Package ‘accrual’

July 17, 2016

Type Package
Title Bayesian Accrual Prediction
Version 1.2
Date 2016-07-16
Author Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski
Maintainer Junhao Liu <jliuT@kumc.edu>
Depends R(>= 3.1.3), tcltk2
Imports fgui, SMPPracticals
Description Subject recruitment for medical research is challenging. Slow patient accrual leads to delay in research. Accrual monitoring during the process of recruitment is critical. Researchers need reliable tools to manage the accrual rate. We developed a Bayesian method that integrates researcher's experience on previous trials and data from the current study, providing reliable prediction on accrual rate for clinical studies. In this R package, we present functions for Bayesian accrual prediction which can be easily used by statisticians and clinical researchers.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-17 23:01:27

R topics documented:

accrual-package .. 2
accrual.data ... 3
accrual.gui ... 3
accrual.n.hedging ... 4
accrual.n.inform ... 4
accrual.n.plot .. 5
accrual.plots ... 6
Bayesian Accrual Prediction

Description

Description: Subject recruitment for medical research is challenging. Slow patient accrual leads to delay in research. Accrual monitoring during the process of recruitment is critical. Researchers need reliable tools to manage the accrual rate. We developed a Bayesian method that integrates researcher’s experience on previous trials and data from the current study, providing reliable prediction on accrual rate for clinical studies. In this R package, we present functions for Bayesian accrual prediction which can be easily used by statisticiana and clinical researchers.

Details

Package: accrual
Type: Package
Version: 1.2
Date: 2016-06-18
License: GPL-2

There are major eight functions in the package. The accrual.gui function provides the gui version.

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski
Maintainer: Junhao Liu <jliu4@kumc.edu>

References

Examples

accrual.n.inform(n=300, T=36, P=0.5, m=100, tm=10, Tp=36)
accrual.n.plot(n=300, T=36, P=0.5, m=100, tm=10, Tp=36, Method="Informative Prior")
accrual.T.plot(n=300, T=36, P=0.5, m=100, tm=10, np=300, Method="Informative Prior")
accrual.gui()
accrual.data

Example Accrual Data

Description

An example dataset for subject accrual.

Usage

accrual.data

Examples

str(accrual.data)
plot(accrual.data)
accrual.plots(accrual.data)

accrual.gui

GUI Version of the Bayesian Accrual Prediction

Description

The R GUI interface only needs the researchers to input the original design information that are required information for IRBs (total time proposed and total subjects proposed) and the updated accrual data (time since start and subjects accrual). It uses Bayesian prediction model in the background of calculation.

Usage

accrual.gui()

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

accrual.gui()
accrual.n.hedging
Prediction of Accrual with Hedging Prior in Fixed Time Frame

Description

Produce an output for prediction of the number of subjects can be recruited in a fixed time frame with Hedging Prior.

Usage

```r
accrual.n.hedging(n, t, m, tm, tp)
```

Arguments

- `n`
 Target sample size
- `t`
 Target completion time
- `m`
 Sample observed to date
- `tm`
 Time to date
- `tp`
 The specific time that want to predict the recruitment

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

```r
accrual.n.hedging(n=300, T=36, m=100, tm=10, Tp=36)[[1]]
```

accrual.n.inform
Prediction of Accrual with Informative Prior in Fixed Time Frame

Description

Produce an output for prediction of the number of subjects can be recruited in a fixed time frame with Informative Prior.

Usage

```r
accrual.n.inform(n, T, P, m, tm, Tp)
```
accrual.n.plot

Arguments

- **n**: Target sample size
- **T**: Target completion time
- **P**: The prior certainty, range 0-1
- **m**: Sample observed to date
- **tm**: Time to date
- **Tp**: The specific time that want to predict the recruitment

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

```
accrual.n.plot(n=300, T=36, P=0.5, m=100, tm=10, Tp=36)
```

accrual.n.plot *Plot for Prediction of Accrual in Fixed Time Frame*

Description

Produce a plot and output for prediction of the number of subjects can be recruited in a fixed time frame.

Usage

```
accrual.n.plot(n, T, P, m, tm, Tp, Method)
```

Arguments

- **n**: Target sample size
- **T**: Target completion time
- **P**: The prior certainty, range 0-1; For Accelerated Prior, \(P = 1 - \frac{m}{n} \)
- **m**: Sample observed to date
- **tm**: Time to date
- **Tp**: The specific time that want to predict the recruitment
- **Method**: Informative Prior, Accelerated Prior, Hedging Prior

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

```
accrual.n.plot(n=300, T=36, P=0.5, m=100, tm=10, Tp=36, Method="Informative Prior")
accrual.n.plot(n=300, T=36, m=100, tm=10, Tp=36, Method="Accelerated Prior")
accrual.n.plot(n=300, T=36, m=100, tm=10, Tp=36, Method="Hedging Prior")
```
accrual.plots

Dignostic Plots

Description

The diagnostic panel shows four figures that help to understand the data distribution. The figure on
the top left is the exponential quantile plot, which checks whether the distribution of waiting times
is exponential. The top right figure shows the histogram of the waiting times, with the red line is
the theoretical exponential distribution. The figure of waiting time verse cumulative accrual time is
shown on the bottom left. The figure of total accrual verse cumulative accrual time is shown on the
bottom right.

Usage

accrual.plots(w)

Arguments

w The accrual dataset

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

accrual.plots(accrual.data)

accrual.T.hedging

Prediction of Time with Hedging Prior

Description

Prediction of time frame with Hedging Prior for a certain number of subjects.

Usage

accrual.T.hedging(n, T, m, tm, np)

Arguments

n Target sample size
T Target completion time
m Sample observed to date
tm Time to date
np The specific number of subjects want to be predicted
accrual.T.inform

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

accrual.T.hedging(n=300, T=36, m=100, tm=10, np=300)[[1]]

accrual.T.inform

Prediction of Time with Informative Prior

Description

Prediction of time frame with Informative Prior for a certain number of subjects.

Usage

accrual.T.inform(n, T, P, m, tm, np)

Arguments

- **n**: Target sample size
- **T**: Target completion time
- **P**: The prior certainty, range 0-1
- **m**: Sample observed to date
- **tm**: Time to date
- **np**: The specific number of subjects want to be predicted

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

accrual.T.inform(n=300, T=36, P=0.5, m=100, tm=10, np=300)[[1]]
accrual.T.plot

Plot for Prediction of Time

Description

Produce a plot and output for prediction of time frame for a certain number of subjects.

Usage

```r
accrual.T.plot(n, T, P, m, tm, np, Method)
```

Arguments

- `n`: Target sample size
- `T`: Target completion time
- `P`: The prior certainty, range 0-1; For Accelerated Prior, \(P = 1 - m/n \)
- `m`: Sample observed to date
- `tm`: Time to date
- `np`: The specific number of subjects want to be predicted
- `Method`: Informative Prior, Accelerated Prior, Hedging Prior

Author(s)

Junhao Liu, Yu Jiang, Cen Wu, Steve Simon, Matthew S. Mayo, Rama Raghavan, Byron J. Gajewski

Examples

```r
accrual.T.plot(n=300, T=36, P=0.5, m=100, tm=10, np=300, Method="Informative Prior")
accrual.T.plot(n=300, T=36, m=100, tm=10, np=300, Method="Accelerated Prior")
accrual.T.plot(n=300, T=36, m=100, tm=10, np=300, Method="Hedging Prior")
```
Index

*Topic Bayesian
 accrual-package, 2
 accrual.gui, 3
 accrual.n.hedging, 4
 accrual.n.inform, 4
 accrual.n.plot, 5
 accrual.T.hedging, 6
 accrual.T.inform, 7
 accrual.T.plot, 8

*Topic Diagnostic
 accrual.plots, 6

*Topic accrual
 accrual-package, 2
 accrual.n.hedging, 4
 accrual.n.inform, 4
 accrual.T.hedging, 6
 accrual.T.inform, 7

*Topic datasets
 accrual.data, 3

*Topic exponetial
 accrual.plots, 6

*Topic gui
 accrual.gui, 3

*Topic plot
 accrual.n.plot, 5
 accrual.T.plot, 8

accrual (accrual-package), 2
accrual-package, 2
accrual.data, 3
accrual.gui, 3
accrual.n.hedging, 4
accrual.n.inform, 4
accrual.n.plot, 5
accrual.plots, 6
accrual.T.hedging, 6
accrual.T.inform, 7
accrual.T.plot, 8