Package ‘adabag’

May 31, 2023

Type Package

Title Applies Multiclass AdaBoost.M1, SAMME and Bagging

Version 5.0

Date 2023-05-30

Author Alfaro, Esteban; Gamez, Matias and Garcia, Noelia; with contributions from L. Guo, A. Albano, M. Sciandra and A. Plaia

Maintainer Esteban Alfaro <Esteban.Alfaro@uclm.es>

Depends rpart, caret, foreach, doParallel, R (>= 4.0.0)

Imports methods, tidyr, dplyr, ConsRank (>= 2.1.3)

Suggests mlbench

Description It implements Freund and Schapire's Adaboost.M1 algorithm and Breiman's Bagging algorithm using classification trees as individual classifiers. Once these classifiers have been trained, they can be used to predict on new data. Also, cross validation estimation of the error can be done. Since version 2.0 the function margins() is available to calculate the margins for these classifiers. Also a higher flexibility is achieved giving access to the rpart.control() argument of 'rpart'. Four important new features were introduced on version 3.0, AdaBoost-SAMME (Zhu et al., 2009) is implemented and a new function errorevol() shows the error of the ensembles as a function of the number of iterations. In addition, the ensembles can be pruned using the option 'newmfinal' in the predict.bagging() and predict.boosting() functions and the posterior probability of each class for observations can be obtained. Version 3.1 modifies the relative importance measure to take into account the gain of the Gini index given by a variable in each tree and the weights of these trees. Version 4.0 includes the margin-based ordered aggregation for Bagging pruning (Guo and Boukir, 2013) and a function to auto prune the 'rpart' tree. Moreover, three new plots are also available importanceplot(), plot.errorevol() and plot.margins(). Version 4.1 allows to predict on unlabeled data. Version 4.2 includes the parallel computation option for some of the functions. Version 5.0 includes the Boosting and Bagging algorithms for label ranking (Albano, Sciandra and Plaia, 2023).

License GPL (>= 2)

Encoding UTF-8

LazyLoad yes

LazyData true
adabag-package

Description

It implements Freund and Schapire’s Adaboost.M1 algorithm and Breiman’s Bagging algorithm using classification trees as individual classifiers. Once these classifiers have been trained, they can be used to predict on new data. Also, cross validation estimation of the error can be done. Since version 2.0 the function margins() is available to calculate the margins for these classifiers. Also a higher flexibility is achieved giving access to the rpart.control() argument of ‘rpart’. Four important new features were introduced on version 3.0, AdaBoost-SAMME (Zhu et al., 2009) is implemented and a new function errorevol() shows the error of the ensembles as a function of the number of iterations. In addition, the ensembles can be pruned using the option 'newmfinal' in the predict.bagging() and predict.boosting() functions and the posterior probability of each class for observations can be obtained. Version 3.1 modifies the relative importance measure to take into account the gain of the Gini index given by a variable in each tree and the weights of these trees. Version 4.0 includes the margin-based ordered aggregation for Bagging pruning (Guo and Boukir, 2013) and a function to auto prune the ‘rpart’ tree. Moreover, three new plots are also available importanceplot(), plot.errorevol() and plot.margins(). Version 4.1 allows to predict on unlabeled
data. Version 4.2 includes the parallel computation option for some of the functions. Version 5.0 includes the Boosting and Bagging algorithms for label ranking (Albano, Sciandra and Plaia, 2023).

Details

Package: adabag
Type: Package
Version: 5.0
Date: 2023-05-4
License: GPL(>= 2)
LazyLoad: yes

Author(s)

Author: Esteban Alfaro-Cortes, Matias Gamez-Martinez and Noelia Garcia-Rubio, with contributions from L. Guo, A. Albano, M. Sciandra and A. Plaia
Maintainer: Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>

References

Reverse cites: To the best of our knowledge this package has been cited by:
generalized additive models. Computational Statistics & Data Analysis, 54(6), 1535–1546.
classifiers for customer churn prediction. Expert Systems with Applications, 38(10), 12293–
12301.
DIGE data. R package version 1.2.
Garcia-Perez-de-Lema, D., Alfaro-Cortes, E., Manzaneque-Lizano, M. and Banegas-Ochovo, R.
Gonzalez-Rufino, E., Carrión, P., Cernadas, E., Fernandez-Delgado, M. and Domínguez-Petit, R.
(2013). Exhaustive comparison of colour texture features and classification methods to discrimi-
nate cells categories in histological images of fish ovary. Pattern Recognition, 46, 2391–2407.
O., Valentini, G. (eds.) Proc. 2nd Workshop Supervised and Unsupervised Ensemble Methods
and Their Applications, Patras, Greece, 61–66.
Maindonald, J. and Braun, J. (2010). Data Analysis and Graphics Using R - An Example-Based
Approach. 3rd ed, Cambridge University Press (p. 373)
Murphy, T. B., Dean, N. and Raftery, A. E. (2010). Variable selection and updating in model-
based discriminant analysis for high dimensional data with food authenticity applications. The
annals of applied statistics, 4(1), 396–421.
Data Mining and Knowledge Discovery.
If you know any other work where this package is cited, please send us an email

See Also

auto prune, bagging, bagging.cv, boosting, boosting.cv, errorevol, importance plot, margins,
MarginOrderedPruning, Bagging, plot.errorevol, plot.margins, predict.bagging, predict.boosting,
Ensemble_ranking_IW, errorevol_ranking_vector_IW, prep_data

Examples

rpart library should be loaded
data(iris)
iris.adaboost <- boosting(Species~., data=iris, boos=TRUE,
mfinal=3)
importanceplot(iris.adaboost)

sub <- c(sample(1:50, 35), sample(51:100, 35), sample(101:150, 35))
iris.bagging <- bagging(Species ~ ., data=iris[sub,], mfinal=3)
#Predicting with labeled data
iris.predbagging<-predict.bagging(iris.bagging, newdata=iris[-sub,])
iris.predbagging
#Predicting with unlabeled data
iris.predbagging<-predict.bagging(iris.bagging, newdata=iris[-sub,-5])
iris.predbagging
autoprune

Builds automatically a pruned tree of class \textit{rpart}

\textbf{Description}

Builds automatically a pruned tree of class \textit{rpart} looking in the cptable for the minimum cross validation error plus a standard deviation

\textbf{Usage}

\begin{verbatim}
autoprune(formula, data, subset=1:length(data[,1]), ...)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{formula} \hspace{1cm} a formula, as in the \textit{lm} function.
 \item \texttt{data} \hspace{1cm} a data frame in which to interpret the variables named in the \texttt{formula}.
 \item \texttt{subset} \hspace{1cm} optional expression saying that only a subset of the rows of the data should be used in the fit, as in the \texttt{rpart} function.
 \item \ldots \hspace{1cm} further arguments passed to or from other methods.
\end{itemize}

\textbf{Details}

The cross validation estimation of the error (xerror) has a random component. To avoid this randomness the 1-SE rule (or 1-SD rule) selects the simplest model with a xerror equal or less than the minimum xerror plus the standard deviation of the minimum xerror.

\textbf{Value}

An object of class \textit{rpart}

\textbf{Author(s)}

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

\textbf{References}

\textbf{See Also}

\texttt{rpart}
Examples

```r
## rpart library should be loaded
library(rpart)
data(iris)
iris.prune<-autopruner(Species~., data=iris)
iris.prune

## Comparing the test error of rpart and autopruner
library(mlbench)
data(BreastCancer)
l <- length(BreastCancer[,1])
sub <- sample(1:l,2*l/3)
BC.rpart <- rpart(Class~.,data=BreastCancer[,1],cp=-1, maxdepth=5)
BC.rpart.pred <- predict(BC.rpart,newdata=BreastCancer[-sub,-1],type="class")
tb <-table(BC.rpart.pred,BreastCancer$Class[-sub])
tb
1-(sum(diag(tb))/sum(tb))

BC.prune<-autopruner(Class~.,data=BreastCancer[,,-1],subset=sub)
BC.rpart.pred <- predict(BC.prune,newdata=BreastCancer[-sub,-1],type="class")
tb <-table(BC.rpart.pred,BreastCancer$Class[-sub])
tb
1-(sum(diag(tb))/sum(tb))
```

bagging

Applies the Bagging algorithm to a data set

Description

Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single classifiers.

Usage

`bagging(formula, data, mfinal = 100, control, par=FALSE,...)`

Arguments

- `formula`: a formula, as in the `lm` function.
- `data`: a data frame in which to interpret the variables named in the `formula`.
- `mfinal`: an integer, the number of iterations for which boosting is run or the number of trees to use. Defaults to `mfinal=100` iterations.
options that control details of the rpart algorithm. See rpart.control for more details.
par if TRUE, the cross validation process is runned in parallel. If FALSE (by default), the function runs without parallelization.

... further arguments passed to or from other methods.

Details
Unlike boosting, individual classifiers are independent among them in bagging

Value
An object of class bagging, which is a list with the following components:

formula the formula used.
trees the trees grown along the iterations.
votes a matrix describing, for each observation, the number of trees that assigned it to each class.
prob a matrix describing, for each observation, the posterior probability or degree of support of each class. These probabilities are calculated using the proportion of votes in the final ensemble.
class the class predicted by the ensemble classifier.
samples the bootstrap samples used along the iterations.
importance returns the relative importance of each variable in the classification task. This measure takes into account the gain of the Gini index given by a variable in each tree.

Author(s)
Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also
predict.bagging, bagging.cv
Examples

```r
# This example has been hidden to fulfill execution time <5s
library(rpart)
data(iris)
iris.bagging <- bagging(Species~., data=iris, mfinal=10)
# Data Vehicle (four classes)
library(rpart)
library(mlbench)
data(Vehicle)
l <- length(Vehicle[,1])
sub <- sample(1:l,2*l/3)
Vehicle.bagging <- bagging(Class ~., data=Vehicle[sub, ], mfinal=5,
control=rpart.control(maxdepth=5, minsplit=15))
# Using the pruning option
Vehicle.bagging.pred <- predict.bagging(Vehicle.bagging,newdata=Vehicle[-sub, ], newmfinal=3)
Vehicle.bagging.pred$confusion
Vehicle.bagging.pred$error
```

bagging.cv

Runs v-fold cross validation with Bagging

Description

The data are divided into v non-overlapping subsets of roughly equal size. Then, bagging is applied on \((v-1)\) of the subsets. Finally, predictions are made for the left out subsets, and the process is repeated for each of the v subsets.

Usage

```
bagging.cv(formula, data, v = 10, mfinal = 100, control, par=FALSE)
```

Arguments

- **formula**: a formula, as in the `lm` function.
- **data**: a data frame in which to interpret the variables named in formula
- **v**: An integer, specifying the type of v-fold cross validation. Defaults to 10. If v is set as the number of observations, leave-one-out cross validation is carried out. Besides this, every value between two and the number of observations is valid and means that roughly every v-th observation is left out.
- **mfinal**: an integer, the number of iterations for which boosting is run or the number of trees to use. Defaults to mfinal=100 iterations.
- **control**: options that control details of the rpart algorithm. See rpart.control for more details.
- **par**: if TRUE, the cross validation process is runned in parallel. If FALSE (by default), the function runs without parallelization.
Value

An object of class `bagging.cv`, which is a list with the following components:

- `class`: the class predicted by the ensemble classifier.
- `confusion`: the confusion matrix which compares the real class with the predicted one.
- `error`: returns the average error.

Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also

`bagging`, `predict.bagging`

Examples

```r
## rpart library should be loaded
library(rpart)
data(iris)
iris.baggingcv <- bagging.cv(Species ~ ., v=2, data=iris, mfinal=3, control=rpart.control(cp=0.01))
iris.baggingcv[-1]

## rpart and mlbench libraries should be loaded
## Data Vehicle (four classes)
#This example has been hidden to keep execution time <5s
data(Vehicle)
#Vehicle.bagging.cv <- bagging.cv(Class ~.,data=Vehicle,v=5,mfinal=10, control=rpart.control(maxdepth=5))
#Vehicle.bagging.cv[-1]
```
Describes the AdaBoost.M1 and SAMME algorithms to a data set.

Description

Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms using classification trees as single classifiers.

Usage

```r
boosting(formula, data, boos = TRUE, mfinal = 100, coeflearn = 'Breiman', control, ...)
```

Arguments

- `formula`: a formula, as in the `lm` function.
- `data`: a data frame in which to interpret the variables named in `formula`.
- `boos`: if TRUE (by default), a bootstrap sample of the training set is drawn using the weights for each observation on that iteration. If FALSE, every observation is used with its weights.
- `mfinal`: an integer, the number of iterations for which boosting is run or the number of trees to use. Defaults to `mfinal=100` iterations.
- `coeflearn`: if `Breiman` (by default), `alpha=1/2ln((1-err)/err)` is used. If `Freund` `alpha=ln((1-err)/err)` is used. In both cases the AdaBoost.M1 algorithm is used and `alpha` is the weight updating coefficient. On the other hand, if `coeflearn` is `Zhu` the SAMME algorithm is implemented with `alpha=ln((1-err)/err)+ln(nclasses-1)`.
- `control`: options that control details of the `rpart` algorithm. See `rpart.control` for more details.
- `...`: further arguments passed to or from other methods.

Details

AdaBoost.M1 and SAMME are simple generalizations of AdaBoost for more than two classes. In AdaBoost-SAMME the individual trees are required to have an error lower than 1-1/nclasses instead of 1/2 of the AdaBoost.M1

Value

An object of class `boosting`, which is a list with the following components:

- `formula`: the formula used.
- `trees`: the trees grown along the iterations.
- `weights`: a vector with the weighting of the trees of all iterations.
votes

A matrix describing, for each observation, the number of trees that assigned it to each class, weighting each tree by its alpha coefficient.

prob

A matrix describing, for each observation, the posterior probability or degree of support of each class. These probabilities are calculated using the proportion of votes in the final ensemble.

class

The class predicted by the ensemble classifier.

importance

Returns the relative importance of each variable in the classification task. This measure takes into account the gain of the Gini index given by a variable in a tree and the weight of this tree.

Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es>, and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also

predict.boosting, boosting.cv

Examples

rpart library should be loaded
library(rpart)

Data Vehicle (four classes)
library(mlbench)
data(Vehicle)
l <- length(Vehicle[,1])
sub <- sample(1:l, 2*l/3)
mfinal <- 3
maxdepth <- 5

iris.adaboost <- boosting(Species~., data=iris, boos=TRUE, mfinal=3)
iris.adaboost
Vehicle.rpart <- rpart(Class~., data=Vehicle[sub,], maxdepth=maxdepth)
Vehicle.rpart.pred <- predict(Vehicle.rpart, newdata=Vehicle[-sub,], type="class")
tb <- table(Vehicle.rpart.pred, Vehicle$Class[-sub])
error.rpart <- 1-(sum(diag(tb))/sum(tb))
tb
error.rpart

Vehicle.adaboost <- boosting(Class~., data=Vehicle[sub,], mfinal=mfinal, coeflearn="Zhu",
control=rpart.control(maxdepth=maxdepth))
Vehicle.adaboost.pred <- predict.boosting(Vehicle.adaboost, newdata=Vehicle[-sub,])
Vehicle.adaboost.pred$confusion
Vehicle.adaboost.pred$error

comparing error evolution in training and test set
errorevol(Vehicle.adaboost, newdata=Vehicle[sub,]) -> evol.train
errorevol(Vehicle.adaboost, newdata=Vehicle[-sub,]) -> evol.test
plot.errorevol(evol.test, evol.train)

boosting.cv

Runs v-fold cross validation with AdaBoost.M1 or SAMME

Description

The data are divided into v non-overlapping subsets of roughly equal size. Then, boosting is applied on (v-1) of the subsets. Finally, predictions are made for the left out subsets, and the process is repeated for each of the v subsets.

Usage

boosting.cv(formula, data, v = 10, boos = TRUE, mfinal = 100,
coeflearn = "Breiman", control, par=FALSE)

Arguments

- **formula**: a formula, as in the `lm` function.
- **data**: a data frame in which to interpret the variables named in formula.
- **boos**: if TRUE (by default), a bootstrap sample of the training set is drawn using the weights for each observation on that iteration. If FALSE, every observation is used with its weights.
- **v**: An integer, specifying the type of v-fold cross validation. Defaults to 10. If v is set as the number of observations, leave-one-out cross validation is carried out. Besides this, every value between two and the number of observations is valid and means that roughly every v-th observation is left out.
boosting.cv

- **mfinal**: an integer, the number of iterations for which boosting is run or the number of trees to use. Defaults to mfinal=100 iterations.

- **coeflearn**: if 'Breiman' (by default), alpha=1/2ln((1-err)/err) is used. If 'Freund' alpha=ln((1-err)/err) is used. In both cases the AdaBoost.M1 algorithm is used and alpha is the weight updating coefficient. On the other hand, if coeflearn is 'Zhu' the SAMME algorithm is implemented with alpha=ln((1-err)/err)+ln(nclasses-1).

- **control**: options that control details of the rpart algorithm. See rpart.control for more details.

- **par**: if TRUE, the cross validation process is runned in parallel. If FALSE (by default), the function runs without parallelization.

Value

An object of class boosting.cv, which is a list with the following components:

- **class**: the class predicted by the ensemble classifier.

- **confusion**: the confusion matrix which compares the real class with the predicted one.

- **error**: returns the average error.

Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also

boosting, predict.boosting
Examples

```r
## rpart library should be loaded
data(iris)
iris.boostcv <- boosting.cv(Species ~ ., v=2, data=iris, mfinal=5,
control=rpart.control(cp=0.01))
iris.boostcv[-1]

## rpart and mlbench libraries should be loaded
## Data Vehicle (four classes)
#This example has been hidden to fulfill execution time <5s
#data(Vehicle)
#Vehicle.boost.cv <- boosting.cv(Class ~.,data=Vehicle,v=5, mfinal=10, coeflearn="Zhu",
#control=rpart.control(maxdepth=5))
#Vehicle.boost.cv[-1]
```

Ensemble_ranking_IW
Ensemble methods for ranking data: Item-Weighted Boosting and Bagging Algorithms

Description

The `Ensemble_ranking_IW` function applies the item-weighted Boosting and Bagging algorithms to ranking data (Albano et al., 2023). These algorithms utilize classification trees as base classifiers to perform item-weighted ensemble methods for rankings.

Usage

```r
Ensemble_ranking_IW(formula, data, iw, algo = "boosting",
mfinal = 100, coeflearn = "Breiman", control, bin = FALSE,
trace= TRUE, ...)
```

Arguments

- **formula**: a formula specifying the response ranking variable and predictors, similar to the `lm` function. The response variable must be the "Label" column of the object generated by the `prep_data` function.
- **data**: An N by (K+1) data frame containing the prepared item-weighted ranking data. The column "Label" should contain the transformed ranking responses, and the remaining columns should contain the predictors. Continuous variables are allowed, while the dummy coding should be used for categorical variables. The data frame must be the output of the `prep_data` function.
iw a vector or matrix representing the item weights or dissimilarities for the ranking data. For a vector, it should be a row vector of length M, where M is the number of items. For a matrix, it should be a symmetric M by M matrix representing item dissimilarities. For coherence, iw should be the same vector/matrix used in prep_data(...).

algo the ensemble method to use. Possible values are "bagging" or "boosting". Defaults to "boosting".

mfinal the number of trees to use for boosting or bagging. Defaults to 100 iterations.

coeflearn the coefficient learning method to use. Possible values are "Breiman", "Freund", or "Zhu". Defaults to "Breiman".

control an optional argument to control details of the classification tree algorithm. See rpart.control for more information.

bin a logical value indicating whether to use the binary logarithm function for updating weights at each iteration. Defaults to FALSE. When set to TRUE, it corresponds to utilizing the AdaBoost.R.M2 algorithm as defined by Albano et al. (2023).

trace a logical value controlling the display of additional information (the number of trees and the average weighted tau_x) during execution. Defaults to TRUE.

... additional arguments passed to or from other methods.

Details
The Ensemble_ranking_IW function extends the Boosting and Bagging algorithms to handle item-weighted ranking data. It allows for the application of these ensemble methods to improve ranking predicting performance using classification trees as base classifiers.

Value
An object of class boosting or bagging, which is a list with the following components:

formula the used formula.
trees the trees grown during the iterations.
weights a vector of weights for each tree in all iterations.
importance a measure of the relative importance of each predictor in the ranking task, taking into account the weighted gain of the variable’s contribution in each tree.

Author(s)
Alessandro Albano <alessandro.albano@unipa.it>, Mariangela Sciandra <mariangela.sciandra@unipa.it>, and Antonella Plaia <antonella.plaia@unipa.it>

References

Examples

```r
## Not run:
# Load simulated ranking data
data(simulatedRankingData)
x <- simulatedRankingData$x
y <- simulatedRankingData$y

# Prepare the data with item weights
dati <- prep_data(y, x, iw = c(2, 5, 5, 2))

# Divide the data into training and test sets
set.seed(12345)
samp <- sample(nrow(dati), 1)
sub <- sample(1:l, 2 * l / 3)
data_sub1 <- dati[sub, ]
data_test1 <- dati[-sub, ]

# Apply ensemble ranking with AdaBoost.M1
boosting_1 <- Ensemble_ranking_IW(
  Label ~ .,
data = data_sub1,
iw = c(2, 5, 5, 2),
mfinal = 3,
coeflearn = "Breiman",
control = rpart.control(maxdepth = 4, cp = -1),
algo = "boosting",
bin = FALSE
)

# Evaluate the performance
test_boosting1 <- errorevol_ranking_vector_IW(boosting_1,
  newdata = data_test1, iw=c(2,5,5,2), squared = FALSE)
test_boosting1.1 <- errorevol_ranking_vector_IW(boosting_1,
  newdata = data_sub1, iw=c(2,5,5,2), squared = FALSE)

# Plot the error evolution
plot.errorevol(test_boosting1, test_boosting1.1)
```
Shows the error evolution of the ensemble

Description

Calculates the error evolution of an AdaBoost.M1, AdaBoost-SAMME or Bagging classifier for a data frame as the ensemble size grows.

Usage

```r
errorevol(object, newdata)
```

Arguments

- **object**: This object must be the output of one of the functions `bagging` or `boosting`. This is assumed to be the result of some function that produces an object with two components named `formula` and `trees`, as those returned for instance by the `bagging` function.
- **newdata**: Could be the same data frame used in `object` or a new one.

Details

This can be useful to see how fast Bagging, boosting reduce the error of the ensemble. In addition, it can detect the presence of overfitting and, therefore, the convenience of pruning the ensemble using `predict.bagging` or `predict.boosting`.

Value

An object of class `errorevol`, which is a list with only one component:

```r
type
```

A vector with the error evolution.

Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es>
and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also

boosting, predict.boosting, bagging, predict.bagging

Examples

library(mlbench)
data(BreastCancer)
l <- length(BreastCancer[,1])
sub <- sample(1:l,2*l/3)
cntrl <- rpart.control(maxdepth = 3, minsplit = 0, cp = -1)

BC.adaboost <- boosting(Class ~., data=BreastCancer[sub,-1], mfinal=5, control=cntrl)
BC.adaboost.pred <- predict.boosting(BC.adaboost, newdata=BreastCancer[-sub,-1])

errorevol(BC.adaboost, newdata=BreastCancer[-sub,-1]) -> evol.test
errorevol(BC.adaboost, newdata=BreastCancer[sub,-1]) -> evol.train

plot.errorevol(evol.test, evol.train)
abline(h=min(evol.test[[1]]), col="red", lty=2, lwd=2)
abline(h=min(evol.train[[1]]), col="blue", lty=2, lwd=2)

errorevol_ranking_vector_IW

Calculate the error evolution and final predictions of an item-weighted ensemble for rankings

Description

This function calculates the error evolution and final predictions of an item-weighted ensemble method for ranking data (Albano et al., 2023).

Usage

errorevol_ranking_vector_IW(object, newdata, iw, squared = FALSE)
Arguments

object: an object of class 'bagging' or 'boosting' generated by the `Ensemble_ranking_IW` function.

newdata: a data frame that can be the same as the one used in the object or a new one. Continuous variables are allowed, while the dummy coding should be used for categorical variables. It must be the output of the `prep_data` function.

iw: a weighting vector or matrix. For coherence, `iw` should be the same vector/matrix used in `Ensemble_ranking_IW(...)`. squared: logical value indicating whether squared weighting should be used in the final prediction. Default is FALSE. When set to TRUE, it corresponds to utilizing the AdaBoost.R.M3 algorithm defined by Albano et al. (2023).

Details

This function computes the error and final predictions for a boosting or bagging ranking model using item weighting.

Value

An object of class 'errorevol'. It has two components:

- `error`: a vector with the error values at each ensemble iteration
- `final_prediction`: a data frame of final predictions for each observation in `newdata`.

References

Examples

```r
## Not run:
# Load simulated ranking data
data(simulatedRankingData)
x <- simulatedRankingData$x
y <- simulatedRankingData$y

# Prepare the data with item weights
dati <- prep_data(y, x, iw = c(2, 5, 5, 2))

# Divide the data into training and test sets
set.seed(12345)
samp <- sample(nrow(dati))
l <- length(dati[, 1])
sub <- sample(1:l, 2 * l / 3)
data_sub1 <- dati[sub,

data_test1 <- dati[-sub, ]

# Apply ensemble ranking with AdaBoost.M1
boosting_1 <- Ensemble_ranking_IW(
  Label ~ .,
data = data_sub1,
iw = c(2, 5, 5, 2),
mfinal = 3,
  coeflearn = "Breiman",
  control = rpart.control(maxdepth = 4, cp = -1),
  algo = "boosting",
  bin = FALSE)

# Evaluate the performance
test_boosting1 <- errorevol_ranking_vector_IW(boosting_1,
  newdata = data_test1, iw=c(2,5,5,2), squared = FALSE)
test_boosting1.1 <- errorevol_ranking_vector_IW(boosting_1,
  newdata = data_sub1, iw=c(2,5,5,2), squared = FALSE)

# Plot the error evolution
plot.errorevol(test_boosting1, test_boosting1.1)

## End(Not run)
```

importanceplot

Plots the variables relative importance

Description

Plots the relative importance of each variable in the classification task. This measure takes into account the gain of the Gini index given by a variable in a tree and, in the boosting case, the weight of this tree.
Usage
importanceplot(object, ...)

Arguments
object fitted model object of class boosting or bagging. This is assumed to be the result of some function that produces an object with a component named importance as that returned by the boosting and bagging functions.

Details
For this goal, the varImp function of the caret package is used to get the gain of the Gini index of the variables in each tree.

Value
A labeled plot is produced on the current graphics device (one being opened if needed).

Author(s)
Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also
boosting, bagging.

Examples
#Examples
#Iris example
library(rpart)
data(iris)
sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
MarginOrderedPruning.Bagging

Margin-based ordered aggregation for bagging pruning

Usage

```r
MarginOrderedPruning.Bagging(baggingObject, trainingset, pruningset, marginType = "unsupervised", doTrace = TRUE)
```

Arguments

- `baggingObject`: fitted model object of class `bagging`
- `trainingset`: the training set of the bagging object
- `pruningset`: a set aside dataset for bagging pruning
- `marginType`: if "unsupervised" (by default) the margin is the difference between the proportions of votes of the first and second most popular classes. Else the margin is calculated as the difference between the proportion of votes of the correct class and the most popular among the other classes
- `doTrace`: If set to TRUE, give a more verbose output as `MarginOrderedPruning.Bagging` is running

Value

Returns a list with the following components:

- `prunedBagging`: a pruned bagging object
- `AccuracyOrderedEnsemblePruningSet`: Accuracy of each ordered ensemble on pruning set

Note

Questions about this function should be sent to Li Guo

Author(s)

Li Guo <guoli84@hotmail.com>
margins

Calculates the margins

Description

Calculates the margins of an AdaBoost.M1, AdaBoost-SAMME or Bagging classifier for a data frame

Usage

margins(object, newdata)
Arguments

object This object must be the output of one of the functions bagging, boosting, predict.bagging or predict.boosting. This is assumed to be the result of some function that produces an object with two components named formula and class, as those returned for instance by the bagging function.

newdata The same data frame used for building the object

Details

Intuitively, the margin for an observation is related to the certainty of its classification. It is calculated as the difference between the support of the correct class and the maximum support of an incorrect class.

Value

An object of class margins, which is a list with only one component:

margins a vector with the margins.

Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also

bagging, boosting, plot.margins, predict.boosting, predict.bagging

Examples

#Iris example
library(rpart)
data(iris)
sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
iris.adaboost <- boosting(Species ~ ., data=iris[sub,], mfinal=3)
margins(iris.adaboost, iris[sub,]) -> iris.margins # training set
plot.margins(iris.margins)

test set
iris.predboosting<- predict.boosting(iris.adaboost, newdata=iris[-sub,])
margins(iris.predboosting,iris[-sub,])->iris.predmargins
plot.margins(iris.predmargins,iris.margins)

#Examples with bagging
iris.bagging <- bagging(Species ~ ., data=iris[sub,], mfinal=3)
margins(iris.bagging,iris[sub,])->iris.bagging.margins # training set

iris.predbagging<- predict.bagging(iris.bagging, newdata=iris[-sub,])
margins(iris.predbagging,iris[-sub,])->iris.bagging.predmargins # test set
par(bg="lightyellow")
plot.margins(iris.bagging.predmargins,iris.bagging.margins)

plot.errorevol

Plots the error evolution of the ensemble

Description

Plots the previously calculated error evolution of an AdaBoost.M1, AdaBoost-SAMME or Bagging classifier for a data frame as the ensemble size grows

Usage

S3 method for class 'errorevol'
plot(x, y = NULL, ...)

Arguments

x
An object of class errorevol. This is assumed to be the result of some function that produces an object with a component named error as that returned by the errorevol function.

y
This argument can be used to represent in the same plot the evolution of the test and train errors, x and y, respectively. Should be NULL (by default) or an object of class errorevol.

...
Further arguments passed to or from other methods.

Details

This can be useful to see how fast bagging or boosting reduce the error of the ensemble. In addition, it can detect the presence of overfitting and, therefore, the convenience of pruning the ensemble using predict.bagging or predict.boosting.

Value

A labeled plot is produced on the current graphics device (one being opened if needed).
Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es>
and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

Freund, Y. and Schapire, R.E. (1996): “Experiments with a new boosting algorithm”. In Proceed-
ing of the Thirteenth International Conference on Machine Learning, pp. 148–156, Morgan
Kaufmann.

Interface, 2, pp. 349–360.

See Also

boosting, predict.boosting, bagging, predict.bagging, errorevol

Examples

data(iris)
train <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))

control<-rpart.control(maxdepth=1)
#increase mfinal in your own execution of this example to see
#the real usefulness of this function
iris.adaboost <- boosting(Species ~ ., data=iris[train,], mfinal=10, control=control)

#Error evolution along the iterations in training set
errorevol(iris.adaboost,iris[train,])-%>evol.train
plot.errorevol(evol.train)

#comparing error evolution in training and test set
errorevol(iris.adaboost,iris[-train,])-%>evol.test
plot.errorevol(evol.test, evol.train)

See the help of the functions error evolution and boosting
for more examples of the use of the error evolution
plot.margins

Plots the margins of the ensemble

Description
Plots the previously calculated margins of an AdaBoost.M1, AdaBoost-SAMME or Bagging classifier for a data frame

Usage
S3 method for class 'margins'
plot(x, y = NULL, ...)

Arguments
- **x**: An object of class margins. This is assumed to be the result of some function that produces an object with a component named margins as that returned by the margins function.
- **y**: This argument can be used to represent in the same plot the margins in the test and train sets, x and y, respectively. Should be NULL (by default) or an object of class margins.
- **...**: further arguments passed to or from other methods.

Details
Intuitively, the margin for an observation is related to the certainty of its classification. It is calculated as the difference between the support of the correct class and the maximum support of an incorrect class

Value
A labeled plot is produced on the current graphics device (one being opened if needed).

Author(s)
Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References
See Also

`margins`, `boosting`, `predict.boosting`, `bagging`, `predict.bagging`

Examples

```r
library(mlbench)
data(BreastCancer)
l <- length(BreastCancer[,1])
sub <- sample(1:l,2*l/3)
ctrl <- rpart.control(maxdepth = 3, minsplit = 0, cp = -1)

BC.adaboost <- boosting(Class ~ ., data=BreastCancer[sub,-1], mfinal=5, control=ctrl)
BC.adaboost.pred <- predict.boosting(BC.adaboost, newdata=BreastCancer[-sub,-1])

BC.margins<-margins(BC.adaboost,BreastCancer[sub,-1]) # training set
BC.predmargins<-margins(BC.adaboost.pred,BreastCancer[-sub,-1]) # test set
plot.margins(BC.predmargins,BC.margins)
```

predict.bagging

Predicts from a fitted bagging object

Description

Classifies a dataframe using a fitted bagging object.

Usage

```r
## S3 method for class 'bagging'
predict(object, newdata, newmfinal=length(object$trees), ...)
```

Arguments

- `object`
 fitted model object of class bagging. This is assumed to be the result of some function that produces an object with the same named components as that returned by the bagging function.

- `newdata`
 data frame containing the values at which predictions are required. The predictors referred to in the right side of formula(object) must be present by name in newdata.

- `newmfinal`
 The number of trees of the bagging object to be used in the prediction. This argument allows the user to prune the ensemble. By default all the trees in the bagging object are used.

- `...`
 further arguments passed to or from other methods.
predict.bagging

Value

An object of class predict.bagging, which is a list with the following components:

- **formula**: the formula used.
- **votes**: a matrix describing, for each observation, the number of trees that assigned it to each class.
- **prob**: a matrix describing, for each observation, the posterior probability or degree of support of each class. These probabilities are calculated using the proportion of votes in the final ensemble.
- **class**: the class predicted by the ensemble classifier.
- **confusion**: the confusion matrix which compares the real class with the predicted one.
- **error**: returns the average error.

Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also

bagging, bagging.cv

Examples

```r
#library(rpart)
data(iris)
sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
iris.bagging <- bagging(Species ~ ., data=iris[sub,], mfinal=5)
iris.predbagging <- predict.bagging(iris.bagging, newdata=iris[-sub,])

# rpart and mlbench libraries should be loaded
library(rpart)
library(mlbench)
data(BreastCancer)
l <- length(BreastCancer[,1])
sub <- sample(1:l, 2*l/3)
BC.bagging <- bagging(Class ~ ., data=BreastCancer[-sub,], mfinal=5,
                      control=rpart.control(maxdepth=3))
```
predict.boosting

Predicts from a fitted boosting object

Description

Classifies a dataframe using a fitted boosting object.

Usage

S3 method for class 'boosting'
predict(object, newdata, newmfinal=length(object$trees), ...)

Arguments

- **object**: fitted model object of class boosting. This is assumed to be the result of some function that produces an object with the same named components as that returned by the boosting function.
- **newdata**: data frame containing the values at which predictions are required. The predictors referred to in the right side of formula(object) must be present by name in newdata.
- **newmfinal**: The number of trees of the boosting object to be used in the prediction. This argument allows the user to prune the ensemble. By default all the trees in object are used
- **...**: further arguments passed to or from other methods.

Value

An object of class predict.boosting, which is a list with the following components:

- **formula**: the formula used.
- **votes**: a matrix describing, for each observation, the number of trees that assigned it to each class, weighting each tree by its alpha coefficient.
- **prob**: a matrix describing, for each observation, the posterior probability or degree of support of each class. These probabilities are calculated using the proportion of votes in the final ensemble.
- **class**: the class predicted by the ensemble classifier.
- **confusion**: the confusion matrix which compares the real class with the predicted one.
- **error**: returns the average error.
Author(s)

Esteban Alfaro-Cortes <Esteban.Alfaro@uclm.es>, Matias Gamez-Martinez <Matias.Gamez@uclm.es> and Noelia Garcia-Rubio <Noelia.Garcia@uclm.es>

References

See Also

boosting, boosting.cv

Examples

```r
## rpart library should be loaded
#This example has been hidden to fulfill execution time <5s
library(rpart)
data(iris)
sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
iris.adaboost <- boosting(Species ~ ., data=iris[sub,], mfinal=10)
iris.predboosting <- predict.boosting(iris.adaboost, newdata=iris[-sub,])
iris.predboosting$prob

## rpart and mlbench libraries should be loaded
## Comparing the test error of rpart and adaboost.M1
library(rpart)
library(mlbench)
data(BreastCancer)
l <- length(BreastCancer[,1])
sub <- sample(1:l,2*l/3)
BC.rpart <- rpart(Class~.,data=BreastCancer[sub,-1], maxdepth=3)
BC.rpart.pred <- predict(BC.rpart,newdata=BreastCancer[-sub,-1],type="class")
tb <- table(BC.rpart.pred,BreastCancer$Class[-sub])
error.rpart <- 1-(sum(diag(tb))/sum(tb))
tb
tb[error.rpart]

BC.adaboost <- boosting(Class ~ .,data=BreastCancer[,1],mfinal=10, coeflearn="Freund", boos=FALSE , control=rpart.control(maxdepth=3))
```
Using the pruning option

BC.adaboost.pred <- predict.boosting(BC.adaboost,newdata=BreastCancer[-sub,-1], newmfinal=10)
BC.adaboost.pred$confusion
BC.adaboost.pred$error

prep_data

Prepare Ranking Data for Item-Weighted Ensemble Algorithm

Description

The `prep_data` function prepares item-weighted ranking data for further analysis. It takes a ranking matrix, predictors matrix, and weighting vector or matrix, and returns a data frame suitable for item-weighted ensemble algorithms for rankings.

Usage

```r
prep_data(y, x, iw)
```

Arguments

- **y**: an N by M matrix or data frame representing the ranking responses, where N is the number of individuals and M is the number of items. Each row corresponds to a ranking, ties are allowed.
- **x**: an N by K matrix or data frame containing the K predictors associated with each individual ranking. Continuous variables are allowed, while the dummy coding should be used for categorical variables.
- **iw**: a vector or matrix representing the item weights or dissimilarities for the ranking data. For a vector, it should be a row vector of length M. For a matrix, it should be a symmetric M by M matrix representing item dissimilarities.

Details

The `prep_data` function performs the following steps: Check the dimensions of the weighting vector or matrix to ensure compatibility with the ranking data. Adjust the ranking matrix y using the "min" method for ties. Convert the ranked matrix into a data frame. Generate the universe of rankings using the `ConsRank::univranks` function. Match the ranking matrix y with the whole universe of rankings to obtain a label for each ranking. Combine the Label column with the predictor matrix. Remove rows with missing values. The function then returns the prepared data frame for ensemble ranking. It also create the internal objects: `item`, `perm_tab_complete_up`, `perm`, `mat.dist` that are employed in the `Ensemble_ranking_IW` function.
simulatedRankingData

Value

An N by (K+1) data frame containing the prepared item-weighted ranking data. The first column "Label" contains the transformed ranking responses, and the remaining columns contain the predictors.

References

Examples

```r
# Prepare item-weighted ranking data
y <- matrix(c(1, 2, 3, 4, 2, 3, 1, 4, 4, 1, 3, 2, 2, 3, 1, 4), nrow = 4, ncol = 4, byrow = TRUE)
x <- matrix(c(0.5, 0.8, 1.2, 0.7, 1.1, 0.9, 0.6, 1.3, 0.4, 1.5, 0.7, 0.9), nrow = 4, ncol = 3)
iw <- c(2, 5, 5, 2)
dati <- prep_data(y, x, iw)
```

simulatedRankingData Simulated ranking data

Description

The simulatedRankingData dataset is a list that includes the following components:

- The ranking matrix, *y*, contains the ranking matrix. It consists of 500 rows and 4 columns, indicating the ranking positions. Each element in the matrix represents the rank assigned to an individual for a particular item.

- The predictor matrix *x* in the dataset consists of 20 continuous explanatory variables. These variables are used for predicting the rankings.

Usage

```r
data(simulatedRankingData)
```

References

Index

* classif
 adabag-package, 2
 autoprun, 5
 bagging, 6
 bagging.cv, 8
 boosting, 10
 boosting.cv, 12
 errorevol, 17
 importanceplot, 20
 MarginOrderedPruning.Bagging, 22
 margins, 23
 plot.errorevol, 25
 plot.margins, 27
 predict.bagging, 28
 predict.boosting, 30
* datasets
 simulatedRankingData, 33
* tree
 adabag-package, 2
 autoprun, 5
 bagging, 6
 bagging.cv, 8
 boosting, 10
 boosting.cv, 12
 errorevol, 17
 importanceplot, 20
 MarginOrderedPruning.Bagging, 22
 margins, 23
 plot.errorevol, 25
 plot.margins, 27
 predict.bagging, 28
 predict.boosting, 30
adabag (adabag-package), 2
adabag-package, 2
adaboost.M1 (boosting), 10
autoprun, 4, 5

boosting, 4, 10, 13, 18, 21, 24, 26, 28, 31
boosting.cv, 4, 11, 12, 31
Ensemble_ranking_IW, 4, 14
errorevol, 4, 17, 26
errorevol_ranking_vector_IW, 4, 18
importanceplot, 4, 20
MarginOrderedPruning.Bagging, 4, 22
margins, 4, 23, 28
plot.errorevol, 4, 25
plot.margins, 4, 24, 27
predict.bagging, 4, 7, 9, 18, 23, 24, 26, 28, 28
predict.boosting, 4, 11, 13, 18, 24, 26, 28, 30
prep_data, 4, 32
rpart, 5
simulatedRankingData, 33