbing step within a search an arc is attempted to be added. The new score is computed and compared to the previous network’s score.

If algo=tabu: The same algorithm is as with hc is used, but a list of banned moves is computed. The parameter tabu.memory controls the length of the tabu list. The idea is that the classical Hill-climber algorithm is inefficient when it should cross low probability regions to unblock from a local maximum and reaching a higher score peak. By forcing the algorithm to choose some not already used moves, this will force the algorithm to escape the local maximum.

If algo=sa: This variant of the heuristic search algorithm is based on simulated annealing described by Metropolis et al. (1953). Some accepted moves could result in a decrease of the network score. The acceptance rate can be monitored with the parameter temperature.

Value

An object of class abnHeuristic (which extends the class abnLearned) and contains list with entries:

- dags: list of DAGs
- scores: a vector giving the network score for the locally optimal network for each search
- detailed.score: a vector giving the evolution of the network score for the all the random restarts
- score: a number giving the network score for the locally optimal network
- score.cache: the pre-computed cache of scores
- num.searches: a numeric giving the number of random restart
- max.steps: a numeric giving the maximal number of optimization steps within each search
- algo: a character for indicating the algorithm used

References

Examples

```r
## Not run:
##############################################
## example: use built-in simulated data set
##############################################

mydat <- ex1.dag.data ## this data comes with abn see ?ex1.dag.data

## setup distribution list for each node
mydists<-list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial",
p2="poisson", b3="binomial", g2="gaussian", b4="binomial",
b5="binomial", g3="gaussian")

mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2)

## Now perform 10 greedy searches
heur.res <- searchHeuristic(score.cache = mycache, data.dists = mydists,
                             start.dag = "random", num.searches = 10,
                             max.steps = 50)

## Plot (one) dag
plotAbn(heur.res$dags[[1]], data.dists = mydists)

## End(Not run)
```

searchHillClimber

Find high scoring directed acyclic graphs using heuristic search.

Description

Find high scoring network (DAG) structures using a random re-starts greedy hill-climber heuristic search.

Usage

```r
searchHillClimber(score.cache, score = "mlik", num.searches = 1, seed = 42,
                   start.dag = NULL, support.threshold = 0.5, timing.on = TRUE,
                   dag.retained = NULL, verbose = FALSE, ...)
```
Arguments

- **score.cache**: output from `buildScoreCache()`.
- **score**: character giving which network score should be used to select the structure. Currently 'mlik' only.
- **num.searches**: number of times to run the search.
- **seed**: non-negative integer which sets the seed in the GSL random number generator.
- **start.dag**: a DAG given as a matrix, see details for format, which can be used to provide a starting point for the structural search explicitly.
- **support.threshold**: the proportion of search results - each locally optimal DAG - in which each arc must appear to be a part of the consensus network.
- **timing.on**: extra output in terms of duration computation.
- **dag.retained**: a DAG given as a matrix, see details for format. This is necessary if the score.cache was created using an explicit retain matrix, and the same retain matrix should be used here. dag.retained is used by the algorithm which generates the initial random DAG to ensure that the necessary arcs are retained.
- **verbose**: extra output.
- **...**: further arguments passed to or from other methods.

Details

The procedure runs a greedy hill-climbing search similar, but not identical, to the method presented initially in Heckerman et al. 1995. (Machine Learning, 20, 197-243). Each search begins with a randomly chosen DAG structure where this is constructed in such a way as to attempt to choose a DAG uniformly from the vast landscape of possible structures. The algorithm used is as follows: given a node cache (from `buildScoreCache`, then within this set of all allowed local parent combinations, a random combination is chosen for each node. This is then combined into a full DAG, which is then checked for cycles, where this check iterates over the nodes in a random order. If all nodes have at least one child (i.e., at least one cycle is present), then the first node examined has all its children removed, and the check for cycles is then repeated. If this has removed the only cycle present, then this DAG is used at the starting point for the search, if not, a second node is chosen (randomly) and the process is then repeated until a DAG is obtained.

The actual hill-climbing algorithm itself differs slightly from that presented in Heckerman et al. as a full cache of all possible local combinations are available. At each hill-climbing step, everything in the node cache is considered. In other words, all possible single swaps between members of cache currently present in the DAG and those in the full cache. The single swap, which provides the greatest increase in goodness of fit is chosen. A single swap here is the removal or addition of any one node-parent combination present in the cache while avoiding a cycle. This means that as well as all single arc changes (addition or removal), multiple arc changes are also considered at each same step, note however that arc reversal in this scheme takes two steps (as this requires first removal of a parent arc from one node and then addition of a parent arc to a different node). The original algorithm perturbed the current DAG by only a single arc at each step but also included arc reversal. The current implementation may not be any more efficient than the original but is arguably more natural given a pre-computed cache of local scores.
simulateAbn

A start DAG may be provided in which case num.searches must equal 1 - this option is really just to provide a local search around a previously identified optimal DAG.

This function is designed for two different purposes: i) interactive visualization; and ii) longer batch processing. The former provides easy visual "eyeballing" of data in terms of its majority consensus network (or similar threshold), which is a graphical structure which comprises of all arcs which feature in a given proportion (support.threshold) of locally optimal DAGs already identified during the run. The general hope is that this structure will stabilize - become fixed - relatively quickly, at least for problems with smaller numbers of nodes.

Value

A list with entries:

- init.score: a vector giving network score for initial network from which the search commenced
- final.score: a vector giving the network score for the locally optimal network
- init.dag: list of matrices, initial DAGs
- final.dag: list of matrices, locally optimal DAGs
- consensus: a matrix holding a binary graph, not necessary a DAG!
- support.threshold: percentage supported used to create consensus matrix

References

simulateAbn

Simulate data from a fitted additive Bayesian network.

Description

Simulate data from a fitted additive Bayesian network.

Usage

```r
simulateAbn(
  object = NULL,
  run.simulation = TRUE,
  bugsfile = NULL,
  n.chains = 10L,
  n.adapt = 1000L,
  n.thin = 100L,
  n.iter = 10000L,
  seed = 42L,
  verbose = FALSE,
  debug = FALSE
)
```
simulateAbn

Arguments

- **object**: of type abnFit.
- **run.simulation**: call JAGS to simulate data (default is TRUE).
- **bugsfile**: A path to a valid file or NULL (default) to delete the bugs file after simulation.
- **n.chains**: number of parallel chains for the model.
- **n.adapt**: number of iteration for adaptation. If n.adapt is set to zero, then no adaptation takes place.
- **n.thin**: thinning interval for monitors.
- **n.iter**: number of iteration to monitor.
- **seed**: by default set to 42.
- **verbose**: if TRUE prints additional output
- **debug**: if TRUE prints bug file content to stdout and does not run simulations.

Value
data.frame

See Also
makebugs

Examples

df <- FCV[, c(12:15)]
mydists <- list(Outdoor="binomial",
 Sex="multinomial",
 GroupSize="poisson",
 Age="gaussian")

buildScoreCache -> mostProbable() -> fitAbn()
suppressWarnings({
 mycache.mle <- buildScoreCache(data.df = df, data.dists = mydists, method = "mle",
 adj.vars = NULL, cor.vars = NULL,
 dag.banned = NULL, dag.retained = NULL,
 max.parents = 1,
 which.nodes = NULL, defn.res = NULL)
}) # ignore non-convergence warnings

mp.dag.mle <- mostProbable(score.cache = mycache.mle, verbose = FALSE)
myres.mle <- fitAbn(object = mp.dag.mle, method = "mle")

myres.sim <- simulateAbn(object = myres.mle,
 run.simulation = TRUE,
 bugsfile = NULL,
 verbose = FALSE)

str(myres.sim)
prop.table(table(myres.sim$Outdoor))
prop.table(table(df$Outdoor))
simulateDag

Simulate a DAG with arbitrary arcs density

Description

Provided with node names, returns an abnDAG. Arc density refers to the chance of a node being connected to the node before it.

Usage

simulateDag(node.name, data.dists = NULL, edge.density = 0.5, verbose = FALSE)

Arguments

- **node.name**: a vector of character giving the names of the nodes. It gives the size of the simulated DAG.
- **data.dists**: named list corresponding to the node.name specifying the distribution for each node. If not provided arbitrary distributions are assigned to the nodes.
- **edge.density**: number in \([0, 1]\) specifying the edge probability in the dag.
- **verbose**: print more information on the run.

Details

This function generates DAGs by sampling triangular matrices and reorder columns and rows randomly. The network density (edge.density) is used column-wise as binomial sampling probability. Then the matrix is named using the user-provided names.

Value

object of class abnDag consisting of a named matrix, a named list giving the distribution for each node and an empty element for the data.

Examples

```r
simdag <- simulateDag(node.name = c("a", "b", "c", "d"),
                       edge.density = 0.5,
                       data.dists = list(a = "gaussian",
                                          b = "binomial",
                                          c = "poisson",
                                          d = "multinomial"))
```

```r
## Example using Ozon entries:

```r
dist <- list(Ozone="gaussian", Solar.R="gaussian", Wind="gaussian",
 Temp="gaussian", Month="gaussian", Day="gaussian")
```

```r
out <- simulateDag(node.name = names(dist), data.dists = dist, edge.density = 0.8)
```

```r
plot(out)
```
skewness

Computes skewness of a distribution

Description
Computes skewness of a distribution

Usage

skewness(x)

Arguments

x  a numeric vector

Value

integer

summary.abnDag

Prints summary statistics from an object of class abnDag

Description
Prints summary statistics from an object of class abnDag

Usage

## S3 method for class 'abnDag'
summary(object, ...)

Arguments

object an object of class abnLearned, abnFit. Alternatively, a matrix or a formula statement defining the network structure, a directed acyclic graph (DAG). Note that row names must be set up or given in node.names.

... additional parameters. Not used at the moment.

Examples

mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1))
summary(mydag)
summary.abnFit  

Print summary of objects of class abnFit

Description

Print summary of objects of class abnFit

Usage

## S3 method for class 'abnFit'
summary(object, digits = 3L, ...)

Arguments

object Object of class abnFit
digits number of digits of the results.
... additional parameters. Not used at the moment.

summary.abnMostprobable

Print summary of objects of class abnMostprobable

Description

Print summary of objects of class abnMostprobable

Usage

## S3 method for class 'abnMostprobable'
summary(object, ...)

Arguments

object Object of class abnMostprobable
... additional parameters. Not used at the moment.
toGraphviz

Convert a DAG into graphviz format

Description

Given a matrix defining a DAG create a text file suitable for plotting with graphviz.

Usage

toGraphviz(dag, data.df=NULL, data.dists=NULL, group.var=NULL, outfile=NULL, directed=TRUE, verbose=FALSE)

Arguments

dag a matrix defining a DAG.
data.df a data frame containing the data used for learning the network.
data.dists a list with named arguments matching the names of the data frame which gives the distribution family for each variable. See fitAbn for details.
group.var only applicable for mixed models and gives the column name in data.df of the grouping variable (which must be a factor denoting group membership). See fitAbn for details.
outfile a character string giving the filename which will contain the graphviz graph.
directed logical; if TRUE, a directed acyclic graph is produced, otherwise an undirected graph.
verbose if TRUE more output is printed. If TRUE and 'outfile=NULL' the '.dot' file is printed to console.

Details

Graphviz (https://www.graphviz.org) is a visualisation software developed by AT&T and freely available. This function creates a text representation of the DAG, or the undirected graph, so this can be plotted using graphviz. The R package, Rgraphviz (available through the Bioconductor project https://www.bioconductor.org/) interfaces R and the working installation of graphviz.

Binary nodes will appear as squares, Gaussian as ovals and Poisson nodes as diamonds in the resulting graphviz network diagram. There are many other shapes possible for nodes and numerous other visual enhancements - see online graphviz documentation.

Bespoke refinements can be added by editing the raw outfile produced. For full manual editing, particularly of the layout, or adding annotations, one easy solution is to convert a postscript format graph (produced in graphviz using the -Tps switch) into a vector format using a tool such as pstoedit (http://www.pstoedit.net/), and then edit using a vector drawing tool like xfig. This can then be resaved as postscript or pdf thus retaining full vector quality.
Nothing is returned, but a file `outfile` written.

Fraser Iain Lewis  
Marta Pittavino

## Examples

```r
On a typical linux system the following code constructs a nice
looking pdf file 'graph.pdf'.
Not run:
Subset of a build-in dataset
mydat <- ex0.dag.data[,c("b1","b2","b3","g1","b4","p2","p4")]

setup distribution list for each node
mydists <- list(b1="binomial", b2="binomial", b3="binomial",
g1="gaussian", b4="binomial", p2="poisson",
p4="poisson")

specify DAG model
mydag <- matrix(c(0,1,0,0,0,0,0, #
0,0,0,0,0,0,0, #
0,1,0,0,1,0,0, #
1,0,0,0,0,1,0, #
0,0,0,0,0,0,0, #
0,0,1,0,0,0,0, #
0,0,0,1,0,0,0, #
0,0,0,0,1,0,0 #), byrow=TRUE, ncol=7)

colnames(mydag) <- rownames(mydag) <- names(mydat)

create file for processing with graphviz
outfile <- paste(tempdir(), "graph.dot", sep="/")
toGraphviz(dag=mydag, data.df=mydat, data.dists=mydists, outfile=outfile)
and then process using graphviz tools e.g. on linux
system(paste("dot -Tpdf -o graph.pdf", outfile))
system("evince graph.pdf")

Example using data with a group variable where b1<-b2
mydag <- matrix(c(0,1,0,0), byrow=TRUE, ncol=2)

specific distributions
mydists <- list(b1="binomial", b2="binomial")

create file for processing with graphviz
outfile <- paste0(tempdir(), "/graph.dot")
toGraphviz(dag=mydag, data.df=ex3.dag.data[,c(1,2,14)], data.dists=mydists,
group.var="group",
outfile=outfile, directed=FALSE)
and then process using graphviz tools e.g. on linux:
```
validate_dists

Check for valid distribution

Description

The distribution names must match inla() family=''. Similar to get.var.types(), mainly different in output.

Usage

validate_dists(data.dists, returnDists = TRUE, ...)
Arguments

- `data.dists` list of variable distributions.
- `returnDists` if TRUE (default) returns the same list as provided.
- `...` additional arguments.

Value

either TRUE/FALSE or list of variable distributions as provided as input.

---

**var33**

*simulated dataset from a DAG comprising of 33 variables*

---

Description

250 observations simulated from a DAG with 17 binary variables and 16 continuous. A DAG of this data features in the vignette. Note that the conditional dependence relations given are those in the population and may differ in the realization of 250 observations.

Usage

- `var33`

Format

A data frame with a mixture of discrete variables each of which is set as a factor and continuous variables. Joint distribution structure used to generate the data.

- v1Binary, independent.
- v2Gaussian, conditionally dependent upon v1.
- v3Binary, independent.
- v4Binary, conditionally dependent upon v3.
- v5Gaussian, conditionally dependent upon v6.
- v6Binary, conditionally dependent upon v4 and v7.
- v7Gaussian, conditionally dependent upon v8.
- v8Gaussian, conditionally dependent upon v9.
- v9Binary, conditionally dependent upon v10.
- v10Binary, independent.
- v11Binary, conditionally dependent upon v10, v12 and v19.
- v12Binary, independent.
- v13Gaussian, independent.
- v14Gaussian, conditionally dependent upon v13.
- v15Binary, conditionally dependent upon v14 and v21.
- v16 Gaussian, independent.
- v17 Gaussian, conditionally dependent upon v16 and v20.
- v18 Binary, conditionally dependent upon v20.
- v19 Binary, conditionally dependent upon v20.
- v20 Binary, independent.
- v21 Binary, conditionally dependent upon v20.
- v22 Gaussian, conditionally dependent upon v21.
- v23 Gaussian, conditionally dependent upon v21.
- v24 Gaussian, conditionally dependent upon v23.
- v25 Gaussian, conditionally dependent upon v23 and v26.
- v26 Binary, conditionally dependent upon v20.
- v27 Binary, independent.
- v28 Binary, conditionally dependent upon v27, v29 and v31.
- v29 Gaussian, independent.
- v30 Gaussian, conditionally dependent upon v29.
- v31 Gaussian, independent.
- v32 Binary, conditionally dependent upon v21, v29 and v31.
- v33 Gaussian, conditionally dependent upon v31.

Examples

```r
Constructing the DAG of the dataset:
dag33 <- matrix(0, 33, 33)
dag33[2,1] <- 1
dag33[4,3] <- 1
dag33[6,4] <- 1; dag33[6,7] <- 1
dag33[5,6] <- 1
dag33[7,8] <- 1
dag33[8,9] <- 1
dag33[9,10] <- 1
dag33[14,13] <- 1
dag33[17,16] <- 1; dag33[17,20] <- 1
dag33[15,14] <- 1; dag33[15,21] <- 1
dag33[18,20] <- 1
dag33[19,20] <- 1
dag33[21,20] <- 1
dag33[22,21] <- 1
dag33[23,21] <- 1
dag33[24,23] <- 1
dag33[25,23] <- 1; dag33[25,26] <- 1
dag33[26,20] <- 1
dag33[33,31] <- 1
dag33[33,31] <- 1
dag33[32,21] <- 1; dag33[32,31] <- 1; dag33[32,29] <- 1
dag33[30,29] <- 1
dag33[28,27] <- 1; dag33[28,29] <- 1; dag33[28,31] <- 1
```
Index

* Bayes
  buildScoreCache, 11
  calc.node.inla.glm, 18
  calc.node.inla.glmm, 19
  fitAbn, 48
  getmarginals, 57
* DAG
  plot.abnDag, 71
  print.abnCache, 76
  print.abnDag, 77
  summary.abnDag, 88
* abn
  buildScoreCache, 11
  fitAbn, 48
* buildScoreCache.bayes
  buildScoreCache, 11
* buildScoreCache.mle
  buildScoreCache, 11
* buildScoreCache
  build.control, 7
  buildScoreCache, 11
* calc.node.inla.glmm
  buildScoreCache, 11
* calc.node.inla.glm
  buildScoreCache, 11
* datasets
  adg, 5
  ex0.dag.data, 34
  ex1.dag.data, 36
  ex2.dag.data, 37
  ex3.dag.data, 38
  ex4.dag.data, 39
  ex5.dag.data, 39
  ex6.dag.data, 40
  ex7.dag.data, 40
  FCV, 42
  pigs.vienna, 70
  var33, 93
* fitAbn.bayes
  buildScoreCache, 11
* fitAbn.mle
  buildScoreCache, 11
* fitAbn
  fit.control, 43
  fitAbn, 48
* hplot
  plotAbn, 74
* models
  buildScoreCache, 11
  fitAbn, 48
  mostProbable, 66
  plotAbn, 74
* utilities
  compareDag, 26
  discretization, 30
  entropyData, 32
  essentialGraph, 33
  expit, 41
  infoDag, 60
  linkStrength, 61
  logit, 63
  mb, 64
  miData, 65
  odds, 69
  or, 70
  scoreContribution, 80
  simulateDag, 87
  skewness, 88
  abn.version, 4
  adg, 5
  AIC.abnFit, 6
  BIC.abnFit, 6
  build.control, 7, 14, 16, 43, 47
  buildcachematrix (Cfunctions), 21
  buildScoreCache, 7, 8, 10, 11, 14, 19, 21, 23, 44, 50, 53, 60, 67, 84
calc.node.inla.glm, 16, 18, 21, 53, 60
calc.node.inla.glmm, 16, 19, 19, 53, 60
Cfunctions, 21
check.valid.buildControls, 21
check.valid.dag, 22
check.valid.data, 14, 22, 50
check validoit.fitControls, 23
check.valid.parents, 24
check which valid.nodes, 25
checkforcycles (Cfunctions), 21
coef.abnFit, 25
compareDag, 26
compareEG, 28
discretization, 30, 32, 61, 66
entropyData, 32, 65
essentialGraph, 33
ex0.dag.data, 34
ex1.dag.data, 36
ex2.dag.data, 37
ex3.dag.data, 38
ex4.dag.data, 39
ex5.dag.data, 39
ex6.dag.data, 40
ex7.dag.data, 40
expit, 41
expit_cpp, 41
family.abnFit, 42
FCV, 42
fit.control, 7, 10, 43, 50, 53, 59
fit.single_node (Cfunctions), 21
fitAbn, 8, 14–16, 19, 21, 23, 43, 44, 47, 48, 60, 67, 74, 90
fitabn.marginals (Cfunctions), 21
forLoopContent (buildScoreCache), 11
glm, 80
get.var.types, 56
getmarginals, 16, 19, 21, 53, 57
infoDag, 60
linkStrength, 61, 74
lme4::convergence(), 10, 47
lmerControl, 9, 10, 46
nobs.abnFit, 69
pigs.vienna, 70
plot.abnDag, 71
plot.abnFit, 72
plot.abnHeuristic, 72
plot.abnHillClimber, 73
plot.abnMostprobable, 73
plotAbn, 74
predict, 80
print.abnCache, 76
print.abnDag, 77
print.abnFit, 78
print.abnHeuristic, 78
print.abnHillClimber, 79
print.abnMostprobable, 79
R.version, 4
regressionLoop (fitAbn), 48
scoreContribution, 80
searchHeuristic, 14, 15, 50, 81, 82
searchHill (Cfunctions), 21
searchHillClimber, 50, 80, 82, 83
simulateAbn, 85
simulateDag, 87
skewness, 88
summary.abnDag, 88
summary.abnFit, 89
summary.abnMostprobable, 89
toGraphviz, 90
validate_abnDag, 92
validate_dists, 92
var33, 93
logit, 63
logit_cpp, 63
logLik.abnFit, 64
makebugs, 86
mb, 64
mclogit.control, 10, 47
miData, 65
mostProbable, 14, 15, 50, 66, 80
mostprobable_C (Cfunctions), 21
odds, 69
or, 70
pigs.vienna, 70
plot.abnDag, 71
plot.abnFit, 72
plot.abnHeuristic, 72
plot.abnHillClimber, 73
plot.abnMostprobable, 73
plotAbn, 74
predict, 80
print.abnCache, 76
print.abnDag, 77
print.abnFit, 78
print.abnHeuristic, 78
print.abnHillClimber, 79
print.abnMostprobable, 79
R.version, 4
regressionLoop (fitAbn), 48
scoreContribution, 80
searchHeuristic, 14, 15, 50, 81, 82
searchHill (Cfunctions), 21
searchHillClimber, 50, 80, 82, 83
simulateAbn, 85
simulateDag, 87
skewness, 88
summary.abnDag, 88
summary.abnFit, 89
summary.abnMostprobable, 89
toGraphviz, 90
validate_abnDag, 92
validate_dists, 92
var33, 93