Package ‘activityCounts’

July 31, 2019

Type Package
Title Generate ActiLife Counts
Version 0.1.2
Description ActiLife software generates activity counts from data collected by Actigraph accelerometers <https://s3.amazonaws.com/actigraphcorp/wp-content/uploads/2017/11/26205758/ActiGraph-White-Paper_What-is-a-Count_.pdf>. Actigraph is one of the most common research-grade accelerometers. There is considerable research validating and developing algorithms for human activity using ActiLife counts. Unfortunately, ActiLife counts are proprietary and difficult to implement if researchers use different accelerometer brands. The code creates ActiLife counts from raw acceleration data for different accelerometer brands and it is developed based on the study done by Brond and others (2017) <doi:10.1249/MSS.0000000000001344>.

BugReports https://github.com/walkabillylab/activityCounts/issues
Depends R (>= 2.10)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, ggplot2
VignetteBuilder knitr
Imports seewave, signal, tibble, lubridate, magrittr
NeedsCompilation no
Author Ruben Brondeel [aut], Javad Rahimipour Anaraki [aut], SeyedJavad KhataeiPour [aut, cre], Daniel Fuller [aut, cph], Beap Lab [cph]
Description

Calculates ActiLife counts based on raw accelerometer data

Usage

```
counts(data, hertz = -1, x_axis = 2, y_axis = 3, z_axis = 4,
       time_column = -1, start_time = -1)
```

Arguments

- **data**: Accelerometer data, Must have at least three columns.
- **hertz**: Sampling frequency in Hz
- **x_axis**: Indicates the column number which has the accel data for x direction, the default is 2
- **y_axis**: Indicates the column number which has the accel data for y direction, the default is 3
- **z_axis**: Indicates the column number which has the accel data for z direction, the default is 4
- **time_column**: Optional. Indicates the column number which has the date and time. The first row will be considered as the start time of the study. You can use the "start_time" argument to provide the start time explicitly.
- **start_time**: Optional. Use this to define the start time of the experiment. You can use this argument if the data does not contain a time column.
Value

Returns a `data.table` with four columns:

- **Time** The start time of the measurement
- **x** the number of counts for X axis
- **y** the number of counts for Y axis
- **z** the number of counts for Z axis

See Also

- `sampleXYZ` raw accelerometer data for testing `counts()` function.
- `sampleCounts` counts calculated by `activityCounts` and `ActiLife`

Examples

```r
# for the sampleXYZ dataset, sampling frequency is 100 Hz
counts(data = sampleXYZ, hertz = 100)

# when start time is given explicitly
study_start_time <- "2017-08-22 12:30:10"
counts(data = sampleXYZ, hertz = 100 , start_time = study_start_time)

# the data has a time column, which is the first column
counts(data = sampleXYZ, hertz = 100 , time_column = 1)

# explicitly specify the X, Y and Z axis columns.
counts(data = sampleXYZ, hertz = 100 , x_axis = 2,y_axis = 3, z_axis = 4)
```

pptrunc

Description

`pptrunc`

Usage

`pptrunc(data, max_value)`

Arguments

- **data** The variable that will be truncated
- **max_value** The upper bound (`-max_value` is the lower bound)
sampleCounts

Value

the highest(or the lowest) value of "data" and "max_value"

runsum

Description

runsum

Usage

runsum(data, len, threshold)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>input data</td>
</tr>
<tr>
<td>len</td>
<td>the length</td>
</tr>
<tr>
<td>threshold</td>
<td>the threshold</td>
</tr>
</tbody>
</table>

Value

returns a

sampleCounts

The counts calculated by activityCounts and ActiLife based on included raw accelerometer data

Description

A simple data.table which its first row is measurement time. Then for each time step, counts are calculated by activityCounts and the ActiLife software. The counts are calculated based on included sampleXYZ dataset, which its sampling frequency is 100H.

Usage

sampleCounts
sampleXYZ

Description

A simple `data.table` that contains raw accelerometer data for testing the `counts` function. Sampling frequency of this `data.table` is 100Hz, therefore pass 100 as the second argument when using the `counts` function.

Usage

`sampleXYZ`

Format

A `data.table` with four columns:

Time
Timestamp

accelerometer_X
Accelerometer data in X direction

accelerometer_Y
Accelerometer data in Y direction

accelerometer_Z
Accelerometer data in Z direction

See Also

`counts` to see how to produce counts.
`sampleCounts` counts calculated by `activityCounts` and `ActiLife`
Description

`trunc`

Usage

`trunc(data, min_value)`

Arguments

- `data`: The input variable which will be altered if less than the threshold
- `min_value`: the threshold which the input below it will be set to zero

Value

returns zero if the "data" is less than the "mean_value" otherwise returns the "data"