Package ‘acepack’

August 22, 2023

Maintainer Shawn Garbett <shawn.garbett@vumc.org>
Version 1.4.2
Author Phil Spector, Jerome Friedman, Robert Tibshirani, Thomas Lumley, Shawn Garbett, Jonathan Baron

Title ACE and AVAS for Selecting Multiple Regression Transformations
License MIT + file LICENSE
Suggests testthat
Repository CRAN
Date/Publication 2023-08-22 09:10:02 UTC

\textbf{R topics documented:}

\begin{verbatim}
ace ... 2
avas ... 4
\end{verbatim}

Index 7
Alternating Conditional Expectations

Description

Uses the alternating conditional expectations algorithm to find the transformations of y and x that maximise the proportion of variation in y explained by x. When x is a matrix, it is transformed so that its columns are equally weighted when predicting y.

Usage

```r
ace(x, y, wt = rep(1, nrow(x)), cat = NULL, mon = NULL, lin = NULL, 
circ = NULL, delrsq = 0.01)
```

Arguments

- `x`: a matrix containing the independent variables.
- `y`: a vector containing the response variable.
- `wt`: an optional vector of weights.
- `cat`: an optional integer vector specifying which variables assume categorical values. Positive values in `cat` refer to columns of the x matrix and zero to the response variable. Variables must be numeric, so a character variable should first be transformed with `as.numeric()` and then specified as categorical.
- `mon`: an optional integer vector specifying which variables are to be transformed by monotone transformations. Positive values in `mon` refer to columns of the x matrix and zero to the response variable.
- `lin`: an optional integer vector specifying which variables are to be transformed by linear transformations. Positive values in `lin` refer to columns of the x matrix and zero to the response variable.
- `circ`: an integer vector specifying which variables assume circular (periodic) values. Positive values in `circ` refer to columns of the x matrix and zero to the response variable.
- `delrsq`: termination threshold. Iteration stops when R-squared changes by less than `delrsq` in 3 consecutive iterations (default 0.01).

Value

A structure with the following components:

- `x`: the input x matrix.
- `y`: the input y vector.
- `tx`: the transformed x values.
- `ty`: the transformed y values.
- `rsq`: the multiple R-squared value for the transformed values.
- `l`: the codes for `cat`, `mon`, ...
- `m`: not used in this version of `ace`
References

The R code is adapted from S code for avas() by Tibshirani, in the Statlib S archive; the FORTRAN is a double-precision version of FORTRAN code by Friedman and Spector in the Statlib general archive.

Examples

\[
\text{TWOPI} \leftarrow 8 \cdot \text{atan}(1) \\
\text{x} \leftarrow \text{runif}(200, 0, \text{TWOPI}) \\
\text{y} \leftarrow \exp(\sin(\text{x}) + \text{rnorm}(200)/2) \\
\text{a} \leftarrow \text{ace(x, y)} \\
\text{par(mfrow} = \text{c(3,1))} \\
\text{plot(a}y, aty) \quad \# \text{view the response transformation} \\
\text{plot(a}x, atx) \quad \# \text{view the carrier transformation} \\
\text{plot(atx, aty)} \quad \# \text{examine the linearity of the fitted model}
\]

\# example when x is a matrix
\[
\text{X1} \leftarrow 1:10 \\
\text{X2} \leftarrow \text{X1}^2 \\
\text{X} \leftarrow \text{cbind(X1,X2)} \\
\text{Y} \leftarrow 3 \times \text{X1} + \text{X2} \\
\text{a1} \leftarrow \text{ace(X,Y)} \\
\text{plot(rowSums(a1$tx), a1$y)} \\
(\text{lm(a1$y - a1$tx)}) \# \text{shows that the columns of X are equally weighted}
\]

\[
\text{X1} \leftarrow \text{runif(100)} \times 2 - 1 \\
\text{X2} \leftarrow \text{runif(100)} \times 2 - 1 \\
\text{X3} \leftarrow \text{runif(100)} \times 2 - 1 \\
\text{X4} \leftarrow \text{runif(100)} \times 2 - 1 \\
\]

\# Original equation of Y:
\[
\text{Y} \leftarrow \log(4 + \sin(3 \times \text{X1}) + \text{abs(X2)} + \text{X3}^2 + \text{X4} + 0.1 \times \text{rnorm(100)})
\]

\# Transformed version so that Y, after transformation, is a linear function of transforms of the X variables:
\# \exp(Y) = 4 + \sin(3 \times \text{X1}) + \text{abs(X2)} + \text{X3}^2 + \text{X4}
\#
\text{a1} \leftarrow \text{ace(cbind(X1,X2,X3,X4), Y)}
\#
\text{For each variable, show its transform as a function of the original variable and the of the transform that created it,}
\text{showing that the transform is recovered.}
\text{par(mfrow} = \text{c(2,1))}
\text{plot(}\text{X1, a1$tx}[{,1}]) \\
\text{plot(}\sin(3 \times \text{X1}), a1$tx}[{,1}])
avas

Additivity and variance stabilization for regression

Description

Estimate transformations of \(x \) and \(y \) such that the regression of \(y \) on \(x \) is approximately linear with constant variance

Usage

```
avas(x, y, wt = rep(1, nrow(x)), cat = NULL, mon = NULL, 
lin = NULL, circ = NULL, delrsq = 0.01, yspan = 0)
```

Arguments

- **x**: a matrix containing the independent variables.
- **y**: a vector containing the response variable.
- **wt**: an optional vector of weights.
- **cat**: an optional integer vector specifying which variables assume categorical values. Positive values in `cat` refer to columns of the \(x \) matrix and zero to the response variable. Variables must be numeric, so a character variable should first be transformed with `as.numeric()` and then specified as categorical.
- **mon**: an optional integer vector specifying which variables are to be transformed by monotone transformations. Positive values in `mon` refer to columns of the \(x \) matrix and zero to the response variable.
- **lin**: an optional integer vector specifying which variables are to be transformed by linear transformations. Positive values in `lin` refer to columns of the \(x \) matrix and zero to the response variable.
- **circ**: an integer vector specifying which variables assume circular (periodic) values. Positive values in `circ` refer to columns of the \(x \) matrix and zero to the response variable.
- **delrsq**: termination threshold. Iteration stops when R-squared changes by less than `delrsq` in 3 consecutive iterations (default 0.01).
- **yspan**: Optional window size parameter for smoothing the variance. Range is \([0, 1]\). Default is 0 (cross validated choice). .5 is a reasonable alternative to try.
Value

A structure with the following components:

- **x**: the input x matrix.
- **y**: the input y vector.
- **tx**: the transformed x values.
- **ty**: the transformed y values.
- **rsq**: the multiple R-squared value for the transformed values.
- **l**: the codes for cat, mon, ...
- **m**: not used in this version of avas
- **yspan**: span used for smoothing the variance
- **iters**: iteration number and rsq for that iteration
- **niters**: number of iterations used

References

Examples

```r
TWOPI <- 8*atan(1)
x <- runif(200,0,TWOPI)
y <- exp(sin(x)+rnorm(200)/2)
a <- avas(x,y)
par(mfrow=c(3,1))
plot(a$y,a$ty) # view the response transformation
plot(a$x,a$tx) # view the carrier transformation
plot(a$tx,a$ty) # examine the linearity of the fitted model

# From D. Wang and M. Murphy (2005), Identifying nonlinear relationships
# regression using the ACE algorithm. Journal of Applied Statistics, 
# 32, 243-258, adapted for avas.
X1 <- runif(100)*2-1
X2 <- runif(100)*2-1
X3 <- runif(100)*2-1
X4 <- runif(100)*2-1

# Original equation of Y:
Y <- log(4 + sin(3*X1) + abs(X2) + X3^2 + X4 + .1*rnorm(100))

# Transformed version so that Y, after transformation, is a 
# linear function of transforms of the X variables:
# exp(Y) = 4 + sin(3*X1) + abs(X2) + X3^2 + X4
a1 <- avas(cbind(X1,X2,X3,X4),Y)
par(mfrow=c(2,1))
```
For each variable, show its transform as a function of
the original variable and the of the transform that created it,
showing that the transform is recovered.
plot(X1,a1$tx[,1])
plot(sin(3*X1),a1$tx[,1])

plot(X2,a1$tx[,2])
plot(abs(X2),a1$tx[,2])

plot(X3,a1$tx[,3])
plot(X3^2,a1$tx[,3])

plot(X4,a1$tx[,4])
plot(X4,a1$tx[,4])

plot(Y,a1$ty)
plot(exp(Y),a1$ty)
Index

* models
 ace, 2
 avas, 4

ace, 2
avas, 4