Package ‘acebayes’

February 21, 2020

Type Package
Title Optimal Bayesian Experimental Design using the ACE Algorithm
Version 1.9
Date 2020-02-20
Author Antony M. Overstall, David C. Woods, Maria Adamou & Damianos Michaelides
Maintainer Antony M. Overstall <A.M.Overstall@soton.ac.uk>
Description Optimal Bayesian experimental design using the approximate coordinate exchange (ACE) algorithm.
License GPL-2
Depends R (>= 3.5.0), lhs
Imports Rcpp (>= 0.12.9), compare, randtoolbox, parallel
LinkingTo Rcpp, RcppArmadillo (>= 0.9.100.5.0)
Suggests R.rsp
VignetteBuilder R.rsp
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-02-21 08:20:06 UTC

R topics documented:

acebayes-package .. 2
ace ... 5
aceglm .. 10
acenlm .. 17
aceobjects .. 24
assess .. 25
assessobjects ... 27
overstallwoods .. 28
plot.ace .. 36
plot.assess ... 37
utilities .. 38
Description

Finding an optimal Bayesian experimental design (Chaloner & Verdinelli, 1995) involves maximising an objective function given by the expectation of some appropriately chosen utility function with respect to the joint distribution of unknown quantities (including responses). This objective function is usually not available in closed form and the design space can be continuous and of high dimensionality.

The acebayes package uses Approximate Coordinate Exchange (ACE; Overstall & Woods, 2017) to maximise an approximation to the expectation of the utility function. In Phase I of the algorithm, a continuous version of the coordinate exchange algorithm (Meyer & Nachtsheim, 1995) is used to maximise an approximation to expected utility. The approximation is given by the predictive mean of a Gaussian process (GP) emulator constructing using a 'small' number of approximate evaluations of the expected utility function. In Phase II a point exchange algorithm is used to consolidate clusters of design points into repeated design points.

Details

- Package: acebayes
- Type: Package
- Version: 1.9
- Date: 2020-02-20
- License: GPL-2

The most important functions are as follows.

1. ace
2. pace
3. aceglm
4. paceglm
5. acenlm
6. pacenlm

The function ace implements both phases of the ACE algorithm. It has two mandatory arguments: utility (a function specifying the chosen utility function incorporating the joint distribution of unknown quantities) and start.d (the initial design). The function will return the final design from the algorithm, along with information to assess convergence. The function pace implements repetitions of the ACE algorithm from different starting designs (as specified by the start.d argument).
The computational time of \texttt{ace} (and \texttt{pace}) is highly dependent on the computational time required to evaluate the user-supplied function utility. Therefore it is recommended that users take advantage of R packages such as Rcpp (Eddelbuettel & Francois, 2011), RcppArmadillo (Eddelbuettel & Sanderson, 2014), or RcppEigen (Bates & Eddelbuettel, 2013), that provide convenient interfaces to compiled programming languages.

The functions \texttt{aceglm} and \texttt{acenlm} are user-friendly wrapper functions for \texttt{ace} which use the ACE algorithm to find Bayesian optimal experimental designs for generalised linear models and non-linear models, respectively. As special cases, both of these functions can find pseudo-Bayesian optimal designs. The functions \texttt{paceglm} and \texttt{pacenlm} implement repetitions of the ACE algorithm from different starting designs (as specified by the \texttt{start.d} argument) for generalised linear models and non-linear models, respectively.

For more details on the underpinning methodology, see Overstall & Woods (2017).

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Damianos Michaelides

Maintainer: Antony. M.Overstall <A.M.Overstall@soton.ac.uk>

References

Examples

\begin{verbatim}
This example uses aceglm to find a pseudo-Bayesian D-optimal design for a
first-order logistic regression model with 6 runs 4 factors (i.e. 5 parameters).
The priors are those used by Overstall & Woods (2017), i.e. a uniform prior
distribution is assumed for each parameter. The design space for each coordinate
is [-1, 1].

set.seed(1)
Set seed for reproducibility.

n<-6
Specify the sample size (number of runs).
\end{verbatim}
start.d<-matrix(2 * randomLHS(n = n,k = 4) - 1, nrow = n, ncol = 4,
dimnames = list(as.character(1:n), c("x1", "x2", "x3", "x4")))
Generate an initial design of appropriate dimension. The initial design is a
Latin hypercube sample.

low<-c(-3, 4, 5, -6, -2.5)
upp<-c(3, 10, 11, 0, 3.5)
Lower and upper limits of the uniform prior distributions.
prior<-function(B){
 t(t(6*matrix(runif(n = 5*B), ncol = 5)) + low)}
Create a function which specifies the prior. This function will return a
B by 5 matrix where each row gives a value generated from the prior
distribution for the model parameters.

example<-aceglm(formula = ~ x1 + x2 + x3 + x4, start.d = start.d, family = binomial,
prior = prior, criterion = "D", method= "MC", B = c(1000,1000), N1 = 1, N2 = 0,
upper = 1)
Call the aceglm function which implements the ACE algorithm requesting
only one iteration of Phase I and zero iterations of Phase II (chosen for
illustrative purposes). The Monte Carlo sample size for the comparison
procedure (B[1]) is set to 1000 (chosen again for illustrative purposes).

example
Print out a short summary.

#Generalised Linear Model
#Criterion = Bayesian D-optimality
#
#Number of runs = 6
#
#Number of factors = 4
#
#Number of Phase I iterations = 1
#
#Number of Phase II iterations = 0
#
#Computer time = 00:00:02

The final design found is:

example$phase2.d

x1 x2 x3 x4
#1 -0.4735783 0.12870470 -0.75064318 1.00000000
#2 -0.7546841 0.78864527 0.58689270 0.29467280
#3 -0.7463834 0.33548985 -0.93497463 -0.95731980
#4 0.4446617 -0.29735212 0.74040030 0.21828000
#5 0.8459424 -0.41734194 -0.07235575 -0.48232120
#6 0.6731941 0.05742842 1.00000000 -0.17425660
Approximate Coordinate Exchange (ACE) Algorithm

Description

These functions implement the approximate coordinate exchange (ACE) algorithm (Overstall & Woods, 2017) for finding optimal Bayesian experimental designs by maximising an approximation to an intractable expected utility function.

Usage

```r
ace(utility, start.d, B, Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1, 
limits = NULL, progress = FALSE, binary = FALSE, deterministic = FALSE)

acephase1(utility, start.d, B, Q = 20, N1 = 20, lower, upper, limits = NULL, 
progress = FALSE, binary = FALSE, deterministic = FALSE)

acephase2(utility, start.d, B, N2 = 100, progress = FALSE, binary = FALSE, 
deterministic = FALSE)

pace(utility, start.d, B, Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1, 
limits = NULL, binary = FALSE, deterministic = FALSE, mc.cores = 1, 
n.assess = 20)
```

Arguments

- **utility**: A function with two arguments: d and B.
 - For a Monte Carlo approximation (deterministic = FALSE), it should return a vector of length B where each element gives the value of the utility function for design d, for a value generated from the joint distribution of all unknown quantities. The mean of the elements of this vector provides a Monte Carlo approximation to the expected utility for design d.
 - For a deterministic approximation (deterministic = TRUE), it should return a scalar giving the approximate value of the expected utility for design d. In this latter case, the argument B can be a list containing tuning parameters for the deterministic approximation. If B is not required, the utility function must still accept the argument.

- **start.d**: For ace, acephase1 and acephase2, an n by k matrix specifying the initial design for the ACE algorithm.
 - For pace, a list with each element being an n by k matrix specifying the initial design for each repetition of the ACE algorithm.

- **B**: An argument for controlling the approximation to the expected utility.
 - For a Monte Carlo approximation (deterministic = FALSE), a vector of length two specifying the size of the Monte Carlo samples, generated from the joint distribution of unknown quantities. The first sample size, B[1], gives the sample size to use in the comparison procedures, and the second sample size, B[2],
gives the sample size to use for the evaluations of Monte Carlo integration that are used to fit the Gaussian process emulator. If missing when `deterministic = FALSE`, the default value is `c(20000, 1000)`.

For a deterministic approximation (`deterministic = TRUE`), then `B` may be a list of length two containing any necessary tuning parameters for the expected utility calculations for the comparison and emulation steps.

Q
An integer specifying the number of evaluations of the approximate expected utility that are used to fit the Gaussian process emulator. The default value is 20.

N1
An integer specifying the number of iterations of Phase I of the ACE algorithm (the coordinate exchange phase). The default value is 20.

N2
An integer specifying the number of iterations of Phase II of the ACE algorithm (the point exchange phase). The default value is 100.

lower
An argument specifying the bounds on the design space. This argument can either be a scalar or a matrix of the same dimension as the argument `start.d` which specifies the lower limits of all coordinates of the design space. The default value is -1.

upper
An argument specifying the bounds on the design space. This argument can either be a scalar or a matrix of the same dimension as the argument `start.d` which specifies the upper limits of all coordinates of the design space. The default value is 1.

limits
An argument specifying the grid over which to maximise the Gaussian process emulator for the expected utility function. It should be a function with three arguments: `i`, `j` and `d` which generates a one-dimensional grid for the `ij`th coordinate of the design when the current design is `d`. The default value is NULL which generates values uniformly on the interval `(lower[i,j], upper[i,j])` or `(lower, upper)` depending on whether the arguments `lower` and `upper` are matrices or scalars, respectively.

progress
A logical argument indicating whether the iteration number and other information detailing the progress of the algorithm should be printed. The default value is `FALSE`.

binary
A logical argument indicating whether the utility function has binary or continuous output. In some cases, the utility function is an indicator function of some event giving binary output. The expected utility function will then be the expected posterior probability of the event. Utility functions such as Shannon information gain and negative squared error loss give continuous output. The type of output guides the choice of comparison procedure used in the ACE algorithm. The default value is `FALSE`, indicating the utility function has continuous output.

deterministic
A logical argument indicating if a Monte Carlo (`FALSE`, default) or deterministic (`TRUE`) approximation to the expected utility is being used.

mc.cores
The number of cores to use, i.e. at most how many child processes will be run simultaneously. Must be at least one (the default), and parallelisation requires at least two cores. See `mclapply` for more information and warnings for `mc.cores > 1`.
If `deterministic = FALSE`, the approximate expected utility for the design from each repetition of the ACE algorithm will be calculated `n.assess` times. The terminal design returned will be the design with the largest mean approximate expected utility calculated over the `n.assess` approximations.

Details

Finding an optimal Bayesian experimental design (Chaloner & Verdinelli, 1995) involves maximising an objective function given by the expectation of some appropriately chosen utility function with respect to the joint distribution of unknown quantities (including responses). This objective function is usually not available in closed form and the design space can be continuous and of high dimensionality.

Overstall & Woods (2017) proposed the approximate coordinate exchange (ACE) algorithm to approximately maximise the expectation of the utility function. ACE consists of two phases.

Phase I uses a continuous version of the coordinate exchange algorithm (Meyer & Nachtsheim, 1995) to maximise an approximation to the expected utility. Very briefly, the approximate expected utility is sequentially maximised over each one-dimensional element of the design space. The approximate expected utility is given by the predictive mean of a Gaussian process (GP) regression model (also known as an emulator or surrogate) fitted to a ‘small’ number (argument `Q`) of evaluations of either a Monte Carlo (MC) or deterministic (e.g. quadrature) approximation to the expected utility (the MC sample size or arguments for the deterministic approximation are given by `B`). A GP emulator is a statistical model, and similar to all statistical models, can be an inadequate representation of the underlying process (i.e. the expected utility). Instead of automatically accepting the new design given by the value that maximises the GP emulator, for MC approximations a Bayesian hypothesis test, independent of the GP emulator, is performed to assess whether the expected utility of the new design is larger than the current design. For deterministic approximations, the approximate expected utility is calculated for the new design, and compared to that for the current design.

Phase I tends to produce clusters of design points. This is where, for example, two design points are separated by small Euclidean distance. Phase II allows these points to be consolidated into a single repeated design point by using a point exchange algorithm (e.g Gotwalt et al., 2009) with a candidate set given by the final design from Phase I. In the same way as Phase I, comparisons of the expected loss between two designs is made on the basis of either a Bayesian hypothesis test or a direct comparison of deterministic approximations.

The original Bayesian hypothesis test proposed by Overstall & Woods (2017) is appropriate for utility functions with continuous output. Overstall et al. (2017) extended the idea to utility functions with binary output, e.g. the utility function is an indicator function for some event. The type of test can be specified by the argument `binary`.

Similar to all coordinate exchange algorithms, ACE should be repeated from different initial designs. The function `pace` will implement this where the initial designs are given by a list via the argument `start.d`. On the completion of the repetitions of ACE, `pace` will approximate the expected utility for all final designs and return the design (the terminal design) with the largest approximate expected utility.

Value

The function will return an object of class "ace" (for functions `ace`, `acephase1` and `acephase2`) or "pace" (for function "pace") which is a list with the following components:
The argument `utility`.

The argument `start.d`.

The design found from Phase I of the ACE algorithm (only for `ace`, `acephase1` and `acephase2`).

The design found from Phase II of the ACE algorithm (only for `ace`, `acephase1` and `acephase2`).

A vector containing the approximated expected utility of the current design at each stage of Phase I of the ACE algorithm. This can be used to assess convergence for MC approximations. If `deterministic = FALSE`, this will be the mean of a call to `utility` with `d` being the current design and `B` being equal to the argument `B[1]`. If `deterministic = TRUE`, this will be a call to `utility` with `d` being the current design.

For `pace`, this will be `phase1.trace` for the terminal design.

A vector containing the approximated expected utility of the current design at each stage of Phase II of the ACE algorithm. This can be used to assess convergence for MC approximations. If `deterministic = FALSE`, this will be the mean of a call to `utility` with `d` being the current design and `B` being equal to the argument `B[1]`. If `deterministic = TRUE`, this will be a call to `utility` with `d` being the current design.

For `pace`, this will be `phase2.trace` for the terminal design.

The argument `B`.

The argument `Q`.

The argument `N1`.

The argument `N2`.

If the object is a result of a direct call to `ace` then this is `FALSE`.

If the object is a result of a direct call to `ace` then this is `FALSE`.

If the object is a result of a direct call to `ace` then this is "NA".

If the object is a result of a direct call to `ace` then this is "NA".

Computational time (in seconds) to run the ACE algorithm.

The argument `binary`.

The argument `deterministic`.

The terminal design (pace only).

If `deterministic = FALSE`, a vector containing `n.assess` approximations to the expected utility for the terminal design (pace only).

If `deterministic = TRUE`, a scalar giving the approximate expected utility for the terminal design (pace only).

A list of the same length as the argument `start.d`, where each element is the final design (i.e. `phase2.d`) for each repetition of the ACE algorithm (pace only).

A scalar indicating which repetition of the ACE algorithm resulted in the terminal design (pace only).
Note
For more details on the R implementation of the utility function used in the Examples section, see utilcomp18bad.

Author(s)
Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami- anos Michaelides

References

Examples
set.seed(1)
Set seed for reproducibility.

This example involves finding a pseudo-Bayesian D-optimal design for a
compartmental model with \(n = 18 \) runs. There are three parameters.
Two parameters have uniform priors and the third has a prior
point mass. For more details see Overstall & Woods (2017).

start.d<-optimumLHS(n = 18, k = 1)
Create an initial design.

Using a MC approximation
example1<-ace(utility = utilcomp18bad, start.d = start.d, N1 = 1, N2 = 2, B = c(100, 20))
Implement the ACE algorithm with 1 Phase I iterations and 2 Phase II
iterations. The Monte Carlo sample sizes are 100 (for comparison) and 20 for
fitting the GP emulator.

example1
Produce a short summary.

#User-defined model & utility
#
#Number of runs = 18
#
aceglm

Approximate Coordinate Exchange (ACE) Algorithm for Generalised Linear Models

Description

Functions implementing the approximate coordinate exchange (ACE) algorithm (Overstall & Woods, 2017) for finding Bayesian optimal experimental designs for generalised linear models (GLMs).

Usage

aceglm(formula, start.d, family, prior, B,
criterion = c("D", "A", "E", "SIG", "NSEL", "SIG-Norm", "NSEL-Norm"),
method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1,
upper = 1, progress = FALSE, limits = NULL)

paceglm(formula, start.d, family, prior, B,
criterion = c("D", "A", "E", "SIG", "NSEL", "SIG-Norm", "NSEL-Norm"),
method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1,
upper = 1, limits = NULL, mc.cores = 1, n.assess = 20)

Arguments

formula An object of class "formula": a symbolic description of the model. The terms should correspond to the column names of the argument start.d.
For accglm, an n by k matrix, with column names used by the argument formula, specifying the initial design for the ACE algorithm.

For paceglm, a list with each element being an n by k matrix, with column names used by the argument formula, specifying the initial design for each repetition of the ACE algorithm.

A description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)

An argument specifying the prior distribution.

For method = "MC", a function with one argument: B; a scalar integer. This function should return a B by p matrix, with p the number of model parameters, containing a random sample from the prior distribution of the parameters. The value of p should correspond to the number of terms specified by the formula argument.

For method = "quadrature", a list specifying a normal or uniform prior for the model parameters. For a normal prior distribution, the list should have named entries mu and sigma2 specifying the prior mean and variance-covariance matrix. The prior mean may be specified as a scalar, which will then be replicated to form an vector of common prior means, or a vector of length p. The prior variance-covariance matrix may be specified as either a scalar common variance or a vector of length p of variances (for independent prior distributions) or as a p by p matrix. For a uniform prior distribution, the list should have a named entry support, a 2 by p matrix with each column giving the lower and upper limits of the support of the independent continuous uniform distribution for the corresponding parameter.

An optional argument for controlling the approximation to the expected utility. It should be a vector of length two.

For method = "MC", it specifies the size of the Monte Carlo samples, generated from the joint distribution of unknown quantities. The first sample size, B[1], gives the sample size to use in the comparison procedures, and the second sample size, B[2], gives the sample size to use for the evaluations of Monte Carlo integration that are used to fit the Gaussian process emulator. If left unspecified, the default value is c(20000,1000).

For method = "quadrature", it specifies the tuning parameters (numbers of radial abscissas and random rotations) for the implemented quadrature method; see Details for more information. If left unspecified, the default value is c(2,8).

An optional character argument specifying the utility function. There are currently seven utility functions implemented as follows:

1. pseudo-Bayesian D-optimality (criterion = "D");
2. pseudo-Bayesian A-optimality (criterion = "A");
3. pseudo-Bayesian E-optimality (criterion = "E").
4. Shannon information gain with Monte Carlo (MC) approximation to marginal likelihood (criterion = "SIG");
5. Shannon information gain with normal-based Laplace approximation to marginal likelihood (criterion = "SIG-Norm");
6. **negative squared error loss** with importance sampling approximation to posterior mean (criterion = "NSEL");

7. **negative squared error loss** with normal-based approximation to posterior mean (criterion = "NSEL-Norm");

If left unspecified, the default is "D" denoting pseudo-Bayesian D-optimality. See **Details** for more information.

method

An optional character argument specifying the method of approximating the expected utility function. Current choices are method = "quadrature" for a deterministic quadrature approximation and method = "MC" for a stochastic Monte Carlo approximation. The first of these choices is **only** available when the argument criterion = "A", "D" or "E". The second choice is available for all possible values of the argument criterion. If left unspecified, the argument defaults to "quadrature" for criterion = "A", "D" or "E" and to "MC" otherwise. See **Details** for more information.

Q

An integer specifying the number of evaluations of the approximate expected utility that are used to fit the Gaussian process emulator. The default value is 20.

N1

An integer specifying the number of iterations of Phase I of the ACE algorithm (the coordinate exchange phase). The default value is 20.

N2

An integer specifying the number of iterations of Phase II of the ACE algorithm (the point exchange phase). The default value is 100.

lower

An argument specifying the design space. This argument can either be a scalar or a matrix of the same dimension as the argument start.d which specifies the lower limits of all coordinates of the design space. The default value is -1.

upper

An argument specifying the design space. This argument can either be a scalar or a matrix of the same dimension as the argument start.d which specifies the upper limits of all coordinates of the design space. The default value is 1.

progress

A logical argument indicating whether the iteration number and other information detailing the progress of the algorithm should be printed. The default value is **FALSE**.

limits

An argument specifying the grid over which to maximise the Gaussian process emulator for the expected utility function. It should be a function with three arguments: i, j and d which generates a one-dimensional grid for the i,j-th coordinate of the design when the current design is d. The default value is NULL which generates values uniformly on the interval (lower[i,j], upper[i,j]) or (lower,upper) depending on whether the arguments lower and upper are matrices or scalars, respectively.

mc.cores

The number of cores to use, i.e. at most how many child processes will be run simultaneously. Must be at least one (the default), and parallelisation requires at least two cores. See **mclapply** for more information and warnings for mc.cores > 1.

n.assess

If method = "MC", the approximate expected utility for the design from each repetition of the ACE algorithm will be calculated n.assess times. The terminal design returned will be the design with the largest mean approximate expected utility calculated over the n.assess approximations.
Details

The aceglm function implements the ACE algorithm to find designs for the class of generalised linear models (GLMs) for certain cases of utility function meaning the user does not have to write their own utility function.

Two utility functions are implemented.

1. **Shannon information gain (SIG)**

 The utility function is
 \[u^{SIG}(d) = \pi(\theta|y,d) - \pi(\theta), \]

 where \(\pi(\theta|y,d) \) and \(\pi(\theta) \) denote the posterior and prior densities of the parameters \(\theta \), respectively.

2. **Negative squared error loss (NSEL)**

 The utility function is
 \[u^{NSEL}(d) = -(\theta - E(\theta|y,d))^T (\theta - E(\theta|y,d)), \]

 where \(E(\theta|y,d) \) denotes the posterior mean of \(\theta \).

In both cases the utility function is not available in closed form due to the analytical intractability of either the posterior distribution (for SIG) or the posterior mean (for NSEL). The acebayes package implements two approximations to both utility functions. If \texttt{criterion = "SIG"} or \texttt{criterion = "NSEL"} then sampling-based Monte Carlo or importance sampling approximations will be employed. This was the original approach used by Overstall & Woods (2017). If \texttt{criterion = "SIG-Norm"} or \texttt{criterion = "NSEL-Norm"} then approximations based on approximate normality of the posterior (Overstall et al., 2017) will be used.

The normal approximation to the posterior can be taken further leading to the approximation by some scalar function of the Fisher information matrix, \(\mathcal{I}(\theta; d) \), which only depends on \(\theta \) (Chaloner & Verdinelli, 1995). In the case of SIG, the approximate utility is given by
\[u^{D}(d) = \log |\mathcal{I}(\theta; d)|, \]

and the resulting design is typically called pseudo-Bayesian D-optimal. For NSEL, the approximate utility is given by
\[u^{A}(d) = -\text{tr} \{ \mathcal{I}(\theta; d)^{-1} \} \]

with the resulting design termed pseudo-Bayesian A-optimal. These designs are often used under the frequentist approach to optimal experimental design and so to complete the usual set, the following utility for finding a pseudo-Bayesian E-optimal design is also implemented:
\[u^{E}(d) = \min e(\mathcal{I}(\theta; d)), \]

where \(e(\cdot) \) denotes the function that calculates the eigenvalues of its argument.

The expected utilities can be approximated using Monte Carlo methods (\texttt{method = "MC"} for all criteria) or using a deterministic quadrature method (\texttt{method = "quadrature"}, implemented for the D, A and E criteria). The former approach approximates the expected utility via sampling from the prior. The latter approach uses a radial-spherical integration rule (Monahan and Genz, 1997) and \texttt{B[1]} specifies the number, \(n_r \), of radial abscissas and \texttt{B[2]} specifies the number, \(n_q \), of random rotations. Larger values of \(n_r \) will produce more accurate, but also more computationally expensive, approximations. See Gotwalt et al. (2009) for further details.
Note that the utility functions for SIG and NSEL are currently only implemented for logistic regression, i.e. `family = binomial`, or Poisson regression, i.e. `family = poisson(link="log`), whereas the utility functions for pseudo-Bayesian designs are implemented for generic GLM families.

Similar to all coordinate exchange algorithms, ACE should be repeated from different initial designs. The function `paceglm` will implement this where the initial designs are given by a list via the argument `start.d`. On the completion of the repetitions of ACE, `paceglm` will approximate the expected utility for all final designs and return the design (the terminal design) with the largest approximate expected utility.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Value

The function will return an object of class "ace" (for `aceglm`) or "pace" (for `paceglm`) which is a list with the following components:

- `utility`: The utility function resulting from the choice of arguments.
- `start.d`: The argument `start.d`.
- `phase1.d`: The design found from Phase I of the ACE algorithm.
- `phase2.d`: The design found from Phase II of the ACE algorithm.
- `phase1.trace`: A vector containing the evaluations of the approximate expected utility of the current design at each stage of Phase I of the ACE algorithm. This can be used to assess convergence.
- `phase2.trace`: A vector containing the evaluations of the approximate expected utility of the current design at each stage of Phase II of the ACE algorithm. This can be used to assess convergence.
- `B`: The argument `B`.
- `Q`: The argument `Q`.
- `N1`: The argument `N1`.
- `N2`: The argument `N2`.
- `glm`: If the object is a result of a direct call to `aceglm` then this is `TRUE`.
- `nlm`: This will be `FALSE`.
- `criterion`: If the object is a result of a direct call to `aceglm` then this is the argument `criterion`.
- `method`: If the object is a result of a direct call to `aceglm` then this is the argument `method`.
- `prior`: If the object is a result of a direct call to `aceglm` then this is the argument `prior`.
- `family`: If the object is a result of a direct call to `aceglm` then this is the argument `family`.
- `formula`: If the object is a result of a direct call to `acenlm` then this is the argument `formula`.
- `time`: Computational time (in seconds) to run the ACE algorithm.
- `binary`: The argument `binary`. Will be `FALSE` for the utility functions currently implemented.
aceglm

d
 The terminal design (paceglm only).

eval
 If deterministic = "MC", a vector containing n.assess approximations to the
 expected utility for the terminal design (paceglm only).
 If deterministic = "quadrature", a scalar giving the approximate expected
 utility for the terminal design (paceglm only).

final.d
 A list of the same length as the argument start.d, where each element is the
 final design (i.e. phase2.d) for each repetition of the ACE algorithm (paceglm
 only).

besti
 A scalar indicating which repetition of the ACE algorithm resulted in the termi-
 nal design (paceglm only).

Note
 These are wrapper functions for ace and pace.

Author(s)
 Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Damia-
 nos Michaelides

References
 10, 273-304.
 parameter uncertainty for nonlinear settings. Technometrics, 51, 88-95.
 optimal experimental designs. Technometrics, 37, 60-69.
 Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
 optimal designs using normal-based approximations to loss functions. Statistics and Computing,
 28(2), 343-358.

See Also
 ace, acenlm, pace, pacenlm.

Examples
 ## This example uses aceglm to find a Bayesian D-optimal design for a
 ## first order logistic regression model with 6 runs 4 factors. The priors are
 ## those used by Overstall & Woods (2017), with each of the five
 ## parameters having a uniform prior. The design space for each coordinate is [-1, 1].
set.seed(1)
Set seed for reproducibility.
n<-6
Specify the sample size (number of runs).
start.d<-matrix(2 * randomLHS(n = n,k = 4) - 1,nrow = n,ncol = 4,
dimnames = list(as.character(1:n), c("x1", "x2", "x3", "x4")
Generate an initial design of appropriate dimension. The initial design is a
Latin hypercube sample.
low<-c(-3, 4, 5, -6, -2.5)
upp<-c(3, 10, 11, 0, 3.5)
Lower and upper limits of the uniform prior distributions.
prior<-function(B){
t(t(6*matrix(runif(n = 5 * B),ncol = 5)) + low)
Create a function which specifies the prior. This function will return a
B by 5 matrix where each row gives a value generated from the prior
distribution for the model parameters.
example1<-aceglm(formula=~x1+x2+x3+x4, start.d = start.d, family = binomial,
prior = prior, method = "MC", N1 = 1, N2 = 0, B = c(1000, 1000))
Call the aceglm function which implements the ACE algorithm requesting
only one iteration of Phase I and zero iterations of Phase II. The Monte
Carlo sample size for the comparison procedure (B[1]) is set to 100.
example1
Print out a short summary.
#Generalised Linear Model
#Criterion = Bayesian D-optimality
#Formula: ~x1 + x2 + x3 + x4
#
#Family: binomial
#Link function: logit
#
#Method: MC
#
#B: 1000 1000
#
#Number of runs = 6
#
#Number of factors = 4
#
#Number of Phase I iterations = 1
#
#Number of Phase II iterations = 0
#
#Computer time = 00:00:01
example1$phase2.d
Look at the final design.
prior2 <- list(support = rbind(low, upp))
A list specifying the parameters of the uniform prior distribution

eexample2<-aceglm(formula = ~ x1 + x2 + x3 + x4, start.d = start.d, family = binomial,
 prior = prior2, N1 = 1, N2 = 0)
Call the aceglm function with the default method of "quadrature"

eexample2$phase2.d
Final design

x1 x2 x3 x4
#1 -0.4647271 0.07880018 -0.94648750 1.0000000
#2 -0.7102715 0.79827332 0.59848578 0.5564422
#3 -0.7645090 0.39778176 -0.74342036 -1.0000000
#4 0.4514632 -0.33687477 0.55066110 0.3994593
#5 0.7913559 -0.41856994 0.01321035 -0.8848135
#6 0.6337306 0.11578522 1.00000000 1.0000000

mean(example1$utility(d = example1$phase2.d, B = 20000))
[1] -11.61105

mean(example2$utility(d = example2$phase2.d, B = 20000))
[1] -11.19737
Compare the two designs using the Monte Carlo approximation

acenlm

Approximate Coordinate Exchange (ACE) Algorithm for Non-Linear Models

Description

Functions implementing the approximate coordinate exchange algorithm (Overstall & Woods, 2017) for finding optimal Bayesian designs for non-linear regression models.

Usage

acenlm(formula, start.d, prior, B, criterion = c("D", "A", "E", "SIG", "NSEL"),
 method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1,
 progress = FALSE, limits = NULL)

pacenlm(formula, start.d, prior, B, criterion = c("D", "A", "E", "SIG", "NSEL"),
 method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1,
 limits = NULL, mc.cores = 1, n.assess = 20)
Arguments

formula
An object of class "formula": a symbolic description of the model. The terms should correspond to the column names of the argument start.d and the argument prior.

start.d
For aceglm, an n by k matrix, with column names used by the argument formula, specifying the initial design for the ACE algorithm.
For paceglm, a list with each element, an n by k matrix, with column names used by the argument formula, specifying the initial design for each repetition of the ACE algorithm.

prior
An argument specifying the prior distribution.
For method = "MC", a function with one argument: B; a scalar integer. This function should return a B by p matrix (or p+1 for criterion = "SIG" or criterion = "NSEL"), with p the number of model parameters, containing a random sample from the prior distribution of the parameters. The value of p should correspond to the number of terms specified by the formula argument. The column names must match the names of parameters in the formula argument. For criterion="SIG" or criterion="NSEL", an extra column (named sig2) should contain a sample from the prior distribution of the error variance.
For method = "quadrature", a list specifying a normal or uniform prior for the model parameters. For a normal prior distribution, the list should have named entries mu and sigma2 specifying the prior mean and variance-covariance matrix. The prior mean may be specified as a scalar, which will then be replicated to form an vector of common prior means, or a vector of length p. The prior variance-covariance matrix may be specified as either a scalar common variance or a vector of length p of variances (for independent prior distributions) or as a p by p matrix. The names attribute of mu must match the names of the parameters in the formula argument. For a uniform prior distribution, the list should have a named entry support, a 2 by p matrix with each column giving the lower and upper limits of the support of the independent continuous uniform distribution for the corresponding parameter. The column names of support must match the names of parameters in the formula argument.

B
An optional argument for controlling the approximation to the expected utility. It should be a vector of length two.
For criterion = "MC", it specifies the size of the Monte Carlo samples, generated from the joint distribution of unknown quantities. The first sample size, B[1], gives the sample size to use in the comparison procedures, and the second sample size, B[2], gives the sample size to use for the evaluations of Monte Carlo integration that are used to fit the Gaussian process emulator. If left unspecified, the default value is c(20000, 1000).
For criterion = "quadrature", it specifies the tuning parameters (numbers of radial abscissas and random rotations) for the implemented quadrature method; see Details for more information. If left unspecified, the default value is c(2, 8).

criterion
An optional character argument specifying the utility function. There are currently five utility functions implemented consisting of
1. pseudo-Bayesian D-optimality (criterion = "D");
2. pseudo-Bayesian A-optimality (criterion = "A");
3. **pseudo-Bayesian E-optimality** (criterion = "E");
4. **Shannon information gain** (criterion = "SIG");
5. **negative squared error loss** (criterion = "NSEL").

The default value is "D" denoting pseudo-Bayesian D-optimality. See **Details** for more information.

method

An optional character argument specifying the method of approximating the expected utility function. Current choices are **method = "quadrature"** for a deterministic quadrature approximation and **method = "MC"** for a stochastic Monte Carlo approximation. The first of these choices is only available when the argument **criterion = "A", "D" or "E"**. The second choice is available for all possible values of the argument criterion. If left unspecified, the argument defaults to "quadrature" for **criterion = "A", "D" or "E"** and to "MC" otherwise. See **Details** for more information.

Q

An integer specifying the number of evaluations of the approximate expected utility that are used to fit the Gaussian process emulator. The default value is 20.

N1

An integer specifying the number of iterations of Phase I of the ACE algorithm (the coordinate exchange phase). The default value is 20.

N2

An integer specifying the number of iterations of Phase II of the ACE algorithm (the point exchange phase). The default value is 100.

lower

An argument specifying the design space. This argument can either be a scalar or a matrix of the same dimension as the argument **start.d** which specifies the lower limits of all coordinates of the design space. The default value is -1.

upper

An argument specifying the design space. This argument can either be a scalar or a matrix of the same dimension as the argument **start.d** which specifies the upper limits of all coordinates of the design space. The default value is 1.

progress

A logical argument indicating whether the iteration number should be printed. The default value is FALSE.

limits

An argument specifying the grid over which to maximise the Gaussian process emulator for the expected utility function. It should be a function with three arguments: **i**, **j** and **d** which generates a one-dimensional grid for the **ij**th coordinate of the design when the current design is **d**. The default value is NULL which generates values uniformly on the interval **(lower[i,j], upper[i,j])** or **(lower, upper)** depending on whether the arguments **lower** and **upper** are matrices or scalars, respectively.

mc.cores

The number of cores to use, i.e. at most how many child processes will be run simultaneously. Must be at least one (the default), and parallelisation requires at least two cores. See **mclapply** for more information and warnings for **mc.cores > 1**.

n.assess

If **method = "MC"**, the approximate expected utility for the design from each repetition of the ACE algorithm will be calculated **n.assess** times. The terminal design returned will be the design with the largest mean approximate expected utility calculated over the **n.assess** approximations.
Details

The acenlm function implements the ACE algorithm to find designs for general classes of nonlinear regression models with identically and independently normally distributed errors meaning the user does not have to write their own utility function.

Two utility functions are implemented.

1. **Shannon information gain (SIG)**
 The utility function is
 \[u^{\text{SIG}}(d) = \pi(\theta|y, d) - \pi(\theta), \]
 where \(\pi(\theta|y, d) \) and \(\pi(\theta) \) denote the posterior and prior densities of the parameters \(\theta \), respectively.

2. **Negative squared error loss (NSEL)**
 The utility function is
 \[u^{\text{NSEL}}(d) = -(\theta - E(\theta|y, d))^T (\theta - E(\theta|y, d)), \]
 where \(E(\theta|y, d) \) denotes the posterior mean of \(\theta \).

In both cases the utility function is not available in closed form due to the analytical intractability of either the posterior distribution (for SIG) or the posterior mean (for NSEL). Sampling-based Monte Carlo or importance sampling approximations will be employed. This was the original approach used by Overstall & Woods (2017).

A normal approximation to the posterior can be taken leading to the approximation by some scalar function of the Fisher information matrix, \(I(\theta; d) \), which only depends on \(\theta \) (Chaloner & Verdinelli, 1995). In the case of SIG, the approximate utility is given by
\[u^{D}(d) = \log |I(\theta; d)|, \]
and the resulting design is typically called pseudo-Bayesian D-optimal. For NSEL, the approximate utility is given by
\[u^{A}(d) = -\text{tr} \{ I(\theta; d)^{-1} \} \]
with the resulting design termed pseudo-Bayesian A-optimal. These designs are often used under the frequentist approach to optimal experimental design and so to complete the usual set, the following utility for finding a pseudo-Bayesian E-optimal design is also implemented:
\[u^{E}(d) = \min e \left(I(\theta; d) \right), \]
where \(e() \) denotes the function that calculates the eigenvalues of its argument.

The expected utilities can be approximated using Monte Carlo methods (method = "MC" for all criteria) or using a deterministic quadrature method (method = "quadrature", implemented for the D, A and E criteria). The former approach approximates the expected utility via sampling from the prior. The latter approach uses a radial-spherical integration rule (Monahan and Genz, 1997) and \(B[1] \) specifies the number, \(n_r \), of radial abscissas and \(B[2] \) specifies the number, \(n_q \), of random rotations. Larger values of \(n_r \) will produce more accurate, but also more computationally expensive, approximations. See Gotwalt et al. (2009) for further details.

Similar to all coordinate exchange algorithms, ACE should be repeated from different initial designs. The function pacenlm will implement this where the initial designs are given by a list via
the argument `start.d`. On the completion of the repetitions of ACE, `pace` will approximate the expected utility for all final designs and return the design (the terminal design) with the largest approximate expected utility.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Value

The function will return an object of class "ace" (for `acenlm`) or "pace" (for `pace`) which is a list with the following components:

- `utility` The utility function resulting from the choice of arguments.
- `start.d` The argument `start.d`.
- `phase1.d` The design found from Phase I of the ACE algorithm.
- `phase2.d` The design found from Phase II of the ACE algorithm.
- `phase1.trace` A vector containing the evaluations of the approximate expected utility of the current design at each stage of Phase I of the ACE algorithm. This can be used to assess convergence.
- `phase2.trace` A vector containing the evaluations of the approximate expected utility of the current design at each stage of Phase II of the ACE algorithm. This can be used to assess convergence.
- `B` The argument `B`.
- `Q` The argument `Q`.
- `N1` The argument `N1`.
- `N2` The argument `N2`.
- `glm` This will be `FALSE`.
- `nlm` If the object is a result of a direct call to `acenlm` then this is `TRUE`.
- `criterion` If the object is a result of a direct call to `acenlm` then this is the argument criterion.
- `method` If the object is a result of a direct call to `acenlm` then this is the argument method.
- `prior` If the object is a result of a direct call to `aceglm` then this is the argument prior.
- `formula` If the object is a result of a direct call to `acenlm` then this is the argument formula.
- `time` Computational time (in seconds) to run the ACE algorithm.
- `binary` The argument binary. Will be `FALSE` for the utility functions currently implemented.
- `d` The terminal design (`pace` only).
- `eval` If `deterministic = "MC"`, a vector containing `n.assess` approximations to the expected utility for the terminal design (`pace` only). If `deterministic = "quadrature"`, a scalar giving the approximate expected utility for the terminal design (`pace` only).
- `final.d` A list of the same length as the argument `start.d`, where each element is the final design (i.e. `phase2.d`) for each repetition of the ACE algorithm (`pace` only).
- `besti` A scalar indicating which repetition of the ACE algorithm resulted in the terminal design (`pace` only).
Note

These are wrapper functions for ace and pace.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami- anos Michaelides

References

See Also

ace, aceglm, pace, paceglm.

Examples

```r
## This example uses aceglm to find a Bayesian D-optimal design for a
## compartmental model with 6 runs 1 factor. The priors are
## those used by Overstall & Woods (2017). The design space for each
## coordinate is [0, 24] hours.

set.seed(1)
## Set seed for reproducibility.

n<-6
## Specify the sample size (number of runs).

start.d<-matrix(24 * randomLHS(n = n, k = 1), nrow = n, ncol = 1,
dimnames = list(as.character(1:n), c("t")))
## Generate an initial design of appropriate dimension. The initial design is a
## Latin hypercube sample.

low<-c(0.01884, 0.298, 21.8)
upp<-c(0.09884, 8.298, 21.8)
## Lower and upper limits of the support of the uniform prior distributions. Note that the prior
## for the third element is a point mass.

prior<-function(B){
```

```
out<-cbind(runif(n = B, min = low[1], max = upp[1]), runif(n = B, min = low[2], max = upp[2]), runif(n = B, min = low[3], max = upp[3]))
colnames(out)<-c("a", "b", "c")
}

## Create a function which specifies the prior. This function will return a B by 3 matrix where each row gives a value generated from the prior distribution for the model parameters.

example1<-acenlm(formula = ~ c*(exp( - a * t) - exp( - b * t)), start.d = start.d, prior = prior, n1 = 1, n2 = 0, B = c(1000, 1000), lower = 0, upper = 24, method = "MC"
## Call the acenlm function which implements the ACE algorithm requesting only one iteration of Phase I and zero iterations of Phase II. The Monte Carlo sample size for the comparison procedure (B[1]) is set to 1000.

example1

## Print out a short summary.

#Non Linear Model
#Criterion = Bayesian D-optimality
#Formula: ~c * (exp(-a * t) - exp(-b * t))
#Method: MC
#
#B: 1000 1000
#
#Number of runs = 6
#
#Number of factors = 1
#
#Number of Phase I iterations = 1
#
#Number of Phase II iterations = 0
#
#Computer time = 00:00:00

example1$phase2.d

## Look at the final design.

# t
#1 19.7787011
#2 2.6431912
#3 0.2356938
#4 8.2471451
#5 1.4742319
#6 12.7062270

prior2 <- list(support = cbind(rbind(low, upp)))
colnames(prior2$support) <- c("a", "b", "c")
example2 <- acenlm(formula = ~ c * (exp(-a * t) - exp(-b * t)), start.d = start.d, prior = prior2, lower = 0, upper = 24, n1 = 1, n2 = 0)
## Call the acenlm function with the default method of "quadrature"

example2$phase2.d
## Final design

```
t
#1 0.5167335
#2 2.3194434
#3 1.5365409
#4 8.2471451
#5 21.9402670
#6 12.7062270
```

```
utility <- utilitynlm(formula = ~c * (exp(- a * t) - exp(- b *t)), prior = prior,
 desvars = "t", method = "MC")$utility
```

## create a utility function to compare designs

```
mean(utility(example1$phase1.d, B = 20000))
#[1] 12.13773
mean(utility(example2$phase1.d, B = 20000))
#[1] 11.19745
```

## Compare the two designs using the Monte Carlo approximation

---

**aceobjects**

*Print and Summary of ace and pace Objects*

**Description**

These functions print and summarise objects of class "ace" or "pace".

**Usage**

```
S3 method for class 'ace'
print(x, ...)
S3 method for class 'ace'
summary(object, ...)

S3 method for class 'pace'
print(x, ...)
S3 method for class 'pace'
summary(object, ...)
```

**Arguments**

- **x**
  - An object of class "ace" or "pace".
- **object**
  - An object of class "ace" or "pace".
- **...**
  - Arguments to be passed to and from other methods.
assess

Value

If the object is a result of a direct call to \texttt{aceglm}, \texttt{acenlm}, \texttt{paceglm}, or \texttt{pacenlm}, then the argument criterion will be printed, otherwise the statement User-defined utility will be printed.

Also printed are the number of repetitions ("pace" objects only), runs, factors, Phase I and II iterations of the ACE algorithm and the computational time required.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Note

For examples see \texttt{ace}, \texttt{aceglm}, and \texttt{acenlm}.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-anos Michaelides

References


See Also

\texttt{ace, aceglm, acenlm, pace,paceglm, pacenlm}.

---

**assess**

\textit{Compares two designs under the approximate expected utility}

**Description**

Calculates approximations to the expected utility for two designs.

**Usage**

\begin{verbatim}
assess(d1, d2, ...)

## S3 method for class 'ace'
assess(d1, d2, B = NULL, n.assess = 20, relative = TRUE, ...)

## S3 method for class 'pace'
assess(d1, d2, B = NULL, n.assess = 20, relative = TRUE, ...)
\end{verbatim}
Arguments

\(d1, d2\)  
\(d1\) should be an object of class "ace" or "pace" and \(d2\) should be an object of class "ace", "pace" or "matrix".

\(B\)  
An optional argument for controlling the approximation to the expected utility (see ace, aceglm and acenlm). If left unspecified, the value is inherited from the argument \(d1\).

\(n.assess\)  
If \(d1\) was generated from a call to (p)ace with argument deterministic = FALSE or from a call to (p)aceglm or (p)acenlm with argument method being "MC", then \(n.assess\) is an optional argument giving the number of evaluations of the stochastic approximation to the expected utility.

\(relative\)  
An optional argument, for when \(d1\) was generated as a call to (p)aceglm or (p)acenlm with argument criterion being "A", "D" or "E", controlling whether the measure of relative efficiency is calculated for \(d1\) relative to \(d2\) (TRUE; the default) or for \(d2\) relative to \(d1\) (FALSE).

...  
Arguments to be passed to and from other methods.

Details

In the case of when \(d1\) was generated from a call to (p)ace with argument deterministic = FALSE or from a call to (p)aceglm or (p)acenlm with argument method being "MC", \(n.assess\) evaluations of the stochastic approximation to the expected utility will be calculated for each of the designs from \(d1\) and \(d2\). Otherwise, one evaluation of the deterministic approximation to the expected utility will be calculated for each of the designs from \(d1\) and \(d2\).

In the case when \(d1\) was generated as a call to (p)aceglm or (p)acenlm with argument criterion being "A", "D" or "E", the relative D-, E-, or A-efficiency of the two designs will be calculated. The direction of the relative efficiency can be controlled by the relative argument.

Value

The function will an object of class "assess" which is a list with the following components:

\(U1\)  
In the case of when \(d1\) was generated from a call to (p)ace with argument deterministic = FALSE or from a call to (p)aceglm or (p)acenlm with argument method being "MC", \(U1\) will be a vector of \(n.assess\) evaluations of the stochastic approximation to the expected utility for design \(d1\). Otherwise, \(U1\) will be a scalar of one evaluation of the deterministic approximation to the expected utility for design \(d1\).

\(U2\)  
In the case of when \(d1\) was generated from a call to (p)ace with argument deterministic = FALSE or from a call to (p)aceglm or (p)acenlm with argument method being "MC", \(U2\) will be a vector of \(n.assess\) evaluations of the stochastic approximation to the expected utility for design \(d2\). Otherwise, \(U2\) will be a scalar of one evaluation of the deterministic approximation to the expected utility for design \(d2\).

\(eff\)  
In the case when \(d1\) was generated as a call to (p)aceglm or (p)acenlm with argument criterion being "A", "D" or "E", \(eff\) is a scalar of the relative D-, E-, or A-efficiency of the two designs. Otherwise it will be NULL.
assessobjects

## Examples

```r
This example involves finding a Bayesian D-optimal design for a
compartmental model with n = 18 runs. There are three parameters.
Two parameters have uniform priors and the third has a prior
point mass.

n <- 18
k <- 1
p <- 3
set.seed(1)
start.d <- randomLHS(n = n, k = k) * 24
colnames(start.d) <- c("t")

a1<-c(0.01884, 0.298)
a2<-c(0.09884, 8.298)

prior <- list(support = cbind(rbind(a1, a2), c(21.8, 21.8)))
colnames(prior[[1]]) <- c("theta1", "theta2", "theta3")

example <- acenlm(formula = ~ theta3 * (exp(- theta1 * t) - exp(- theta2 * t)),
 start.d = start.d, prior = prior, lower = 0, upper = 24, N1 = 2, N2 = 0)

Compute efficiency of final design compared to starting design.
assess(d1 = example, d2 = start.d)

Should get
Approximate expected utility of d1 = 15.40583
Approximate expected utility of d2 = 11.26968
Approximate relative D-efficiency = 396.9804%
```
Description

These functions print and summarise objects of class "assess".

Usage

## S3 method for class 'assess'
print(x, ...)
## S3 method for class 'assess'
summary(object, ...)

Arguments

x
  An object of class "assess".
object
  An object of class "assess".
...
  Arguments to be passed to and from other methods.

Value

These functions both provide a print out with the following information.

In the case of when d1 was generated from a call to (p)ace with argument deterministic = FALSE
or from a call to (p)aceglm or (p)acenlm with argument method being "MC", then the mean and
standard deviation of the n.assess evaluations of the approximate expected utility for each of the
designs d1 and d2 will be printed.

Otherwise, one evaluation of the deterministic approximation to the expected utility will be printed
for each of the designs from d1 and d2. In the case when d1 was generated as a call to (p)aceglm
or (p)acenlm with argument criterion being "A", "D" or "E", the relative D-, E-, or A-efficiency
of the two designs will be also be printed.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

See Also

assess

overstallwoods  Functions implementing the examples of Overstall & Woods (2017).

Description

This suite of functions implement the examples in Overstall & Woods (2017).
Usage

######## Compartmental model #################################################################
utilcomp18bad(d, B)
optdescomp18bad(type = "ACE")
utilcomp15bad(d, B)
optdescomp15bad()
utilcomp15sig(d, B)
optdescomp15sig()
utilcomp15sigDRS(d, B)
optdescomp15sigDRS()

######## Logistic regression model ################################################################
utillrbad(d, B)
optdeslrbad(n, type = "ACE")
utilllrsig(d, B)
inidesllrsig(n, rep)
optdesllrsig(n)

utilhlrbad(d, B)
optdeshlrbad(n)
utilhlrsig(d, B)
inideshlrsig(n, rep)
optdeshlrsig(n)

utilllrbaa(d, B)
optdesllrbaa(n)
utilllrnset(d, B)
inidesllrnset(n, rep)
optdesllrnset(n)

optdeshlrbaa(n)
utilhlrbaa(d, B)
utilhlrnset(d, B)
inideshlrnset(n, rep)
optdeshlrnset(n)

######## Beetle mortality experiment ################################################################
utilbeetle(d, B)
optdesbeetle(n)

######## Linear model ################################################################
utillinmod(d, B)
optdeslinmod(n, type = "ACE")
Arguments

d  An \( n \) by \( k \) matrix specifying the design matrix, where \( n \) and \( k \) denote the number of runs and factors, respectively. See Details and Value for the values that \( n \) and \( k \) can take for each of the examples. Each element of \( d \) is scaled to the interval \([-1,1]\).

\( n \)  The number of runs in the experiment.

\( rep \)  A scalar integer in the set \( \{1, \ldots, 20\} \) specifying the initial design.

\( B \)  A scalar integer specifying the Monte Carlo sample size.

\( type \)  An optional character argument specifying which design to return. For optdes1rbad, possible values are c("ACE","Gotwalt","Atkinson"). If "ACE" (the default) then the design found by the ACE algorithm will be returned. If "Gotwalt" then the design published in Gotwalt et al (2009) is returned. If "Atkinson" then the design found by Atkinson et al (1993) is returned. For optdeslinmod, possible values are c("ACE","BoxDraper"). If "ACE" (the default) then the design found by the ACE algorithm will be returned. If "BoxDraper" then the true optimal design, as found by Box & Draper (1971), will be returned.

Details

This section provides details on the examples considered and the functions implemented in acebayes.

**Compartmental model**

Compartmental models are used in Pharmokinetics to study how materials flow through an organism. A drug is administered to an individual or animal and then the amount present at a certain body location is measured at a set of \( n \) pre-determined sampling times (in hours). There is one design variable: sampling time. Therefore the design matrix \( d \) is an \( n \) by 1 matrix with elements controlling the \( n \) sampling times, i.e. the number of factors is \( k=1 \).

In Overstall & Woods (2017), two different compartmental model examples are considered. The first (in the Supplementary Material) comes from Atkinson et al (1993) and Gotwalt et al (2009) where there are \( n = 18 \) sampling times and interest lies in finding a Bayesian D-optimal design. The functions whose name includes "comp18" refer to this example.

The second example (in Section 3.2) comes from Ryan et al (2014), where there are \( n = 15 \) sampling times and the ultimate interest lies in finding an optimal design under the Shannon information gain utility. Also considered is the Bayesian D-optimal design. The functions whose name includes "comp15" refer to this example. Note that Ryan et al (2014) used a dimension reduction scheme (DRS) to find optimal designs. The function whose name is suffixed by "DRS" refer to this situation.

**Logistic regression model**

In Section 3.3 of Overstall & Woods (2017), a first-order logistic regression model in \( k = 4 \) factors and \( n \) runs is considered. Woods et al (2006) and Gotwalt et al (2009) considered generating Bayesian D-optimal designs for \( n = 16 \) and \( n = 48 \). Overstall & Woods (2017) extended this example by considering Bayesian A-optimal, Shannon information gain (SIG) and negative squared error loss (NSEL) utility functions, a range of number of runs from 6 to 48, and "random effects" to form a hierarchical logistic regression model.
**Beetle mortality experiment**

Overstall & Woods (2017, Section 3.4) considers generating an optimal design for a follow-up experiment. The original design and data (Bliss, 1935) involves administering different doses of poison to $N = 8$ groups of beetles. The number of beetles that die in each group are recorded. Six different models are considered formed from the combination of three link functions and two linear predictors (following the analysis of O’Hagan & Forster, 2004). Interest lies in the quantity known as lethal dose 50 (LD50) which is the dose required to kill 50% of the beetles and is a function of the model parameters for a given model. Consider finding an optimal design for estimating LD50 under the negative squared error loss (NSEL) function for $n$ new doses of poison (i.e. $k = 1$ factor). The prior distribution is equivalent to the posterior distribution arising from the original data and includes model uncertainty.

**Linear model**

In the supplementary material, Overstall & Woods (2017) considers finding D-optimal designs for a second-order (i.e. $k = 2$) response surface in $n=6, 7, 8, 9$ runs. Note that the D-optimal design is equivalent to the optimal design under Shannon information gain and a non-informative prior distribution.

The expected utility function in this case is available in closed form, i.e. it does not require approximation. Box & Draper (1971) found optimal designs analytically for the number of runs considered here. Overstall & Woods (2017) use this example to demonstrate the efficacy of the ACE algorithm.

**Value**

**Compartmental model**

For the example in the Supplementary Material;

- The function `utilcomp18bad` will return a vector of length $B$ where each element is the value of the Bayesian D-optimal utility function (i.e. the log determinant of the Fisher information matrix) evaluated at a sample of size $B$ generated from the prior distribution of the model parameters.

- The function `optdescomp18bad` will return an 18 by 1 matrix giving the optimal design (specified by the argument type). The elements will be scaled to be in the interval $[-1, 1]$, i.e. a -1 corresponds to a sampling times of 0 hours, and 1 corresponds to a time of 24 hours.

For the example in Section 3.2;

- The function `utilcomp15bad` will return a vector of length $B$ where each element is the value of the Bayesian D-optimal utility function (i.e. the log determinant of the Fisher information matrix) evaluated at a sample of size $B$ generated from the prior distribution of the model parameters.

- The function `optdescomp15bad` will return an 15 by 1 matrix giving the optimal design (found using ACE) under Bayesian D-optimality. The elements will be scaled to be in the interval $[-1, 1]$, i.e. a -1 corresponds to a sampling times of 0 hours, and 1 corresponds to a time of 24 hours.

- The function `utilcomp15sig` will return a vector of length $B$ where each element is the value of the SIG utility function evaluated at a sample of size $B$ generated from the joint distribution of model parameters and unobserved responses.
The function `optdescomp15sig` will return an 18 by 1 matrix giving the optimal design (found using ACE) under the SIG utility. The elements will be scaled to be in the interval [-1, 1], i.e. a -1 corresponds to a sampling time of 0 hours, and 1 corresponds to a time of 24 hours.

The function `utilcomp15sigDRS` will return a vector of length \( B \) where each element is the value of the SIG utility function (where a DRS has been used) evaluated at a sample of size \( B \) generated from the joint distribution of model parameters and unobserved responses. Here the Beta DRS (see Overstall & Woods, 2017) has been used so \( d \) should be a 2 by 1 matrix containing the positive beta parameters.

The function `optdescomp15sigDRS` will return a 2 by 1 matrix giving the optimal design (found using ACE) under the SIG utility, where a DRS has been used. The elements correspond to the parameters of a beta distribution.

**Logistic regression model**

A function whose name includes "lr" refers to standard logistic regression, whereas "hlr" refers to hierarchical logistic regression. Under standard logistic regression the possible values for the argument \( n \) can be any even integer between 6 and 48. For hierarchical logistic regression, \( n \) can be any integer divisible by 6 between 12 and 48. The function name also indicates the utility function:

- "bad" Bayesian D-optimal
- "baa" Bayesian A-optimal
- "sig" Shannon information gain
- "nsel" Negative squared error loss

The functions prefixed by "util" will return a vector of length \( B \) where each element is the utility function evaluated at a sample generated from the prior distribution of model parameters (for Bayesian D- and A-optimality) or the joint distribution of model parameters and unobserved responses (for SIG and NSEL).

The functions prefixed by "optdes" will return an \( n \) by \( k = 4 \) matrix giving the optimal design found by ACE. The designs given by this function are those reported on in Overstall & Woods (2017). The function `optdes1rbad` will also return designs (for \( n = 16, 48 \)) found by Woods et al (2006) and Gotwalt et al (2009) by specifying the type argument appropriately.

The functions prefixed by "inides" will return an \( n \) by \( k = 4 \) matrix giving an initial design for ACE to find the optimal designs under the SIG and NSEL utility functions. These are 20 designs found using ACE under approximations to the Bayesian A- and D-optimal utility functions, respectively. The argument `rep` specifies which of these 20 designs to use.

**Beetle mortality experiment**

The function `utilbeetle` will return a vector of length \( B \) where each element is the value of the utility function for a sample generated from the joint distribution of the model parameters, model and unobserved responses.

The function `optdesbeetle` will return an \( n \) by 1 matrix giving the optimal design under the NSEL utility function (found using ACE) for estimating the LD50. The elements will be scaled to be in the interval [-1, 1], where -1 corresponds to a dose of 1.6907, 0 to a dose of 1.7873 and 1 to a dose of 1.8839. The designs given by this function are those reported in Overstall & Woods (2017) for \( n = 1, \ldots, 10 \).

**Linear model**
The function `utilinmod` will return a vector of length \( B \) where each element is a realisation of a stochastic approximation to the expected utility.

The function `optdeslinmod` will return an \( n \times 2 \) matrix giving the D-optimal design (specified by the argument `type`). If `type = "ACE"`, the designs returned by this function are those found using the ACE algorithm and are reported in the Supplementary Material of Overstall & Woods (2017), and if `type = "BoxDraper"`, the designs returned are the exact D-optimal designs.

**Author(s)**

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-anos Michaelides

**References**


**See Also**

ace, pace.

**Examples**

```
Compartmental model

set.seed(1)
Set seed for reproducibility

d<-optimumLHS(n = 18, k = 1) * 2 - 1
Generate an 18-run design.

uc<-utilcomp18bad(d = d, B = 20000)
```
## Calculate the D-optimal utility function for a sample of size 20000.

\[ u[1:5] \]

## Look at first 5 elements.
\[ [1] \ 14.283473 \ 10.525390 \ 4.126233 \ 7.061498 \ 12.793245 \]

\[ d0<-optdescomp18bad() \]
\[ u0<-utilcomp18bad(d = d0, B = 20000) \]

## Optimal design found by ACE and calculate the D-optimal utility function for a sample of size 20000.

\[ u0[1:5] \]

## Look at first 5 elements.
\[ [1] \ 15.04721 \ 15.37141 \ 16.84287 \ 14.06750 \ 14.01523 \]

mean(u)
mean(u0)

## Calculate expected Bayesian D-optimal utility.

\[ d<-matrix(runif(2), ncol = 1) \]

## Generate two beta parameters.

\[ u<-utilcomp15sigDRS(d = d, B = 5) \]

## Calculate the SIG utility function for a sample of size 5.
\[ [1] \ 17.652044 \ 4.878998 \ 19.919559 \ 22.017760 \ 5.600473 \]

##### Logistic regression model

\[ set.seed(1) \]

## Set seed for reproducibility

\[ d<-optimumLHS(n = 16, k = 4) * 2 - 1 \]

## Generate an 16-run design.

\[ u<-utillrbad(d = d, B = 20000) \]

## Calculate the D-optimal utility function for a sample of size 20000.

\[ u[1:5] \]

## Look at first 5 elements.
\[ [1] \ -11.630683 \ -5.748912 \ -9.554413 \ -10.150132 \ -7.940938 \]

\[ d0<-optdeslrbad(16) \]
\[ u0<-utillrbad(d = d0, B = 20000) \]

## Optimal design found by ACE and calculate the D-optimal utility function for a sample of size 20000.

\[ u0[1:5] \]

## Look at first 5 elements.
\[ [1] \ -4.644116 \ -2.411431 \ -4.999891 \ -2.906558 \ -2.282687 \]
mean(u)
mean(u0)

## Calculate expected Bayesian D-optimal utility.

# [1] -9.38253
# [1] -2.992012

########## Beetle mortality experiment

set.seed(1)

## Set seed for reproducibility

d<-optimumLHS(n = 10, k = 1)*2-1

## Generate a design of 10 doses with elements in [-1, 1]

utilbeetle(d = d, B = 5)

## Calculate the utility function for a sample of size 5.

# -4.720491e-06 -1.198955e-05 -1.681380e-05 -3.123498e-06 -1.412722e-05

d0<-optdesbeetle(10)
d0

## Print out optimal design from Overstall & Woods (2017) for 10 doses

0.5*( d0 + 1)*( 1.8839 - 1.6907 ) + 1.6907

## On original scale.

# [1,] 1.769957
# [2,] 1.769520
# [3,] 1.768641
# [4,] 1.777851
# [5,] 1.768641
# [6,] 1.769520
# [7,] 1.777851
# [8,] 1.765997
# [9,] 1.768641
#[10,] 1.768641

########## Linear model

set.seed(1)

## Set seed for reproducibility

d<-cbind(rep(c(-1, 0, 1), each = 3), rep(c(-1, 0, 1), 3))

## Create a 9-run design which is the true D-optimal design

utillinmod(d = d, B = 5)

## Calculate the approximation to the true expected D-optimal utility

## function for a sample of size 5.


d0<-optdeslinmod(9)
## Optimal D-optimal design found using ACE

```r
X <- cbind(1, d, d^2, d[,1] * d[,2])
X0 <- cbind(1, d0, d0^2, d0[,1] * d0[,2])

Calculate model matrices under both designs

detX <- determinant(t(X) %*% X)$modulus[1]
detX0 <- determinant(t(X0) %*% X0)$modulus[1]

Calculate true expected D-optimal utility function for both designs

100 * exp(0.2 * (detX0 - detX))

Calculate D-efficiency of ACE design.

99.93107
```

### Description

This function plots objects of class "ace" or "pace".

### Usage

```r

S3 method for class 'ace'
plot(x, ...)

S3 method for class 'pace'
plot(x, ...)

```

### Arguments

- `x`: An object of class "ace" or "pace".
- `...`: Arguments to be passed to and from other methods.

### Value

A trace plot of the current evaluations of the approximate expected utility function. Separate lines are produced for the traces from Phases I and II of the ACE algorithm.

For objects of class "pace", the evaluations of the approximate expected utility function are from the repetition which resulted in the terminal design (see `pace`, `paceglm`, and `pacenlm` for more details).

These trace plots can be used to assess convergence. See Overstall & Woods (2017) for more details.

### Note

For an example see `ace`.  

<table>
<thead>
<tr>
<th>plot.ace</th>
<th>Plot ace Objects</th>
</tr>
</thead>
</table>

| Description | This function plots objects of class "ace" or "pace". |
| Usage | ```r

## S3 method for class 'ace'
plot(x, ...)

## S3 method for class 'pace'
plot(x, ...)

```

| Arguments | `x`: An object of class "ace" or "pace". |
| Arguments | `...`: Arguments to be passed to and from other methods. |

| Value | A trace plot of the current evaluations of the approximate expected utility function. Separate lines are produced for the traces from Phases I and II of the ACE algorithm. |
| Value | For objects of class "pace", the evaluations of the approximate expected utility function are from the repetition which resulted in the terminal design (see `pace`, `paceglm`, and `pacenlm` for more details). |
| Value | These trace plots can be used to assess convergence. See Overstall & Woods (2017) for more details. |

| Note | For an example see `ace`. |
Author(s)
Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Damianos Michaelides

References

See Also
ace, pace

plot.assess Plot assess Objects

Description
This function plots objects of class "assess".

Usage

S3 method for class 'assess'
plot(x, ...)

Arguments

x An object of class "assess".

... Arguments to be passed to and from other methods.

Value
In the case of when d1 was generated from a call to (p)ace with argument deterministic = FALSE or from a call to (p)aceglm or (p)acenlm with argument method being "MC", then boxplots of the n.assess evaluations of the approximate expected utility for each of the designs d1 and d2 will be produced. Otherwise, a plot is not meaningful and a warning will be produced.

Author(s)
Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Damianos Michaelides

See Also
assess
utilities

Approximate expected utility function for generalised linear models and non-linear regression models

Description

Generates an approximate utility function for generalised linear models and non-linear regression models.

Usage

utilityglm(formula, family, prior, criterion = c("D", "A", "E", "SIG", "NSEL", "SIG-Norm", "NSEL-Norm"), method = c("quadrature", "MC"), nrq)

utilitynlm(formula, prior, desvars, criterion = c("D", "A", "E", "SIG", "NSEL"), method = c("quadrature", "MC"), nrq)

Arguments

formula

An argument providing a symbolic description of the model.
For utilityglm, an object of class "formula": a symbolic description of the model.
For utilitynlm, an object of class "formula": a symbolic description of the model. The terms should correspond to the argument prior

family

For utilityglm, a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)

prior

An argument specifying the prior distribution.
For method = "MC", a function with one argument: B; a scalar integer. This function should return a B by p matrix (p+1 for criterion = "SIG" or criterion = "NSEL"), with p the number of model parameters, containing a random sample from the prior distribution of the parameters. The value of p should correspond to the number of terms specified by the formula argument. For utilitynlm, the column names must match the names of parameters in the formula argument.
For utilitynlm, if criterion="SIG", criterion="NSEL", criterion="SIG-Norm" or criterion="NSEL-Norm" then an extra column called sig2 should be included with a sample from the error variance.
For method = "quadrature", a list specifying a normal or uniform prior for the model parameters. For a normal prior distribution, the list should have named entries mu and sigma2 specifying the prior mean and variance-covariance matrix. The prior mean may be specified as a scalar, which will then be replicated to form an vector of common prior means, or a vector of length p. The prior variance-covariance matrix may be specified as either a scalar common variance or a vector of length p of variances (for independent prior distributions) or as a p
by p matrix. For utilitynlm, the names attribute of mu must match the names of the parameters in the formula argument. For a uniform prior distribution, the list should have a named entry support, a 2 by p matrix with each column giving the lower and upper limits of the support of the independent continuous uniform distribution for the corresponding parameter. For utilitynlm, the column names of support must match the names of parameters in the formula argument.

desvars For utilitynlm, a character vector listing the design variables that appear in the argument formula.

criterion An optional character argument specifying the utility function. There are currently seven utility functions implemented as follows:

1. **pseudo-Bayesian D-optimality** (criterion = "D");
2. **pseudo-Bayesian A-optimality** (criterion = "A");
3. **pseudo-Bayesian E-optimality** (criterion = "E").
4. **Shannon information gain** with Monte Carlo (MC) approximation to marginal likelihood (criterion = "SIG");
5. **Shannon information gain** with normal-based Laplace approximation to marginal likelihood (criterion = "SIG-Norm", only for utilityglm);
6. **negative squared error loss** with importance sampling approximation to posterior mean (criterion = "NSEL");
7. **negative squared error loss** with normal-based approximation to posterior mean (criterion = "NSEL-Norm", only for utilityglm).

The default value is "D" denoting pseudo-Bayesian D-optimality. See **Details** for more information.

method An optional character argument specifying the method of approximating the expected utility function. Current choices are method = "quadrature" for a deterministic quadrature approximation and method = "MC" for a stochastic Monte Carlo approximation. The first of these choices is only available when the argument criterion = "A", "D" or "E". The second choice is available for all possible values of the argument criterion. If left unspecified, the argument defaults to "quadrature" for criterion = "A", "D" or "E" and to "MC" otherwise. See **Details** for more information.

nrq For method = "quadrature", a vector of length two specifying the number of radial abscissas (nrq[1]) and quasi-random rotations (nrq[2]) required for the implemented quadrature scheme; see **Details** for more information. If left unspecified, the default value is c(2, 8).

Details

Two utility functions are implemented.

1. **Shannon information gain (SIG)**

 The utility function is

 \[u^{SIG}(d) = \pi(\theta|y, d) - \pi(\theta), \]

 where \(\pi(\theta|y, d) \) and \(\pi(\theta) \) denote the posterior and prior densities of the parameters \(\theta \), respectively.
2. **Negative squared error loss (NSEL)**

The utility function is

\[u^{NSEL}(d) = - (\theta - E(\theta|y,d))^T (\theta - E(\theta|y,d)) \]

where \(E(\theta|y,d) \) denotes the posterior mean of \(\theta \).

In both cases the utility function is not available in closed form due to the analytical intractability of either the posterior distribution (for SIG) or the posterior mean (for NSEL). The acebayes package implements two approximations to both utility functions. If `criterion = "SIG"` or `criterion = "NSEL"` then sampling-based Monte Carlo or importance sampling approximations will be employed. This was the original approach used by Overstall & Woods (2017). If `criterion = "SIG-Norm"` or `criterion = "NSEL-Norm"` then approximations based on approximate normality of the posterior (Overstall et al., 2017) will be used.

The normal approximation to the posterior can be taken further leading to the approximation by some scalar function of the Fisher information matrix, \(I(\theta;d) \), which only depends on \(\theta \) (Chaloner & Verdinelli, 1995). In the case of SIG, the approximate utility is given by

\[u^D(d) = \log |I(\theta;d)|, \]

and the resulting design is typically called pseudo-Bayesian D-optimal. For NSEL, the approximate utility is given by

\[u^A(d) = -\text{tr} \{ I(\theta;d)^{-1} \} \]

with the resulting design termed pseudo-Bayesian A-optimal. These designs are often used under the frequentist approach to optimal experimental design and so to complete the usual set, the following utility for finding a pseudo-Bayesian E-optimal design is also implemented:

\[u^E(d) = \min e(I(\theta;d)) \]

where \(e() \) denotes the function that calculates the eigenvalues of its argument.

The expected utilities can be approximated using Monte Carlo methods (`method = "MC"` for all criteria) or using a deterministic quadrature method (`method = "quadrature"`, implemented for the D, A and E criteria). The former approach approximates the expected utility via sampling from the prior. The latter approach uses a radial-spherical integration rule (Monahan and Genz, 1997) and \(B[1] \) specifies the number, \(n_r \), of radial abscissas and \(B[2] \) specifies the number, \(n_q \), of random rotations. Larger values of \(n_r \) will produce more accurate, but also more computationally expensive, approximations. See Gotwalt et al. (2009) for further details.

For `utilityglm`, note that the utility functions for SIG and NSEL are currently only implemented for logistic regression, i.e. `family = binomial`, or Poisson regression, i.e. `family = poisson(link = "log")`, whereas the utility functions for pseudo-Bayesian designs are implemented for generic GLM families.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Value

The function will return a list with the following components:

- `utility` The utility function resulting from the choice of arguments.
utilities

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Damianos Michaelides

References

See Also

aceglm, acenlm, paceglm, pacenlm.

Examples

```r
## 1. This example uses utilityglm to generate the pseudo-Bayesian D-optimality approximate expected utility function using a Monte Carlo approximation.
```

```r
low<-c(-3, 4, 5, -6, -2.5)
upp<-c(3, 10, 11, 0, 3.5)
## Lower and upper limits of the uniform prior distributions.
prior<-function(B){
t(t(6*matrix(runif(n=5*B),ncol=5))+low)
}## Create a function which specifies the prior. This function will return a ## B by 5 matrix where each row gives a value generated from the prior ## distribution for the model parameters.
ex <- utilityglm(formula = ~x1+x2+x3+x4, family = binomial, prior = prior, method = "MC")
```

```r
set.seed(1)
## Set seed for reproducibility.
n<-6
## Specify the sample size (number of runs).
start.d<-matrix( 2 * randomLHS(n = n,k = 4) - 1,nrow = n,ncol = 4,
dimnames = list(as.character(1:n),c("x1", "x2", "x3", "x4")))
## Generate an initial design of appropriate dimension. The initial design is a ## Latin hypercube sample.
ex$utility(d = start.d, B = 10)
## Evaluate resulting approximate utility. Should get:
```
2. This example uses utilitynlm to generate the pseudo-Bayesian A-optimality expected utility function using a quadrature approximation

low<-c(0.01884, 0.298, 21.8)
upp<-c(0.09884, 8.298, 21.8)

Lower and upper limits of the uniform prior distributions. Note that the prior
for the third element is a point mass.

prior2 <- list(support = cbind(rbind(low, upp)))
colnames(prior2$support) <- c("a", "b", "c")

Specify a uniform prior with ranges given by low and upp

ex2 <- utilitynlm(formula = ~ c * (exp(- a * t) - exp(- b *t)), prior = prior2, desvars = "t")

n <- 6
start.d <- matrix(24 * randomLHS(n = n, k = 1), nrow = n)
colnames(start.d) <- "t"

ex2$utility(d = start.d)

-13.17817
Index

*Topic package
 acebayes-package, 2
ace, 2, 3, 5, 15, 22, 25–27, 33, 36, 37
acebayes (acebayes-package), 2
acebayes-package, 2
aceglm, 2, 3, 10, 22, 25–27, 41
acenlm, 2, 3, 15, 17, 25–27, 41
aceobjects, 24
acephase1 (ace), 5
acephase2 (ace), 5
assess, 25, 28, 37
assessobjects, 27
family, 11, 38
inideshlrnsel (overstallwoods), 28
inideshlrsig (overstallwoods), 28
inideslrnsel (overstallwoods), 28
inideslrsig (overstallwoods), 28
mclapply, 6, 12, 19
optdesbeetle (overstallwoods), 28
optdescomp15bad (overstallwoods), 28
optdescomp15sig (overstallwoods), 28
optdescomp15sigDRS (overstallwoods), 28
optdescomp18bad (overstallwoods), 28
optdeshlrbaa (overstallwoods), 28
optdeshlrbad (overstallwoods), 28
optdeshlrnsel (overstallwoods), 28
optdeshlrsig (overstallwoods), 28
optdeslinmod (overstallwoods), 28
optdeslrbaa (overstallwoods), 28
optdeslrbad (overstallwoods), 28
optdeslrnsel (overstallwoods), 28
optdeslrsig (overstallwoods), 28
overstallwoods, 28
pace, 2, 3, 15, 22, 25, 27, 33, 36, 37
pace (ace), 5
paceglm, 2, 3, 22, 25, 27, 36, 41
paceglm (aceglm), 10
pacenlm, 2, 3, 15, 25, 27, 36, 41
pacenlm (acenlm), 17
plot.ace, 36
plot.assess, 37
plot.pace (plot.ace), 36
print.ace (aceobjects), 24
print.assess (assessobjects), 27
print.pace (aceobjects), 24
summary.ace (aceobjects), 24
summary.assess (assessobjects), 27
summary.pace (aceobjects), 24
utilbeetle (overstallwoods), 28
utilcomp15bad (overstallwoods), 28
utilcomp15sig (overstallwoods), 28
utilcomp15sigDRS (overstallwoods), 28
utilcomp18bad, 9
utilcomp18bad (overstallwoods), 28
utilhlrbaa (overstallwoods), 28
utilhlrbad (overstallwoods), 28
utilhlrnsel (overstallwoods), 28
utilhlrsig (overstallwoods), 28
utilities, 38
utilityglm (utilities), 38
utilitynlm (utilities), 38
utillinmod (overstallwoods), 28
utillrbaa (overstallwoods), 28
utillrbad (overstallwoods), 28
utillrnsel (overstallwoods), 28
utillrsig (overstallwoods), 28