Package ‘accrualPlot’

May 9, 2022

Type Package

Title Accrual Plots and Predictions for Clinical Trials

Version 1.0.1

Maintainer Lukas Bütikofer <lukas.buetikofer@ctu.unibe.ch>

Description Tracking accrual in clinical trials is important for trial success. If accrual is too slow, the trial will take too long and be too expensive. If accrual is much faster than expected, time sensitive tasks such as the writing of statistical analysis plans might need to be rushed. ‘accrualPlot’ provides functions to aid the tracking of accrual and predict when a trial will reach its intended sample size.

License MIT + file LICENSE

URL https://github.com/CTU-Bern/accrualPlot

BugReports https://github.com/CTU-Bern/accrualPlot/issues

Encoding UTF-8

Depends lubridate

Imports dplyr, ggplot2, grid, magrittr, purrr, rlang

RoxygenNote 7.1.1

Suggests knitr, markdown, patchwork, rmarkdown, testthat, vdiffr

VignetteBuilder knitr

NeedsCompilation no

Author Lukas Bütikofer [cre, aut], Alan G. Haynes [aut]

Repository CRAN

Date/Publication 2022-05-09 07:30:08 UTC

R topics documented:

accrual_create_df ... 2
accrual_linear_model .. 3

1
accrual_create_df

Description

Creates a data frame or a list of data frames that contains the absolute and cumululative number of participants recruited at each date from a vector with enrollment dates. Used as input for accrual plot functions.

Usage

accrual_create_df(
 enrollment_dates,
 by = NA,
 start_date = "site",
 current_date = "common",
 overall = TRUE,
 name_overall = "Overall",
 pos_overall = c("last", "first"),
 force_start0 = TRUE
)

Arguments

enrollment_dates
 date vector with one entry per participants.

by
 factor or character vector with sites, has to have the same length as enrollment dates. If not NA, a list with an accrual data frame for each site is generated.

start_date
 date when recruitment started. Single date (used for all sites in by), named date vector (with length and names corresponding to the levels of by), "common" (first date overall) or "site" (first date for each site, default).

current_date
 date of the data export or database freeze. Single date, named date vector (with length and names corresponding to the levels of by), "common" (last date overall, default) or "site" (first date for each site).
overall logical indicates that accrual_df contains a summary with all sites (only if by is not NA).
name_overall name of the summary with all sites (if by is not NA and overall==TRUE).
pos_overall overall as last or first element of the list (if by is not NA and overall==TRUE).
force_start0 logical, adds an extra 0 line to the accrual data frame in cases where a start date is given and corresponds to the earliest enrollment date.

Value

Returns a data frame of class ‘accrual_df’ or a list of class ‘accrual_list’ with an ‘accrual_df’ for each level of by (if by is not NA). The ‘accrual_df’ contains a row per accrual day and the following three columns:

- Date date of accrual
- Freq absolute number accrued at Date
- Cumulative cumulative number accrued up to Date

See Also

accrual_plot_cum(), accrual_plot_abs() and accrual_plot_predict() to generate cumulative, absolute and prediction plots, and accrual_table() to generate an accrual table.

Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
accrual_create_df(enrollment_dates)
# different start and current date
accrual_create_df(enrollment_dates, start_date=as.Date("2017-12-01"),
current_date=as.Date("2018-03-01"))

# by site
set.seed(2020)
centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE)
accrual_create_df(enrollment_dates, by=centers)
```

Description

Creates a weighted linear regression model using an accrual data frame produced by accrual_create_df.
Usage

```r
accrual_linear_model(
  accrual_df,
  fill_up = TRUE,
  wfun = function(x) seq(1/nrow(x), 1, by = 1/nrow(x))
)
```

Arguments

- `accrual_df` object of class 'accrual_df' or 'accrual_list' produced by `accrual_create_df`
- `fill_up` whether to fill up days where no recruitment was observed,
- `wfun` function to calculate the weights based on the accrual data frame, default is

Value

Returns an object of class 'lm' with a weighted linear regression of cumulative accrual on dates.

Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
accrual_df<-accrual_create_df(enrollment_dates)
accrual_linear_model(accrual_df)

#unweighted
accrual_linear_model(accrual_df, wfun=function(x) rep(1,nrow(x)))

#different start and current date
accrual_df<-accrual_create_df(enrollment_dates,start_date=as.Date("2017-12-01"),
  current_date=as.Date("2018-03-01"))
accrual_linear_model(accrual_df)

#accrual_df with by option
set.seed(2020)
centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE)
accrual_df<-accrual_create_df(enrollment_dates,by=centers)
accrual_linear_model(accrual_df)
```

accord_plot_abs

Absolute accrual plots

Description

Plot of absolute recruitment by time unit using an accrual data frame produced by `accrual_create_df`.
Usage

```r
accrual_plot_abs(
  accrual_df,
  unit = c("month", "year", "week", "day"),
  target = NULL,
  overall = TRUE,
  name_overall = attr(accrual_df, "name_overall"),
  ylim = NULL,
  xlim = NULL,
  ylab = "Recruited patients",
  xlabformat = NULL,
  xlabsel = NA,
  xlabpos = NULL,
  xlabsrt = 45,
  xlabadj = c(1, 1),
  xlabcex = 1,
  col = NULL,
  legend.list = NULL,
  ...
)
```

```r
gg_accrual_plot_abs(
  accrual_df,
  unit = c("month", "year", "week", "day"),
  xlabformat = NULL
)
```

Arguments

- **accrual_df**: object of class 'accrual_df' or 'accrual_list' produced by `accrual_create_df`.
- **unit**: time unit for which the bars should be plotted, one of "month", "year", "week" or "day".
- **target**: adds horizontal line for target recruitment per time unit.
- **overall**: logical, indicates that accrual_df contains a summary with all sites that should be removed from stacked barplot (only if by is not NA).
- **name_overall**: name of the summary with all sites (if by is not NA and overall==TRUE).
- **ylim**: limits for y-axis.
- **xlim**: limits for x-axis.
- **ylab**: y-axis label.
- **xlabformat**: format of date on x-axis.
- **xlabsel**: selection of x-labels if not all should be shown, by default all are shown up to 15 bars, with more an automated selection is done, either NA (default), NULL (show all), or a numeric vector.
- **xlabpos**: position of the x-label.
- **xlabsrt**: rotation of x-axis labels in degrees.
accrual_plot_abs

xlabadj adjustment of x-label, numeric vector with length 1 or 2 for different adjustment in x- and y-direction.

xlabcex size of x-axis label.

col colors of bars in barplot, can be a vector if accrual_df is a list, default is grayscale.

legend.list named list with options passed to legend().

... further arguments passed to barplot() and axis().

Value

accrual_plot_abs returns a barplot of absolute accrual by time unit (stacked if accrual_df is a list).

gg_accrual_plot_abs returns an object of class 'ggplot' with the absolute accrual by time unit.

Examples

set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:100, 50, replace=TRUE))
accrual_df<-accrual_create_df(enrollment_dates)
accrual_plot_abs(accrual_df,unit="week")

#include target
accrual_plot_abs(accrual_df,unit="day")

#further plot options
accrual_plot_abs(accrual_df,unit="week",ylab="No of recruited patients",
 xlabformat="%Y-%m-%d",xlabrt=30,xlabpos=-0.8,xlabadj=c(1,0.5),
 col="pink",tck=-0.03,mgp=c(3,1.2,0))

#accrual_df with by option
set.seed(2020)
centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE)
centers<-factor(centers,levels=c("Site 1","Site 2","Site 3"))
accrual_df<-accrual_create_df(enrollment_dates,by=centers)
accrual_plot_abs(accrual_df,unit=c("week"))

ggplot2 approach

set.seed(2020)
enrollment_dates <-
 as.Date("2018-01-01") + sort(sample(1:100, 50, replace = TRUE))
accrual_df <- accrual_create_df(enrollment_dates)
gg_accrual_plot_abs(accrual_df, unit = "week")
gg_accrual_plot_abs(accrual_df, unit = "week") +
ggplot2::theme_classic()

#include target
gg_accrual_plot_abs(accrual_df, unit = "day")
accrual_df with by option

```r
set.seed(2020)
centers <-
sample(c("Site 1", "Site 2", "Site 3"),
length(enrollment_dates),
replace = TRUE)
centers <- factor(centsers, levels = c("Site 1", "Site 2", "Site 3"))
accrual_df <- accrual_create_df(enrollment_dates, by = centers)

gg_accrual_plot_abs(accrual_df = accrual_df, unit = "week")
gg_accrual_plot_abs(accrual_df = accrual_df, unit = "week") +
ggplot2::scale_fill_discrete(type = c("black", "red", "blue", "green"))
```

accrual_plot_cum

Cumulative accrual plots

Description

Plot of cumulative recruitment using an accrual data frame produced by `accrual_create_df`.

Usage

```r
accrual_plot_cum(
  accrual_df,
  ylim = NA,
  xlim = NA,
  ylab = "Recruited patients",
  xlabn = 5,
  xlabmnn = xlabn%/2,
  xlabformat = "%d%b%Y",
  xlabpos = NA,
  labsrt = 45,
  xlabadj = c(1, 1),
  xlabcex = 1,
  col = rep(1:8, 5),
  lty = rep(1:5, each = 8),
  legend.list = NULL,
  ...
)
```

```r
gg_accrual_plot_cum(accrual_df, xlabformat = "%d%b%Y")
```

Arguments

- `accrual_df`: object of class 'accrual_df' or 'accrual_list' produced by `accrual_create_df`.
- `ylim`: limits for y-axis.
- `xlim`: limits for x-axis.
accrual_plot_cum

- **ylab**: y-axis label.
- **xlabn**: integer giving the desired number of intervals for the x-label, default=5.
- **xlabminn**: negative integer giving the minimal number of intervals.
- **xlabformat**: format of date on x-axis.
- **xlabpos**: position of the x-label.
- **xlabsrt**: rotation of x-axis labels in degrees.
- **xlabadj**: adjustment of x-label, numeric vector with length 1 or 2 for different adjustment in x- and y-direction.
- **xlabcex**: size of x-axis label.
- **col**: color for line(s) in plot.
- **lty**: line type(s) in plot.
- **legend.list**: named list with options passed to legend().
- **...**: further options passed to plot() and axis().

Value

accrual_plot_cum returns a plot of the cumulative accrual (per site if accrual_df is a list).

gg_accrual_plot_cum returns an object of class 'ggplot' with the cumulative accrual.

Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
accrual_df<-accrual_create_df(enrollment_dates)
accrual_plot_cum(accrual_df)
accrual_plot_cum(accrual_df,cex.lab=1.2,cex.axis=1.1,xlabcex=1.1)
 #several sites
set.seed(1)
centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE)
accrual_df<-accrual_create_df(enrollment_dates,by=centers)
accrual_plot_cum(accrual_df)
 #assuming a common start and current date
accrual_df<-accrual_create_df(enrollment_dates,by=centers,start_date="common",current_date="common")
accrual_plot_cum(accrual_df)

 #plot and legend options
accrual_plot_cum(accrual_df,col=c("red",rep(1,3)),lty=c(1,1:3),cex.lab=1.2,cex.axis=1.1,xlabcex=1.1)
accrual_plot_cum(accrual_df,legend.list=list(ncol=2,bty=TRUE,cex=0.8))

 #without overall
accrual_df<-accrual_create_df(enrollment_dates,by=centers,overall=FALSE)
accrual_plot_cum(accrual_df)
```

ggplot2 approach
accrual_plot_predict

Accrual prediction plots

Description

Generates an accrual prediction plot using an accrual data frame produced by accrual_create_df and a target sample size. Prediction is based on a weighted linear regression. If the accrual data frame is a list (i.e. using the by option in accrual_create_df), or if center start dates are given, the number of enrolled and targeted sites is included.

Usage

accrual_plot_predict(
 accrual_df,
 target,
 overall = TRUE,
 name_overall = attr(accrual_df, "name_overall"),
)

\texttt{set.seed(2020)}
\texttt{enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace = TRUE))}
\texttt{accrual_df <- accrual_create_df(enrollment_dates)}
\texttt{gg_accrual_plot_cum(accrual_df)}
\texttt{gg_accrual_plot_cum(accrual_df) + ggplot2::theme_classic()}

\# several sites
\texttt{set.seed(1)}
\texttt{centers <- sample(c("Site 1", "Site 2", "Site 3"), length(enrollment_dates), replace = TRUE)}
\texttt{accrual_df <- accrual_create_df(enrollment_dates, by = centers)}
\texttt{gg_accrual_plot_cum(accrual_df)}

\# assuming a common start and current date
\texttt{accrual_df <- accrual_create_df(
 enrollment_dates,
 by = centers,
 start_date = "common",
 current_date = "common"
) }
\texttt{gg_accrual_plot_cum(accrual_df)}

\# without overall
\texttt{accrual_df <- accrual_create_df(enrollment_dates, by = centers, overall = FALSE)}
\texttt{gg_accrual_plot_cum(accrual_df)}
fill_up = TRUE,
wfun = function(x) seq(1/nrow(x), 1, by = 1/nrow(x)),
col.obs = NULL,
lty.obs = 1,
col.pred = "red",
lty.pred = 2,
pch.pred = 8,
pos_prediction = c("out", "in", "none"),
label_prediction = "Predicted end date: ",
cex_prediction = 1,
format_prediction = "%B %d, %Y",
show_center = TRUE,
design = 1,
center_label = "Centers",
center_legend = c("number", "strip"),
targetc = NA,
center_colors = NULL,
center_legend_text_size = 0.7,
ylim = NA,
xlim = NA,
ylab = "Recruited patients",
xlabformat = "%d%b%Y",
xlabn = 5,
xlabminn = xlabn%%2,
xlabpos = NA,
xlabsrt = 45,
xlabadj = c(1, 1),
xlabcex = 1,
mar = NA,
legend.list = NULL,
...,
center_start_dates = NULL
)

gg_accrual_plot_predict(
 accrual_df,
 target,
 overall = TRUE,
 name_overall = attr(accrual_df, "name_overall"),
 fill_up = TRUE,
wfun = function(x) seq(1/nrow(x), 1, by = 1/nrow(x)),
col.pred = "red",
lty.pred = 2,
pch.pred = 8,
pos_prediction = c("out", "in", "none"),
format_prediction = "%B %d, %Y",
xlabformat = "%d%b%Y"
Arguments

accrual_df object of class 'accrual_df' or 'accrual_list' produced by accrual_create_df.
target target sample size, if it is a vector with the same length as accrual_df, centerspecific predictions are shown.
overall logical, indicates that accrual_df contains a summary with all sites (only if by is not NA).
name_overall name of the summary with all sites (if by is not NA and overall==TRUE).
fill_up whether to fill up days where no recruitment was observed, otherwise these points do not contribute to the regression.
wfun function to calculate the weights based on the accrual_df, default is wfun<-function(x) seq(1 / nrow(x), 1, by = 1/nrow(x)).
col.obs line color of cumulative recruitment, can be a vector with the same length as accrual_df.
lty.obs line type of cumulative recruitment, can be a vector with the same length as accrual_df.
col.pred line color of prediction, can be a vector with the same length as accrual_df.
lty.pred line color of prediction, can be a vector with the same length as accrual_df.
pch.pred point symbol for end of prediction, can be a vector with the same length as accrual_df.
pos_prediction position of text with predicted end date, either "out", "in" or "none".
label_prediction label for predicted end date.
cex_prediction text size for predicted end date.
format_prediction date format for predicted end date.
show_center logical, whether the center info should be shown (if accrual_df is a list or if center_start_dates are given).
design design options for the center info 1 (default): below plot, 2: within plot, top, 3: within plot, bottom.
center_label label for the center info.
center_legend either "number" to plot numbers in the center strip or "strip" to add a legend strip, requires specification of center_colors.
targetc target number of centers, to scale the legend if it is "strip".
center_colors colors to be used for the strip with the centers, a vector of length targetc.
center_legend_text_size size of the text of the center or legend strip, only has a function
ylim limits for y-axis.
xlim limits for x-axis.
ylab y-axis label.
xlabformat format of date on x-axis.
xlabn integer giving the desired number of intervals for the xlabel, default=5.
xlabminn integer giving the minimal number of intervals.
xlabpos position of the x-label.
xlabsrt rotation of x-axis labels in degrees.
xlabadj adjustment of x-label, numeric vector with length 1 or 2 for different adjustment in x- and y-direction.
xlabcex size of x-axis label.
mar vector of length 4 (bottom, left, top, right margins), overwrite default margins.
legend.list named list with options passed to legend(), only if accrual data frame is a list.
... further options passed to plot() and axis.
center_start_dates alternative way to add center info, vector with dates on which centers are enrolled.

Value

accrual_plot_predict returns a plot with the accrual prediction.

gg_accrual_plot_predict an object of class 'ggplot' with the accrual prediction.

Examples

#Data
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))

#Default plot
accrual_df<-accrual_create_df(enrollment_dates)
accrual_plot_predict(accrual_df=accrual_df,target=100)

#Include site
set.seed(2021)
centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE)
accrual_df<-accrual_create_df(enrollment_dates,by=centers)
accrual_plot_predict(accrual_df=accrual_df,target=100,center_label="Site")
with strip and target
accrual_plot_predict(accrual_df=accrual_df,target=100,center_label="Site",
 targetc=5,center_colors=heat.colors(5),center_legend="strip")

#Design for site
accrual_plot_predict(accrual_df=accrual_df,target=100,design=2)

#Format prediction end date
accrual_plot_predict(accrual_df=accrual_df,target=100,
pos_prediction="in",label_prediction="End of accrual: ",cex_prediction=1.2,
format_prediction="%Y-%m-%d",ylim=c(0,150))

#Format plot
accrual_plot_predict(accrual_df=accrual_df,target=100,
```r
# predictions for all sites
accrual_plot_predict(accrual_df=accrual_df, target=c(30, 30, 30, 100))

## different colors
accrual_plot_predict(accrual_df=accrual_df, target=c(30, 30, 30, 100),
                      col.obs=topo.colors(length(accrual_df)))

## not showing center info
accrual_plot_predict(accrual_df=accrual_df, target=c(30, 30, 30, 100), show_center=FALSE)

### ggplot2 approach

# Data
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))

# Default plot
accrual_df <- accrual_create_df(enrollment_dates)

# Include site
set.seed(2021)
centers <- sample(c("Site 1", "Site 2", "Site 3"),
                  length(enrollment_dates), replace=TRUE)
accrual_df <- accrual_create_df(enrollment_dates, by=centers)

# Format prediction end date

# Predictions for all sites
```

Description
 accrual_predict

Usage
 accrual_predict(accrual_df, accrual_fit, target)

Arguments
 accrual_df accrual data frame produced by accrual_create_df (optionally with by option as a list)
 accrual_fit linear model produced by accrual_linear_model, can be a list with the same length as accrual_df
 target target sample size, can be a vector with the same length as accrual_df

Details
 Prediction of end date based on an accrual data frame produced by accrual_create_df, a fitted regression model produced by accrual_linear_model and a target sample size.

Value
 Returns the predicted end date or a list of the predicted end dates

Examples

set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
accrual_df<-accrual_create_df(enrollment_dates)
accrual_model<-accrual_linear_model(accrual_df)
accrual_predict(accrual_df,accrual_model,target=100)

#different start and current date
accrual_df<-accrual_create_df(enrollment_dates,start_date=as.Date("2017-12-01"),
current_date=as.Date("2018-03-01"))
accrual_model<-accrual_linear_model(accrual_df)
accrual_predict(accrual_df,accrual_model,target=100)

#accrual_df with by option
set.seed(2020)
centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE)
accrual_df<-accrual_create_df(enrollment_dates,by=centers)
accrual_model<-accrual_linear_model(accrual_df)
accrual_predict(accrual_df,accrual_model,target=c(30,30,30,100))
Description

Table of recruitment overview by site, rate of recruitment

Usage

accrual_table(
 accrual_df,
 overall = TRUE,
 name_overall = "Overall",
 pos_overall = c("last", "first"),
 unit = c("month", "year", "week", "day"),
 format_table_date = "%d%b%Y",
 format_time = "%1.0f",
 format_rrate = "%1.2f",
 header = TRUE
)

Arguments

accrual_df object of class 'accrual_df' or 'accrual_list' produced by accrual_create_df.
overall logical, indicates that accrual_df contains a summary with all sites (only if by is not NA).
name_overall name of the summary with all sites (if by is not NA and overall==TRUE).
pos_overall overall in last or first row (if by is not NA and overall==TRUE).
unit time unit for time recruiting and the rate, one of "month", "year", "week" or "day".
format_table_date format of start date in table.
format_time format of time recruiting in table.
format_rrate format of recruitment rate in table.
header include header, logical or character vector of length 4 or 5 (if accrual_df is a list).

Value

Returns data frame with a header, a row per site and overall and the following columns:

name name of the site (if accrual_df is a list)
start_date accrual start date
time time accruing
n number of patients accrued
rate accrual rate per time unit
accrual_time_unit

Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
centers <- sample(c("Site 1", "Site 2", "Site 3"), length(enrollment_dates), replace=TRUE)
accrual_df <- accrual_create_df(enrollment_dates, by=centers)
accrual_table(accrual_df)

# format
accrual_table(accrual_df, format_time="%1.1f", format_rrate="%1.1f")

# unit
accrual_table(accrual_df, unit="day")

# common start and current dates
accrual_df <- accrual_create_df(enrollment_dates, by=centers, start_date="common", current_date="common")
accrual_table(accrual_df)
accrual_df <- accrual_create_df(enrollment_dates, by=centers, start_date=as.Date("2017-12-31"),
                                 current_date=as.Date("2018-03-01"))
accrual_table(accrual_df)
```

accrual_time_unit accrual_time_unit

Description

Generates summary of recruitment per time unit

Usage

```r
accrual_time_unit(accrual_df, unit = c("month", "year", "week", "day"))
```

Arguments

- **accrual_df** accrual data frame produced by `accrual_create_df` with `by=NA`.
- **unit** time unit for which the bars should be plotted, one of "month", "year", "week" or "day".

Value

Returns a data frame with the number of patients accrued for each time unit.
Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
accrual_df<-accrual_create_df(enrollment_dates)
accrual_time_unit(accrual_df,"week")
accrual_time_unit(accrual_df,"day")
```

plot.accrual_df

Plot method for accrual data frames produced by `accrual_create_df`

Description

Plot method for accrual data frames produced by `accrual_create_df`

Usage

```r
## S3 method for class 'accrual_df'
plot(x, which = "cum", engine = c("base", "ggplot2"), ...)
```

Arguments

- **x**
 - object of class 'accrual_df' or 'accrual_list' produced by `accrual_create_df`.
- **which**
 - one of "cumulative", "absolute" or "predict". Abbreviations are allowed.
- **engine**
 - string to indicate the plotting engine (base/graphics or ggplot2)
- **...**
 - options passed to other functions

Value

A plot with cumulative or absolute accrual, or accrual prediction.

See Also

`accrual_plot_abs()`, `accrual_plot_cum()` and `accrual_plot_predict()`

Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
accrual_df<-accrual_create_df(enrollment_dates)
plot(accrual_df)
plot(accrual_df, "abs", unit="week")
plot(accrual_df, "pred", target = 100)
plot(accrual_df, "pred", target = 100, engine = "ggplot")
```
print.accrual_df
Print methods for accrual objects

Description

Print methods for accrual objects

Usage

```r
## S3 method for class 'accrual_df'
print(x, head = TRUE, ...)

## S3 method for class 'accrual_list'
print(x, ...)
```

Arguments

- **x**
 object of class ‘accrual_df’ or ‘accrual_list’ produced by accrual_create_df.
- **head**
 show header of the accrual data?
- **...**
 arguments passed to head

Value

No return value

Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
accrual_df<-accrual_create_df(enrollment_dates)
print(accrual_df)
# only show text
print(accrual_df, head = FALSE)
# show first 15 days
print(accrual_df, n = 15)
```

summary.accrual_df
Summary method for accrual_dfs (as created by accrual_create_df)

Description

Summary method for accrual_dfs (as created by accrual_create_df)

Usage

```r
## S3 method for class 'accrual_df'
summary(object, ...)
```
Arguments

```r
object          object of class 'accrual_df' or 'accrual_list' produced by accrual_create_df.
...            options passed to other functions
```

Value

Returns data frame with a header, a row per site and overall and the following columns:

- **name**: name of the site (if accrual_df is a list)
- **start_date**: accrual start date
- **time**: time accruing
- **n**: number of patients accrued
- **rate**: accrual rate per time unit

Examples

```r
set.seed(2020)
enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE))
centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE)
accrual_df<-accrual_create_df(enrollment_dates,by=centers)
summary(accrual_df)
```
Index

accrual_create_df, 2
accrual_linear_model, 3
accrual_plot_abs, 4
accrual_plot_abs(), 3, 17
accrual_plot_cum, 7
accrual_plot_cum(), 3, 17
accrual_plot_predict, 9
accrual_plot_predict(), 3, 17
accrual_predict, 13
accrual_table, 15
accrual_table(), 3
accrual_time_unit, 16

gg_accrual_plot_abs(accrual_plot_abs),
 4
 gg_accrual_plot_cum(accrual_plot_cum),
 7
 gg_accrual_plot_predict
 (accrual_plot_predict), 9

plot.accrual_df, 17
print.accrual_df, 18
print.accrual_list(print.accrual_df),
 18

summary.accrual_df, 18