Index

adalara Multivariate parallel archetypoid algorithm for large applications (ADALARA)
Description

The ADALARA algorithm is based on the CLARA clustering algorithm. This is the parallel version of the algorithm to try to get faster results. It allows to detect anomalies (outliers). There are two different methods to detect them: the adjusted boxplot (default and most reliable option) and tolerance intervals. If needed, tolerance intervals allow to define a degree of outlierness.

Usage

```r
adalara(data, N, m, numArchoid, numRep, huge, prob, type_alg = "ada",
    compare = FALSE, vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05,
    outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"),
    method = "adjbox", frame)
```

Arguments

- **data**: Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric. The data must have row names so that the algorithm can identify the archetypoids in every sample.
- **N**: Number of samples.
- **m**: Sample size of each sample.
- **numArchoid**: Number of archetypes/archetypoids.
- **numRep**: For each numArchoid, run the archetype algorithm numRep times.
- **huge**: Penalization added to solve the convex least squares problems.
- **prob**: Probability with values in [0,1].
- **type_alg**: String. Options are 'ada' for the non-robust adalara algorithm and 'ada_rob' for the robust adalara algorithm.
- **compare**: Boolean argument to compute the robust residual sum of squares if type_alg = "ada" and the non-robust if type_alg = "ada_rob".
- **vect_tol**: Vector with the tolerance values. Default c(0.95, 0.9, 0.85). Needed if method='toler'.
- **alpha**: Significance level. Default 0.05. Needed if method='toler'.
- **outl_degree**: Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if method='toler'.
- **method**: Method to compute the outliers. Options allowed are 'adjbox' for using adjusted boxplots for skewed distributions, and 'toler' for using tolerance intervals.
- **frame**: Boolean value to indicate whether the frame is computed (Mair et al., 2017) or not. The frame is made up of a subset of extreme points, so the archetypoids are only computed on the frame. Low frame densities are obtained when only small portions of the data were extreme. However, high frame densities reduce this speed-up.

Value

A list with the following elements:

- **cases**: Optimal vector of archetypoids.
- **rss**: Optimal residual sum of squares.
- **outliers**: Outliers.
Author(s)
Guillermo Vinue, Irene Epifanio

References

See Also
do_ada, do_ada_robust, adalara_no_paral

Examples
```r
## Not run:
library(Anthropometry)
library(doParallel)

# Prepare parallelization (including the seed for reproducibility):
no_cores <- detectCores() - 1
cl <- makeCluster(no_cores)
registerDoParallel(cl)
clusterSetRNGStream(cl, iseed = 1)

# Load data:
data(mtcars)
data <- mtcars
n <- nrow(data)

# Arguments for the archetype/archetypoid algorithm:
# Number of archetypoids:
k <- 3
numRep <- 2
huge <- 200

# Size of the random sample of observations:
m <- 10
```
adalara_no_paral

Multivariate non-parallel archetypoid algorithm for large applications (ADALARA)

Description

The ADALARA algorithm is based on the CLARA clustering algorithm. This is the non-parallel version of the algorithm. It allows to detect anomalies (outliers). There are two different methods to detect them: the adjusted boxplot (default and most reliable option) and tolerance intervals. If needed, tolerance intervals allow to define a degree of outlierness.

Usage

adalara_no_paral(data, seed, N, m, numArchoid, numRep, huge, prob, type_alg = "ada", compare = FALSE, verbose = TRUE, vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05, outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"), method = "adjbox", frame)
Arguments

- **data**: Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric. The data must have row names so that the algorithm can identify the archetypoids in every sample.
- **seed**: Integer value to set the seed. This ensures reproducibility.
- **N**: Number of samples.
- **m**: Sample size of each sample.
- **numArchoid**: Number of archetypes/archetypoids.
- **numRep**: For each numArchoid, run the archetype algorithm numRep times.
- **huge**: Penalization added to solve the convex least squares problems.
- **prob**: Probability with values in [0,1].
- **type_alg**: String. Options are 'ada' for the non-robust adalara algorithm and 'ada_rob' for the robust adalara algorithm.
- **compare**: Boolean argument to compute the robust residual sum of squares if type_alg = "ada" and the non-robust if type_alg = "ada_rob".
- **verbose**: Display progress? Default TRUE.
- **vect_tol**: Vector the tolerance values. Default c(0.95, 0.9, 0.85). Needed if method='toler'.
- **alpha**: Significance level. Default 0.05. Needed if method='toler'.
- **outl_degree**: Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if method='toler'.
- **method**: Method to compute the outliers. Options allowed are 'adjbox' for using adjusted boxplots for skewed distributions, and 'toler' for using tolerance intervals.
- **frame**: Boolean value to indicate whether the frame is computed (Mair et al., 2017) or not. The frame is made up of a subset of extreme points, so the archetypoids are only computed on the frame. Low frame densities are obtained when only small portions of the data were extreme. However, high frame densities reduce this speed-up.

Value

A list with the following elements:

- **cases**: Optimal vector of archetypoids.
- **rss**: Optimal residual sum of squares.
- **outliers**: Outliers.

Author(s)

Guillermo Vinue, Irene Epifanio
References

See Also
do_ada, do_ada_robust, adalara

Examples

```r
## Not run:
library(Anthropometry)

# Load data:
data(mtcars)
data <- mtcars
n <- nrow(data)

# Arguments for the archetype/archetypoid algorithm:
# Number of archetypoids:
k <- 3
numRep <- 2
huge <- 200

# Size of the random sample of observations:
m <- 10
# Number of samples:
N <- floor(1 + (n - m)/(m - k))
N
prob <- 0.75

# ADALARA algorithm:
preproc <- preprocessing(data, stand = TRUE, percAccomm = 1)
data1 <- as.data.frame(preproc$data)
res_adalara <- adalara_no_paral(data1, 1, N, m, k, numRep, huge, prob, "ada_rob", FALSE, TRUE,
```
archetypoids_funct

Archetypoid algorithm with the functional Frobenius norm

Description

Archetypoid algorithm with the functional Frobenius norm to be used with functional data.

Usage

archetypoids_funct(numArchoid, data, huge = 200, ArchObj, PM)

Arguments

numArchoid Number of archetypoids.
data Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric.
huge Penalization added to solve the convex least squares problems.
ArchObj The list object returned by the stepArchetypesRawData_funct function.
PM Penalty matrix obtained with eval.penalty.

Value

A list with the following elements:

- cases: Final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- archet_ini: Vector of initial archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- resid: Matrix with the residuals.
archetypoids_funct_multiv

Author(s)

Irene Epifanio

References

See Also

archetypoids

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- t(growth$hgtm)
# Create basis:
basis_fd <- create.bspline.basis(c(1,ncol(hgtm)), 10)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:ncol(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = growth$hgtm, basisobj = basis_fd)
data_archs <- t(temp_fd$coefs)

lass <- stepArchetypesRawData_funct(data = data_archs, numArch = 3,
    numRep = 5, verbose = FALSE,
    saveHistory = FALSE, PM)

af <- archetypoids_funct(3, data_archs, huge = 200, ArchObj = lass, PM)
str(af)
## End(Not run)
```

archetypoids_funct_multiv

Archetypoid algorithm with the functional multivariate Frobenius norm

Description

Archetypoid algorithm with the functional multivariate Frobenius norm to be used with functional data.

Usage

`archetypoids_funct_multiv(numArchoid, data, huge = 200, ArchObj, PM)`
Arguments

numArchoid Number of archetypoids.
data Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric.
huge Penalization added to solve the convex least squares problems.
ArchObj The list object returned by the stepArchetypesRawData_funct function.
PM Penalty matrix obtained with eval.penalty.

Value

A list with the following elements:

- cases: Final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- archet_ini: Vector of initial archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- resid: Matrix with the residuals.

Author(s)

Irene Epifanio

References

See Also

archetypoids

Examples

```r
## Not run:
library(fda)
growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,1] <- as.matrix(hgtm)
data.array[,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)
```
Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(t(temp_fd$coefs[,1])), nvars))
X[,1] <- t(temp_fd$coef[,1])
X[,2] <- t(temp_fd$coef[,2])

Standardize the variables:
Xs <- X
Xs[,1] <- scale(X[,1])
Xs[,2] <- scale(X[,2])

lass <- stepArchetypesRawData_funct_multiv(data = Xs, numArch = 3,
numRep = 5, verbose = FALSE,
saveHistory = FALSE, PM)

afm <- archetypoids_funct_multiv_robust(3, Xs, huge = 200, ArchObj = lass, PM)
str(afm)

End(Not run)

archetypoids_funct_multiv_robust

Archetypoid algorithm with the functional multivariate robust Frobenius norm

Description

Archetypoid algorithm with the functional multivariate robust Frobenius norm to be used with functional data.

Usage

`archetypoids_funct_multiv_robust(numArchoid, data, huge = 200, ArchObj, PM, prob)`

Arguments

- **numArchoid**: Number of archetypoids.
- **data**: Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric.
- **huge**: Penalization added to solve the convex least squares problems.
- **ArchObj**: The list object returned by the `stepArchetypesRawData_funct` function.
Penalty matrix obtained with `eval.penalty`.

Probability with values in [0,1].

A list with the following elements:

- cases: Final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- archet_ini: Vector of initial archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- resid: Matrix with the residuals.

Author(s)

Irene Epifanio

References

See Also

`archetypoids`

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,1] <- as.matrix(hgtm)
data.array[,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
```
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(t(temp_fd$coefs[,1])), nvars))
X[,][,1] <- t(temp_fd$coef[,1])
X[,][,2] <- t(temp_fd$coef[,2])

Standardize the variables:
Xs <- X
Xs[,1] <- scale(X[,1])
Xs[,2] <- scale(X[,2])

lass <- stepArchetypesRawData_funct_multiv_robust(data = Xs, numArch = 3,
numRep = 5, verbose = FALSE,
saveHistory = FALSE, PM, prob = 0.8, nbasis, nvars)

afmr <- archetypoids_funct_multiv_robust(3, Xs, huge = 200, ArchObj = lass, PM, 0.8)
str(afmr)

End(Not run)

archetypoids_funct_robust

Archetypoid algorithm with the functional robust Frobenius norm

Description

Archetypoid algorithm with the functional robust Frobenius norm to be used with functional data.

Usage

```
archetypoids_funct_robust(numArchoid, data, huge = 200, ArchObj, PM, prob)
```

Arguments

- **numArchoid**: Number of archetypoids.
- **data**: Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric.
- **huge**: Penalization added to solve the convex least squares problems.
- **ArchObj**: The list object returned by the `stepArchetypesRawData_funct_multiv_robust` function.
- **PM**: Penalty matrix obtained with `eval.penalty`.
- **prob**: Probability with values in [0,1].
Value

A list with the following elements:

- cases: Final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- archet_ini: Vector of initial archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- resid: Matrix with the residuals.

Author(s)

Irene Epifanio

References

See Also

- archetypoids

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- t(growth$hgtm)
# Create basis:
basis_fd <- create.bspline.basis(c(1, ncol(hgtm)), 10)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:ncol(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = growth$hgtm, basisobj = basis_fd)
data_archs <- t(temp_fd$coefs)

lass <- stepArchetypesRawData_funct_robust(data = data_archs, numArch = 3,
                                          numRep = 5, verbose = FALSE,
                                          saveHistory = FALSE, PM, prob = 0.8)

afr <- archetypoids_funct_robust(3, data_archs, huge = 200, ArchObj = lass, PM, 0.8)
str(afr)

## End(Not run)
```
archetypoids_norm_frob

Archetypoid algorithm with the Frobenius norm

Description

This function is the same as archetypoids but the 2-norm is replaced by the Frobenius norm. Thus, the comparison with the robust archetypoids can be directly made.

Usage

archetypoids_norm_frob(numArchoid, data, huge = 200, ArchObj)

Arguments

numArchoid Number of archetypoids.
data Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric.
huge Penalization added to solve the convex least squares problems.
ArchObj The list object returned by the stepArchetypesRawData_norm_frob function.

Value

A list with the following elements:

- cases: Final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- archet_ini: Vector of initial archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- resid: Matrix with the residuals.

Author(s)

Irene Epifanio

References

archetypoids_robust

Archetypoid algorithm with the robust Frobenius norm

Description

Robust version of the archetypoid algorithm with the Frobenius form.

Usage

archetypoids_robust(numArchoid, data, huge = 200, ArchObj, prob)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>numArchoid</td>
<td>Number of archetypoids.</td>
</tr>
<tr>
<td>data</td>
<td>Data matrix. Each row corresponds to an observation and each column corre-</td>
</tr>
<tr>
<td></td>
<td>sponds to a variable. All variables are numeric.</td>
</tr>
<tr>
<td>huge</td>
<td>Penalization added to solve the convex least squares problems.</td>
</tr>
<tr>
<td>ArchObj</td>
<td>The list object returned by the stepArchetypesRawData_robust function.</td>
</tr>
<tr>
<td>prob</td>
<td>Probability with values in [0,1].</td>
</tr>
</tbody>
</table>
Value

A list with the following elements:

- cases: Final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- archet_ini: Vector of initial archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- resid: Matrix with the residuals.

Author(s)

Irene Epifanio

References

See Also

- archetypoids_norm_frob

Examples

data(mtcars)
data <- mtcars

k <- 3
numRep <- 2
huge <- 200

lass <- stepArchetypesRawData_robust(data = data, numArch = k,
numRep = numRep, verbose = FALSE,
saveHistory = FALSE, prob = 0.8)

res <- archetypoids_robust(k, data, huge, ArchObj = lass, 0.8)
str(res)
res$cases
res$rss
bisquare_function

Bisquare function

Description

This function belongs to the bisquare family of loss functions. The bisquare family can better cope with extreme outliers.

Usage

bisquare_function(resid, prob, ...)

Arguments

resid Vector of residuals, computed from the $m \times n$ residuals data matrix.
prob Probability with values in $[0,1]$.
... Additional possible arguments.

Value

Vector of real numbers.

Author(s)

Irene Epifanio

References

Examples

resid <- c(2.47, 11.85)
bisquare_function(resid, 0.8)
Run the whole classical archetypoid analysis with the Frobenius norm

Description
This function executes the entire procedure involved in the archetypoid analysis. Firstly, the initial vector of archetypoids is obtained using the archetypal algorithm and finally, the optimal vector of archetypoids is returned.

Usage
```
do_ada(subset, numArchoid, numRep, huge, compare = FALSE,
vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05,
outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"),
method = "adjbox")
```

Arguments
- **subset**: Data to obtain archetypes. In ADALARA this is a subset of the entire data frame.
- **numArchoid**: Number of archetypes/archetypoids.
- **numRep**: For each numArch, run the archetype algorithm numRep times.
- **huge**: Penalization added to solve the convex least squares problems.
- **compare**: Boolean argument to compute the robust residual sum of squares to compare these results with the ones provided by `do_ada_robust`.
- **vect_tol**: Vector the tolerance values. Default c(0.95, 0.9, 0.85). Needed if method=’toler’.
- **alpha**: Significance level. Default 0.05. Needed if method=’toler’.
- **outl_degree**: Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if method=’toler’.
- **method**: Method to compute the outliers. Options allowed are ‘adjbox’ for using adjusted boxplots for skewed distributions, and ‘toler’ for using tolerance intervals.

Value
A list with the following elements:
- **cases**: Final vector of archetypoids.
- **alphas**: Alpha coefficients for the final vector of archetypoids.
- **rss**: Residual sum of squares corresponding to the final vector of archetypoids.
- **rss_rob**: If compare=TRUE, this is the residual sum of squares using the robust Frobenius norm. Otherwise, NULL.
- **resid**: Vector with the residuals.
- **outliers**: Outliers.
Author(s)

Guillermo Vinue, Irene Epifanio

References

See Also

`stepArchetypesRawData_norm_frob`, `archetypoids_norm_frob`

Examples

```r
library(Anthropometry)
data(mtcars)
data <- as.matrix(mtcars)
k <- 3	numRep <- 2
huge <- 200

preproc <- preprocessing(data, stand = TRUE, percAccomm = 1)
suppressWarnings(RNGversion("3.5.0"))
set.seed(2018)
res_ada <- do_ada(preproc$data, k, numRep, huge, FALSE, method = "adjbox")
str(res_ada)

res_adal <- do_ada(preproc$data, k, numRep, huge, FALSE,
               vect_tol = c(0.95, 0.9, 0.85),
               alpha = 0.05,
               outl_degree = c("outl_strong", "outl_semi_strong",
                               "outl_moderate"),
               method = "toler")
str(res_adal)
```

do_ada_robust

Run the whole robust archetypoid analysis with the robust Frobenius norm
Description

This function executes the entire procedure involved in the robust archetypoid analysis. Firstly, the initial vector of archetypoids is obtained using the robust archetypal algorithm and finally, the optimal vector of robust archetypoids is returned.

Usage

doa_ada_robust(subset, numArchoid, numRep, huge, prob, compare = FALSE,
 vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05,
 outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"),
 method = "adjbox")

Arguments

subset Data to obtain archetypes. In ADALARA this is a subset of the entire data frame.
numArchoid Number of archetypes/archetypoids.
numRep For each numArch, run the archetype algorithm numRep times.
huge Penalization added to solve the convex least squares problems.
prob Probability with values in [0,1].
compare Boolean argument to compute the non-robust residual sum of squares to compare these results with the ones provided by do_ada.
vect_tol Vector the tolerance values. Default c(0.95, 0.9, 0.85). Needed if method='toler'.
alpha Significance level. Default 0.05. Needed if method='toler'.
outl_degree Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if method='toler'.
method Method to compute the outliers. Options allowed are 'adjbox' for using adjusted boxplots for skewed distributions, and 'toler' for using tolerance intervals.

Value

A list with the following elements:

- cases: Final vector of archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- rss_non_rob: If compare=TRUE, this is the residual sum of squares using the non-robust Frobenius norm. Otherwise, NULL.
- resid Vector of residuals.
- outliers: Outliers.

Author(s)

Guillermo Vinue, Irene Epifanio
References

See Also

stepArchetypesRawData_robust, archetypoids_robust

Examples

```r
## Not run:
library(Anthropometry)
data(mtcars)
#data <- as.matrix(mtcars)
data <- mtcars

k <- 3
numRep <- 2
huge <- 200

preproc <- preprocessing(data, stand = TRUE, percAccomm = 1)
suppressWarnings(RNGversion("3.5.0"))
set.seed(2018)
res_ada_rob <- do_ada_robust(preproc$data, k, numRep, huge, 0.8,
FALSE, method = "adjbox")
str(res_ada_rob)
res_ada_rob1 <- do_ada_robust(preproc$data, k, numRep, huge, 0.8,
FALSE, vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05,
outl_degree = c("outl_strong", "outl_semi_strong",
"outl_moderate"),
method = "toler")
str(res_ada_rob1)
## End(Not run)
```

do_alphas_rss

Alphas and RSS of every set of archetypoids

Description

In the ADALARA algorithm, every time that a set of archetypoids is computed using a sample of the data, the alpha coefficients and the associated residual sum of squares (RSS) for the entire data set must be computed.
Usage

do_alphas_rss(data, subset, huge, k_subset, rand_obs, alphas_subset, type_alg = "ada", PM, prob)

Arguments

data
subset
huge
k_subset
rand_obs
alphas_subset
type_alg
PM
prob

Value

A list with the following elements:

- rss Real number of the residual sum of squares.
- resid_rss Matrix with the residuals.
- alphas Matrix with the alpha values.

Author(s)

Guillermo Vinue

See Also

archetypoids_norm_frob

Examples

data(mtcars)
data <- mtcars
n <- nrow(data)
m <- 10

k <- 3
numRep <- 2
huge <- 200
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
rand_obs_si <- sample(1:n, size = m)

si <- data[rand_obs_si,]
ada_si <- do_ada(si, k, numRep, huge, FALSE)

k_si <- ada_si$cases
alphas_si <- ada_si$alphas
colnames(alphas_si) <- rownames(si)

rss_si <- do_alphas_rss(data, si, huge, k_si, rand_obs_si, alphas_si, "ada")
str(rss_si)

do_alphas_rss_multiv Alphas and RSS of every set of multivariate archetypoids

Description

In the ADALARA algorithm, every time that a set of archetypoids is computed using a sample of the data, the alpha coefficients and the associated residual sum of squares (RSS) for the entire data set must be computed.

Usage

```r
do_alphas_rss_multiv(data, subset, huge, k_subset, rand_obs, alphas_subset, 
                      type_alg = "ada", PM, prob, nbasis, nvars)
```

Arguments

- **data** Data matrix with all the observations.
- **subset** Data matrix with a sample of the data observations.
- **huge** Penalization added to solve the convex least squares problems.
- **k_subset** Archetypoids obtained from subset.
- **rand_obs** Sample observations that form subset.
- **alphas_subset** Alpha coefficients related to k_subset.
- **type_alg** String. Options are 'ada' for the non-robust multivariate adalara algorithm, 'ada_rob' for the robust multivariate adalara algorithm, 'fada' for the non-robust fda fadalara algorithm and 'fada_rob' for the robust fda fadalara algorithm.
- **PM** Penalty matrix obtained with `eval.penalty`. Needed when type_alg = 'fada' or type_alg = 'fada_rob'.
- **prob** Probability with values in [0,1]. Needed when type_alg = 'ada_rob' or type_alg = 'fada_rob'.
- **nbasis** Number of basis.
- **nvars** Number of variables.
do_alphas_rss_multiv

Value

A list with the following elements:

- rss Real number of the residual sum of squares.
- resid_rss Matrix with the residuals.
- alphas Matrix with the alpha values.

Author(s)

Guillermo Vinue

See Also

archetypoids_norm_frob

Examples

```r
# Not run:
library(fda)
?growth
str(growth)
httm <- growth$httm
httf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(httm), nvars))
data.array[,1] <- as.matrix(httm)
data.array[,2] <- as.matrix(httf)
rownames(data.array) <- 1:nrow(httm)
colnames(data.array) <- colnames(httm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(httm)), nbasis)
RM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(httm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(t(temp_fd$coefs[,1])), nvars))
X[,1] <- t(temp_fd$coef[,1])
X[,2] <- t(temp_fd$coef[,2])

# Standardize the variables:
Xs <- X
Xs[,1] <- scale(X[,1])
Xs[,2] <- scale(X[,2])
# We have to give names to the dimensions to know the
# observations that were identified as archetypoids.
```
dimnames(Xs) <- list(paste("Obs", 1:dim(hgtm)[2], sep = ""),
 1:nbasis,
 c("boys", "girls"))

n <- dim(Xs)[1]
Number of archetypoids:
k <- 3
numRep <- 20
huge <- 200

Size of the random sample of observations:
m <- 15
Number of samples:
N <- floor(1 + (n - m)/(m - k))
N
prob <- 0.75
data_alg <- Xs

nbasis <- dim(data_alg)[2] # number of basis.
nvars <- dim(data_alg)[3] # number of variables.
n <- nrow(data_alg)
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
rand_obs_si <- sample(1:n, size = m)
si <- apply(data_alg, 2:3, function(x) x[rand_obs_si])

fada_si <- do_fada_multiv_robust(si, k, numRep, huge, 0.8, FALSE, PM)

k_si <- fada_si$cases
alphas_si <- fada_si$alphas
rownames(alphas_si) <- rownames(si)

rss_si <- do_alphas_rss_multiv(data_alg, si, huge, k_si, rand_obs_si, alphas_si,
 "fada_rob", PM, 0.8, nbasis, nvars)

str(rss_si)

End(Not run)

do_clean

Cleaning outliers

Description

Cleaning of the most remarkable outliers. This improves the performance of the archetypoid algorithm since it is not affected by spurious points.

Usage

do_clean(data, num_pts, range = 1.5, out_perc = 80)
do_clean_multiv

Arguments

- **data**: Data frame with (temporal) points in the rows and observations in the columns.
- **num_pts**: Number of temporal points.
- **range**: Same parameter as in function `boxplot`. A value of 1.5 is enough to detect amplitude and shift outliers, while a value of 3 is needed to detect isolated outliers.
- **out_perc**: Minimum number of temporal points (in percentage) to consider the observation as an outlier. Needed when `range=1.5`.

Value

Numeric vector with the outliers.

Author(s)

Irene Epifanio

See Also

`boxplot`

Examples

```r
data(mtcars)
data <- mtcars
num_pts <- ncol(data)
do_clean(t(data), num_pts, 1.5, 80)
```

do_clean_multiv
Cleaning multivariate functional outliers

Description

Cleaning of the most remarkable multivariate functional outliers. This improves the performance of the archetypoid algorithm since it is not affected by spurious points.

Usage

```r
do_clean_multiv(data, num_pts, range = 1.5, out_perc = 80, nbasis, nvars)
```
do_clean_multiv

Arguments

- **data** Data frame with (temporal) points in the rows and observations in the columns.
- **num_pts** Number of temporal points.
- **range** Same parameter as in function `boxplot`. A value of 1.5 is enough to detect amplitude and shift outliers, while a value of 3 is needed to detect isolated outliers.
- **out_perc** Minimum number of temporal points (in percentage) to consider the observation as an outlier. Needed when `range=1.5`.
- **nbasis** Number of basis.
- **nvars** Number of variables.

Value

List with the outliers for each variable.

Author(s)

Irene Epifanio

See Also

- `boxplot`

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
ghtf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,1] <- as.matrix(hgtm)
data.array[,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2FD(argsvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(t(temp_fd$coefs[,1])), nvars))
```
do_fada

Run the whole functional archetypoid analysis with the Frobenius norm

Description

This function executes the entire procedure involved in the functional archetypoid analysis. Firstly, the initial vector of archetypoids is obtained using the functional archetypal algorithm and finally, the optimal vector of archetypoids is returned.

Usage

do_fada(subset, numArchoid, numRep, huge, compare = FALSE, PM,
 vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05,
 outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"),
 method = "adjbox")

Arguments

subset Data to obtain archetypes. In fadalara this is a subset of the entire data frame.
numArchoid Number of archetypes/archetypoids.
numRep For each numArch, run the archetype algorithm numRep times.
huge Penalization added to solve the convex least squares problems.
compare Boolean argument to compute the robust residual sum of squares to compare these results with the ones provided by do_fada_robust.
PM Penalty matrix obtained with `eval.penalty`.

`vect_tol` Vector the tolerance values. Default c(0.95, 0.9, 0.85). Needed if `method='toler'`.

`alpha` Significance level. Default 0.05. Needed if `method='toler'`.

`out1_degree` Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if `method='toler'`.

`method` Method to compute the outliers. Options allowed are 'adjbox' for using adjusted boxplots for skewed distributions, and 'toler' for using tolerance intervals.

Value

A list with the following elements:

- `cases`: Final vector of archetypoids.
- `alphas`: Alpha coefficients for the final vector of archetypoids.
- `rss`: Residual sum of squares corresponding to the final vector of archetypoids.
- `rss_rob`: If `compare_robust`=TRUE, this is the residual sum of squares using the robust Frobenius norm. Otherwise, NULL.
- `resid`: Vector of residuals.
- `outliers`: Outliers.

Author(s)

Guillermo Vinue, Irene Epifanio

References

Epifanio, I., Functional archetype and archetypoid analysis, 2016. *Computational Statistics and Data Analysis* **104**, 24-34, https://doi.org/10.1016/j.csda.2016.06.007

See Also

`stepArchetypesRawData_funct`, `archetypoids_funct`

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- t(growth$hgtm)

# Create basis:
basis_fd <- create.bspline.basis(c(1,ncol(hgtm)), 10)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:ncol(hgtm)
temp_fd <- Data2fd(argsvals = temp_points, y = growth$hgtm, basisobj = basis_fd)
data_archs <- t(temp_fd$coefs)
```
do_fada_multiv

Run the whole archetypoid analysis with the functional multivariate Frobenius norm

Description

This function executes the entire procedure involved in the functional archetypoid analysis. Firstly, the initial vector of archetypoids is obtained using the functional archetypal algorithm and finally, the optimal vector of archetypoids is returned.

Usage

do_fada_multiv(subset, numArchoid, numRep, huge, compare = FALSE, PM, method = "adjbox")

Arguments

subset Data to obtain archetypes. In fadalara this is a subset of the entire data frame.
numArchoid Number of archetypes/archetypoids.
numRep For each numArch, run the archetype algorithm numRep times.
huge Penalization added to solve the convex least squares problems.
compare Boolean argument to compute the robust residual sum of squares to compare these results with the ones provided by do_fada_robust.
PM Penalty matrix obtained with eval.penalty.
method Method to compute the outliers. So far the only option allowed is 'adjbox' for using adjusted boxplots for skewed distributions. The use of tolerance intervals might also be explored in the future for the multivariate case.
do_fada_multiv

Value

A list with the following elements:

- cases: Final vector of archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- rss_rob: If compare_robust = TRUE, this is the residual sum of squares using the robust Frobenius norm. Otherwise, NULL.
- resid: Vector of residuals.
- outliers: Outliers.

Author(s)

Guillermo Vinue, Irene Epifanio

References

Epifanio, I., Functional archetype and archetypoid analysis, 2016. Computational Statistics and Data Analysis 104, 24-34, https://doi.org/10.1016/j.csda.2016.06.007

See Also

stepArchetypesRawData_funct_multiv, archetypoids_funct_multiv

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,1] <- as.matrix(hgtm)
data.array[,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2Fd(argvals = temp_points, y = data.array, basisobj = basis_fd)
```
do_fada_multiv_robust

Run the whole archetypoid analysis with the functional multivariate robust Frobenius norm

Description

This function executes the entire procedure involved in the functional archetypoid analysis. Firstly, the initial vector of archetypoids is obtained using the functional archetypal algorithm and finally, the optimal vector of archetypoids is returned.

Usage

do_fada_multiv_robust(subset, numArchoid, numRep, huge, prob, compare = FALSE, PM, method = "adjbox")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>subset</td>
<td>Data to obtain archetypes. In fadalara this is a subset of the entire data frame.</td>
</tr>
<tr>
<td>numArchoid</td>
<td>Number of archetypes/archetypoids.</td>
</tr>
<tr>
<td>numRep</td>
<td>For each numArch, run the archetype algorithm numRep times.</td>
</tr>
<tr>
<td>huge</td>
<td>Penalization to solve the convex least squares problem, see archetypoids.</td>
</tr>
<tr>
<td>prob</td>
<td>Probability with values in [0,1].</td>
</tr>
<tr>
<td>compare</td>
<td>Boolean argument to compute the non-robust residual sum of squares to compare these results with the ones provided by do_fada.</td>
</tr>
<tr>
<td>PM</td>
<td>Penalty matrix obtained with eval.penalty.</td>
</tr>
<tr>
<td>method</td>
<td>Method to compute the outliers. So far the only option allowed is 'adjbox' for using adjusted boxplots for skewed distributions. The use of tolerance intervals might also be explored in the future for the multivariate case.</td>
</tr>
</tbody>
</table>
Value

A list with the following elements:

- cases: Final vector of archetypoids.
- alphas: Alpha coefficients for the final vector of archetypoids.
- rss: Residual sum of squares corresponding to the final vector of archetypoids.
- rss_non_rob: If \(\text{compare}=\text{TRUE}\), this is the residual sum of squares using the non-robust Frobenius norm. Otherwise, NULL.
- resid: Vector of residuals.
- outliers: Outliers.
- local_rel_imp: Matrix with the local (casewise) relative importance (in percentage) of each variable for the outlier identification. Only for the multivariate case. It is relative to the outlier observation itself. The other observations are not considered for computing this importance. This procedure works because the functional variables are in the same scale, after standardizing. Otherwise, it couldn’t be interpreted like that.
- margi_rel_imp: Matrix with the marginal relative importance of each variable (in percentage) for the outlier identification. Only for the multivariate case. In this case, the other points are considered, since the value of the outlier observation is compared with the remaining points.

Author(s)

Guillermo Vinue, Irene Epifanio

References

See Also

- `stepArchetypesRawData_funct_multiv_robust`, `archetypoids_funct_multiv_robust`

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
htgm <- growth$hgtm
htgf <- growth$hgtf[,1:39]

# Create array:

nvars <- 2
data.array <- array(0, dim = c(dim(htgm), nvars))
data.array[,1] <- as.matrix(htgm)
data.array[,2] <- as.matrix(htgf)
ownames(data.array) <- 1:nrow(htgm)
```
do_fada_robust

Run the whole archetypoid analysis with the functional robust Frobenius norm

description

This function executes the entire procedure involved in the functional archetypoid analysis. Firstly, the initial vector of archetypoids is obtained using the functional archetypal algorithm and finally, the optimal vector of archetypoids is returned.

Usage

do_fada_robust(subset = Xs, numArchoid = 3, numRep = 5, huge = 200, prob = 0.75, compare = FALSE, PM = PM, method = "adjbox")
do_fada_robust

Arguments

- **subset**: Data to obtain archetypes. In fadalara this is a subset of the entire data frame.
- **numArchoid**: Number of archetypes/archetypoids.
- **numRep**: For each numArch, run the archetype algorithm numRep times.
- **huge**: Penalization added to solve the convex least squares problems.
- **prob**: Probability with values in [0,1].
- **compare**: Boolean argument to compute the non-robust residual sum of squares to compare these results with the ones provided by do_fada.
- **PM**: Penalty matrix obtained with eval.penalty.
- **vect_tol**: Vector the tolerance values. Default c(0.95, 0.9, 0.85). Needed if method=‘toler’.
- **alpha**: Significance level. Default 0.05. Needed if method=‘toler’.
- **outl_degree**: Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if method=‘toler’.
- **method**: Method to compute the outliers. Options allowed are 'adjbox' for using adjusted boxplots for skewed distributions, and 'toler' for using tolerance intervals.

Value

A list with the following elements:

- **cases**: Final vector of archetypoids.
- **alphas**: Alpha coefficients for the final vector of archetypoids.
- **rss**: Residual sum of squares corresponding to the final vector of archetypoids.
- **rss_non_rob**: If compare=TRUE, this is the residual sum of squares using the non-robust Frobenius norm. Otherwise, NULL.
- **resid**: Vector of residuals.
- **outliers**: Outliers.

Author(s)

Guillermo Vinue, Irene Epifanio

References

See Also

stepArchetypesRawData_funct_robust, archetypoids_funct_robust
Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- t(growth$hgtm)

# Create basis:
basis_fd <- create.bspline.basis(c(1, ncol(hgtm)), 10)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:ncol(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = growth$hgtm, basisobj = basis_fd)
data_archs <- t(temp_fd$coefs)
suppressWarnings(RNGversion("3.5.0"))
set.seed(2018)
res_fada_rob <- do_fada.robust(subset = data_archs, numArchoid = 3, numRep = 5, huge = 200,
prob = 0.75, compare = FALSE, PM = PM, method = "adjbox")
str(res_fada_rob)

suppressWarnings(RNGversion("3.5.0"))
set.seed(2018)
res_fada_rob1 <- do_fada.robust(subset = data_archs, numArchoid = 3, numRep = 5, huge = 200,
prob = 0.75, compare = FALSE, PM = PM,
vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05,
outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"),
method = "toler")
str(res_fada_rob1)

## End(Not run)
```

do_knno

kNN for outlier detection

Description

Ramaswamy et al. proposed the k-nearest neighbors outlier detection method (kNNo). Each point’s anomaly score is the distance to its kth nearest neighbor in the data set. Then, all points are ranked based on this distance. The higher an example’s score is, the more anomalous it is.

Usage

do_knno(data, k, top_n)
do_outl_degree

Arguments

- **data** Data observations.
- **k** Number of neighbors of a point that we are interested in.
- **top_n** Total number of outliers we are interested in.

Value

Vector of outliers.

Author(s)

Guillermo Vinue

References

Examples

```r
data(mtcars)
data <- as.matrix(mtcars)
outl <- do_knno(data, 3, 2)
outl
data[outl,]
```

do_outl_degree

Degree of outlieriness

Description

Classification of outliers according to their degree of outlieriness. They are classified using the tolerance proportion. For instance, outliers from a 95

Usage

```r
do_outl_degree(vect_tol = c(0.95, 0.9, 0.85), resid_vect, alpha = 0.05,
outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"))
```

Arguments

- **vect_tol** Vector the tolerance values. Default c(0.95, 0.9, 0.85).
- **resid_vect** Vector of n residuals, where n was the number of rows of the data matrix.
- **alpha** Significance level. Default 0.05.
- **outl_degree** Type of outlier to identify the degree of outlieriness. Default c("outl_strong", "outl_semi_strong", "outl_moderate").
Value

List with the type outliers.

Author(s)

Guillermo Vinue

See Also

`outl_toler`

Examples

```r
do_outl_degree(0.95, 1:100, 0.05, "outl_strong")
```

fadalara

Functional parallel archetypoid algorithm for large applications

(FADALARA)

Description

The FADALARA algorithm is based on the CLARA clustering algorithm. This is the parallel version of the algorithm. It allows to detect anomalies (outliers). In the univariate case, there are two different methods to detect them: the adjusted boxplot (default and most reliable option) and tolerance intervals. In the multivariate case, only adjusted boxplots are used. If needed, tolerance intervals allow to define a degree of outlierness.

Usage

```r
fadalara(data, N, m, numArchoid, numRep, huge, prob, type_alg = "fada",
compare = FALSE, PM, vect_tol = c(0.95, 0.9, 0.85), alpha = 0.05,
outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"),
method = "adjbox", multiv, frame)
```

Arguments

- `data` Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric. The data must have row names so that the algorithm can identify the archetypoids in every sample.
- `N` Number of samples.
- `m` Sample size of each sample.
- `numArchoid` Number of archetypes/archetypoids.
- `numRep` For each `numArch`, run the archetype algorithm `numRep` times.
- `huge` Penalization added to solve the convex least squares problems.
- `prob` Probability with values in [0,1].
type_alg String. Options are 'fada' for the non-robust fadalara algorithm, whereas 'fada_rob' is for the robust fadalara algorithm.

compare Boolean argument to compute the robust residual sum of squares if type_alg = "fada" and the non-robust if type_alg = "fada_rob".

PM Penalty matrix obtained with eval.penalty.

vect_tol Vector the tolerance values. Default c(0.95, 0.9, 0.85). Needed if method=’toler’.

alpha Significance level. Default 0.05. Needed if method=’toler’.

outl_degree Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if method=’toler’.

method Method to compute the outliers. Options allowed are ‘adjbox’ for using adjusted boxplots for skewed distributions, and ‘toler’ for using tolerance intervals. The tolerance intervals are only computed in the univariate case, i.e., method='toler' only valid if multiv=FALSE.

multiv Multivariate (TRUE) or univariate (FALSE) algorithm.

frame Boolean value to indicate whether the frame is computed (Mair et al., 2017) or not. The frame is made up of a subset of extreme points, so the archetypoids are only computed on the frame. Low frame densities are obtained when only small portions of the data were extreme. However, high frame densities reduce this speed-up.

Value

A list with the following elements:

- cases Vector of archetypoids.
- rss Optimal residual sum of squares.
- outliers: Outliers.
- alphas: Matrix with the alpha coefficients.
- local_rel_imp Matrix with the local (casewise) relative importance (in percentage) of each variable for the outlier identification. Only for the multivariate case. It is relative to the outlier observation itself. The other observations are not considered for computing this importance. This procedure works because the functional variables are in the same scale, after standardizing. Otherwise, it couldn’t be interpreted like that.
- margi_rel_imp Matrix with the marginal relative importance of each variable (in percentage) for the outlier identification. Only for the multivariate case. In this case, the other points are considered, since the value of the outlier observation is compared with the remaining points.

Author(s)

Guillermo Vinue, Irene Epifanio
References

Epifanio, I., Functional archetype and archetypoid analysis, 2016. *Computational Statistics and Data Analysis* **104**, 24-34, https://doi.org/10.1016/j.csda.2016.06.007

See Also

`do_fada`, `do_fada_robust`

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,1] <- as.matrix(hgtm)
data.array[,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(temp_fd$coefs[,1]), nvars))
X[,1] <- t(temp_fd$coefs[,1])
X[,2] <- t(temp_fd$coefs[,2])

# Standardize the variables:
Xs <- X
```
Xs[,1] <- scale(X[,1])
Xs[,2] <- scale(X[,2])
We have to give names to the dimensions to know the
observations that were identified as archetypoids.
dimnames(Xs) <- list(paste("Obs", 1:dim(hgtm)[2], sep = ""),
 1:nbasis,
c("boys", "girls"))

n <- dim(Xs)[1]
Number of archetypoids:
k <- 3
numRep <- 20
huge <- 200

Size of the random sample of observations:
m <- 15
Number of samples:
N <- floor(1 + (n - m)/(m - k))
N
prob <- 0.75
data_alg <- Xs

Parallel:
Prepare parallelization (including the seed for reproducibility):
library(doParallel)
no_cores <- detectCores() - 1
no_cores
c1 <- makeCluster(no_cores)
registerDoParallel(c1)
clusterSetRNGStream(c1, iseed = 2018)
res_fl <- fadalara(data = data_alg, N = N, m = m, numArchoid = k, numRep = numRep,
 huge = huge, prob = prob, type_alg = "fada_rob", compare = FALSE,
 PM = PM, method = "adjbox", multiv = TRUE, frame = FALSE) # frame = TRUE
stopCluster(c1)
res_fl_copy <- res_fl
res_fl <- res_fl[which.min(unlist(sapply(res_fl, function(x) x[2])))][[1]]
str(res_fl)
res_fl$cases
#[1] 7 9 10
res_fl$rss
#[1] 5.772298
as.vector(res_fl$outliers)
#integer(0)

End (Not run)
Description

The FADALARA algorithm is based on the CLARA clustering algorithm. This is the non-parallel version of the algorithm. It allows to detect anomalies (outliers). In the univariate case, there are two different methods to detect them: the adjusted boxplot (default and most reliable option) and tolerance intervals. In the multivariate case, only adjusted boxplots are used. If needed, tolerance intervals allow to define a degree of outlierness.

Usage

```r
fadalara_no_paral(data, seed, N, m, numArchoid, numRep, huge, prob, type_alg = "fada",
compare = FALSE, verbose = TRUE, PM, vect_tol = c(0.95, 0.9, 0.85),
alpha = 0.05, outl_degree = c("outl_strong", "outl_semi_strong", "outl_moderate"), method = "adjbox", multiv, frame)
```

Arguments

data Data matrix. Each row corresponds to an observation and each column corresponds to a variable (temporal point). All variables are numeric. The data must have row names so that the algorithm can identify the archetypoids in every sample.

seed Integer value to set the seed. This ensures reproducibility.

N Number of samples.

m Sample size of each sample.

numArchoid Number of archetypes/archetypoids.

numRep For each numArch, run the archetype algorithm numRep times.

huge Penalization added to solve the convex least squares problems.

prob Probability with values in [0,1].

type_alg String. Options are ‘fada’ for the non-robust fadalara algorithm, whereas ‘fada_rob’ is for the robust fadalara algorithm.

compare Boolean argument to compute the robust residual sum of squares if type_alg = "fada" and the non-robust if type_alg = "fada_rob".

verbose Display progress? Default TRUE.

PM Penalty matrix obtained with `eval.penalty`.

vect_tol Vector the tolerance values. Default c(0.95, 0.9, 0.85). Needed if method=’toler’.

alpha Significance level. Default 0.05. Needed if method=’toler’.

outl_degree Type of outlier to identify the degree of outlierness. Default c("outl_strong", "outl_semi_strong", "outl_moderate"). Needed if method=’toler’.

method Method to compute the outliers. Options allowed are ‘adjbox’ for using adjusted boxplots for skewed distributions, and ‘toler’ for using tolerance intervals. The tolerance intervals are only computed in the univariate case, i.e., method=’toler’ only valid if multiv = FALSE.

multiv Multivariate (TRUE) or univariate (FALSE) algorithm.
Boolean value to indicate whether the frame is computed (Mair et al., 2017) or not. The frame is made up of a subset of extreme points, so the archetypoids are only computed on the frame. Low frame densities are obtained when only small portions of the data were extreme. However, high frame densities reduce this speed-up.

Value

A list with the following elements:

- cases Vector of archetypoids.
- rss Optimal residual sum of squares.
- outliers: Vector of outliers.
- alphas: Matrix with the alpha coefficients.
- local_rel_imp Matrix with the local (casewise) relative importance (in percentage) of each variable for the outlier identification. Only for the multivariate case. It is relative to the outlier observation itself. The other observations are not considered for computing this importance. This procedure works because the functional variables are in the same scale, after standardizing. Otherwise, it couldn’t be interpreted like that.
- margi_rel_imp Matrix with the marginal relative importance of each variable (in percentage) for the outlier identification. Only for the multivariate case. In this case, the other points are considered, since the value of the outlier observation is compared with the remaining points.

Author(s)

Guillermo Vinue, Irene Epifanio

References

See Also

fadalara
Examples

```r
## Not run:
library(fda)
?growth
str(growth)
htm <- growth$hgtm
htf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(htm), nvars))
data.array[,1] <- as.matrix(htm)
data.array[,2] <- as.matrix(htf)
rownames(data.array) <- 1:nrow(htm)
colnames(data.array) <- colnames(htm)
str(data.array)

# Create basis:
rbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(htm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(htm)
temp_fd <- Data2Fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(temp_fd$coeffs[,1]), nvars))
X[,1] <- t(temp_fd$coeff[,1])
X[,2] <- t(temp_fd$coeff[,2])

# Standardize the variables:
Xs <- X
Xs[,1] <- scale(X[,1])
Xs[,2] <- scale(X[,2])
# We have to give names to the dimensions to know the
# observations that were identified as archetypoids.
dimnames(Xs) <- list(paste("Obs", 1:dim(htm)[2], sep = ""),
    1:nbasis,
    c("boys", "girls"))

n <- dim(Xs)[1]
# Number of archetypoids:
k <- 3
numRep <- 20
huge <- 200

# Size of the random sample of observations:
m <- 15
# Number of samples:
N <- floor(1 + (n - m)/(m - k))
N
prob <- 0.75
data_alg <- Xs
```
seed <- 2018
res_fl <- fadalara_no_paral(data = data_alg, seed = seed, N = N, m = m,
numArchoid = k, numRep = numRep, huge = huge,
prob = prob, type_alg = "fada_rob", compare = FALSE,
verbose = TRUE, PM = PM, method = "adjbox", multiv = TRUE,
frame = FALSE) # frame = TRUE

str(res_fl)
res_fl$cases
#[1] 5 8 12
res_fl$rss
#[1] 3.933064
as.vector(res_fl$outliers)
#[1] 13 29

End(Not run)

frame_in_r

Compute archetypes frame

Description

Computing the frame with the approach by Mair et al. (2017).

Usage

`frame_in_r(X)`

Arguments

- `X` Data frame.

Value

Vector with the observations that belong to the frame.

Author(s)

Sebastian Mair, code kindly provided by him.

References

Examples

```r
## Not run:
X <- mtcars
q <- frame_in_r(X)
H <- X[q,]
q
## End(Not run)
```

Description

Computes the Frobenius norm.

Usage

`frobenius_norm(m)`

Arguments

- `m` Data matrix with the residuals. This matrix has the same dimensions as the original data matrix.

Details

Residuals are vectors. If there are p variables (columns), for every observation there is a residual that is a p-dimensional vector. If there are n observations, the residuals are an n times p matrix.

Value

Real number.

Author(s)

Guillermo Vinue, Irene Epifanio

References

Examples

mat <- matrix(1:4, nrow = 2)
frobenius_norm(mat)

Description

Computes the functional Frobenius norm.

Usage

frobenius_norm_funct(m, PM)

Arguments

m Data matrix with the residuals. This matrix has the same dimensions as the original data matrix.
PM Penalty matrix obtained with eval.penalty.

Details

Residuals are vectors. If there are p variables (columns), for every observation there is a residual that is a p-dimensional vector. If there are n observations, the residuals are an n times p matrix.

Value

Real number.

Author(s)

Irene Epifanio

References

Epifanio, I., Functional archetype and archetypoid analysis, 2016. Computational Statistics and Data Analysis 104, 24-34, https://doi.org/10.1016/j.csda.2016.06.007

Examples

library(fda)
mat <- matrix(1:9, nrow = 3)
fbasis <- create.fourier.basis(rangeval = c(1, 32), nbasis = 3)
PM <- eval.penalty(fbasis)
frobenius_norm_funct(mat, PM)
frobenius_norm_funct_multiv

Functional multivariate Frobenius norm

Description

Computes the functional multivariate Frobenius norm.

Usage

```r
frobenius_norm_funct_multiv(m, PM)
```

Arguments

- `m`: Data matrix with the residuals. This matrix has the same dimensions as the original data matrix.
- `PM`: Penalty matrix obtained with `eval.penalty`.

Details

Residuals are vectors. If there are p variables (columns), for every observation there is a residual that is a p-dimensional vector. If there are n observations, the residuals are an n times p matrix.

Value

Real number.

Author(s)

Irene Epifanio

References

Epifanio, I., Functional archetype and archetypoid analysis, 2016. *Computational Statistics and Data Analysis* **104**, 24-34, https://doi.org/10.1016/j.csda.2016.06.007

Examples

```r
mat <- matrix(1:400, ncol = 20)
PM <- matrix(1:100, ncol = 10)
frobenius_norm_funct_multiv(mat, PM)
```
Description

Computes the functional multivariate robust Frobenius norm.

Usage

frobenius_norm_funct_multiv_robust(m, PM, prob, nbasis, nvars)

Arguments

m Data matrix with the residuals. This matrix has the same dimensions as the original data matrix.
PM Penalty matrix obtained with eval.penalty.
prob Probability with values in [0,1].
nbasis Number of basis.
nvars Number of variables.

Details

Residuals are vectors. If there are p variables (columns), for every observation there is a residual that is a p-dimensional vector. If there are n observations, the residuals are an n times p matrix.

Value

Real number.

Author(s)

Irene Epifanio

References

Examples

```r
mat <- matrix(1:400, ncol = 20)
PM <- matrix(1:100, ncol = 10)
frobenius_norm_funct_multiv_robust(mat, PM, 0.8, 10, 2)
```
Functional robust Frobenius norm

Description

Computes the functional robust Frobenius norm.

Usage

frobenius_norm_funct_robust(m, PM, prob)

Arguments

m
Data matrix with the residuals. This matrix has the same dimensions as the original data matrix.

PM
Penalty matrix obtained with eval.penalty.

prob
Probability with values in [0,1].

Details

Residuals are vectors. If there are p variables (columns), for every observation there is a residual that there is a p-dimensional vector. If there are n observations, the residuals are an n times p matrix.

Value

Real number.

Author(s)

Irene Epifanio

References

Examples

library(fda)
mat <- matrix(1:9, nrow = 3)
fbasis <- create.fourier.basis(rangeval = c(1, 32), nbasis = 3)
PM <- eval.penalty(fbasis)
frobenius_norm_funct_robust(mat, PM, 0.8)
Description

Computes the robust Frobenius norm.

Usage

frobenius_norm_robust(m, prob)

Arguments

m Data matrix with the residuals. This matrix has the same dimensions as the original data matrix.

prob Probability with values in [0,1].

Details

Residuals are vectors. If there are \(p \) variables (columns), for every observation there is a residual that is a \(p \)-dimensional vector. If there are \(n \) observations, the residuals are an \(n \) times \(p \) matrix.

Value

Real number.

Author(s)

Irene Epifanio

References

Examples

```r
mat <- matrix(1:4, nrow = 2)
frobenius_norm_robust(mat, 0.8)
```
int_prod_mat

Description

Helper function to compute the Frobenius norm.

Usage

```
int_prod_mat(m)
```

Arguments

- `m` : Data matrix.

Value

Data matrix.

Author(s)

Irene Epifanio

References

Examples

```
mat <- matrix(1:4, nrow = 2)
int_prod_mat(mat)
```

int_prod_mat_funct

Description

Helper function to compute the Frobenius norm in the functional data analysis (FDA) scenario.

Usage

```
int_prod_mat_funct(m, PM)
```

Arguments

- `m` Data matrix.
- `PM` Penalty matrix obtained with `eval.penalty`.

Value

Data matrix.

Author(s)

Irene Epifanio

References

Examples

```r
library(fda)
mat <- matrix(1:9, nrow = 3)
fbasis <- create.fourier.basis(rangeval = c(1, 32), nbasis = 3)
PM <- eval.penalty(fbasis)
int_prod_mat_funct(mat, PM)
```

```
int_prod_mat_sq            Squared interior product between matrices
```

Description

Helper function to compute the robust Frobenius norm.

Usage

`int_prod_mat_sq(m)`

Arguments

- `m` Data matrix.

Value

Data matrix.

Author(s)

Irene Epifanio
References

Examples

```r
mat <- matrix(1:4, nrow = 2)
int_prod_mat_sq_funct(mat)
```

int_prod_mat_sq_funct
Squared interior product between matrices for FDA

Description

Helper function to compute the robust Frobenius norm in the functional data analysis (FDA) scenario.

Usage

```r
int_prod_mat_sq_funct(m, PM)
```

Arguments

- `m`
 Data matrix.

- `PM`
 Penalty matrix obtained with `eval.penalty`.

Value

Data matrix.

Author(s)

Irene Epifanio

References

Examples

```r
library(fda)
mat <- matrix(1:9, nrow = 3)
fbasis <- create.fourier.basis(rangeval = c(1, 32), nbasis = 3)
PM <- eval.penalty(fbasis)
int_prod_mat_sq_funct(mat, PM)
```
outl_toler

Description
Outliers according to a tolerance interval. This function is used by the archetypoid algorithms to identify the outliers. See the function nptol.int in package tolerance.

Usage
outl_toler(p_tol = 0.95, resid_vect, alpha = 0.05)

Arguments
p_tol The proportion of observations to be covered by this tolerance interval.
resid_vect Vector of n residuals, where n was the number of rows of the data matrix.
alpha Significance level.

Value
Vector with the outliers.

Author(s)
Guillermo Vine

References

See Also
adalara, fadalara, do_outl_degree

Examples
outl_toler(0.95, 1:100, 0.05)
stepArchetypesRawData_funct

Archetype algorithm to raw data with the functional Frobenius norm

Description

This is a slight modification of stepArchetypesRawData to use the functional archetype algorithm with the Frobenius norm.

Usage

stepArchetypesRawData_funct(data, numArch, numRep = 3,
 verbose = TRUE, saveHistory = FALSE, PM)

Arguments

data Data to obtain archetypes.
numArch Number of archetypes to compute, from 1 to numArch.
numRep For each numArch, run the archetype algorithm numRep times.
verbose If TRUE, the progress during execution is shown.
saveHistory Save execution steps.
PM Penalty matrix obtained with eval.penalty.

Value

A list with the archetypes.

Author(s)

Irene Epifanio

References

Epifanio, I., Functional archetype and archetypoid analysis, 2016. Computational Statistics and Data Analysis 104, 24-34, https://doi.org/10.1016/j.csda.2016.06.007

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
htgm <- t(growth$hgm)
# Create basis:
basis_fd <- create.bspline.basis(c(1,ncol(htgm)), 10)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:ncol(htgm)
temp_fd <- Data2fd(argvals = temp_points, y = growth$hgm, basisobj = basis_fd)
data_archs <- t(temp_fd$coefs)

lass <- stepArchetypesRawData_funct(data = data_archs, numArch = 3,
                                     numRep = 5, verbose = FALSE,
                                     saveHistory = FALSE, PM)

str(lass)
length(lass[[1]])
class(lass[[1]][[1]])
class(lass[[1]][[5]])
```

End(Not run)

stepArchetypesRawData_funct_multiv

Archetype algorithm to raw data with the functional multivariate Frobenius norm

Description

This is a slight modification of `stepArchetypesRawData` to use the functional archetype algorithm with the multivariate Frobenius norm.

Usage

```r
stepArchetypesRawData_funct_multiv(data, numArch, numRep = 3,
                                    verbose = TRUE, saveHistory = FALSE, PM)
```

Arguments

- `data` Data to obtain archetypes.
- `numArch` Number of archetypes to compute, from 1 to `numArch`.
- `numRep` For each `numArch`, run the archetype algorithm `numRep` times.
- `verbose` If TRUE, the progress during execution is shown.
- `saveHistory` Save execution steps.
- `PM` Penalty matrix obtained with `eval.penalty`.
Value

A list with the archetypes.

Author(s)

Irene Epifanio

References

Epifanio, I., Functional archetype and archetypoid analysis, 2016. *Computational Statistics and Data Analysis* **104**, 24-34, https://doi.org/10.1016/j.csda.2016.06.007

Examples

```r
# Not run:
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,1] <- as.matrix(hgtm)
data.array[,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(temp_fd$coefs[,1]), nvars))
X[,1] <- t(temp_fd$coefs[,1])
X[,2] <- t(temp_fd$coefs[,2])

# Standardize the variables:
xs <- X
xs[,1] <- scale(X[,1])
xs[,2] <- scale(X[,2])
```
stepArchetypesRawData_funct_multiv_robust

Archetype algorithm to raw data with the functional multivariate robust Frobenius norm

Description

This is a slight modification of stepArchetypesRawData to use the functional archetype algorithm with the multivariate Frobenius norm.

Usage

```r
stepArchetypesRawData_funct_multiv_robust(data, numArch, numRep = 3,
   verbose = TRUE, saveHistory = FALSE, PM)
```

Arguments

- **data**: Data to obtain archetypes.
- **numArch**: Number of archetypes to compute, from 1 to numArch.
- **numRep**: For each numArch, run the archetype algorithm numRep times.
- **verbose**: If TRUE, the progress during execution is shown.
- **saveHistory**: Save execution steps.
- **PM**: Penalty matrix obtained with `eval.penalty`.
- **prob**: Probability with values in [0,1].
- **nbasis**: Number of basis.
- **nvars**: Number of variables.

Value

A list with the archetypes.

Author(s)

Irene Epifanio
References

Examples

```r
## Not run:
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,1] <- as.matrix(hgtm)
data.array[,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(t(temp_fd$coefs[,1])), nvars))
X[,1] <- t(temp_fd$coef[,1])
X[,2] <- t(temp_fd$coef[,2])

# Standardize the variables:
Xs <- X
Xs[,1] <- scale(X[,1])
Xs[,2] <- scale(X[,2])

lass <- stepArchetypesRawData_funct_multiv_robust(data = Xs, numArch = 3,
numRep = 5, verbose = FALSE,
saveHistory = FALSE, PM, prob = 0.8, nbasis, nvars)
```
stepArchetypesRawData_funct_robust

Archetype algorithm to raw data with the functional robust Frobenius norm

Description

This is a slight modification of \texttt{stepArchetypesRawData} to use the functional archetype algorithm with the functional robust Frobenius norm.

Usage

\begin{verbatim}
stepArchetypesRawData_funct_robust(data, numArch, numRep = 3,
 verbose = TRUE, saveHistory = FALSE, PM, prob)
\end{verbatim}

Arguments

- \texttt{data} Data to obtain archetypes.
- \texttt{numArch} Number of archetypes to compute, from 1 to \texttt{numArch}.
- \texttt{numRep} For each \texttt{numArch}, run the archetype algorithm \texttt{numRep} times.
- \texttt{verbose} If \texttt{TRUE}, the progress during execution is shown.
- \texttt{saveHistory} Save execution steps.
- \texttt{PM} Penalty matrix obtained with \texttt{eval.penalty}.
- \texttt{prob} Probability with values in \([0,1]\).

Value

A list with the archetypes.

Author(s)

Irene Epifanio
stepArchetypesRawData_norm_frob

Archetype algorithm to raw data with the Frobenius norm

Description

This is a slight modification of \texttt{stepArchetypesRawData} to use the archetype algorithm with the Frobenius norm.
Usage

```r
stepArchetypesRawData_norm_frob(data, numArch, numRep = 3,
                                   verbose = TRUE, saveHistory = FALSE)
```

Arguments

- `data`: Data to obtain archetypes.
- `numArch`: Number of archetypes to compute, from 1 to `numArch`.
- `numRep`: For each `numArch`, run the archetype algorithm `numRep` times.
- `verbose`: If TRUE, the progress during execution is shown.
- `saveHistory`: Save execution steps.

Value

A list with the archetypes.

Author(s)

Irene Epifanio

References

See Also

- `stepArchetypesRawData`, `stepArchetypes`

Examples

```r
data(mtcars)
data <- as.matrix(mtcars)

numArch <- 5
numRep <- 2

lass <- stepArchetypesRawData_norm_frob(data = data, numArch = 1:numArch,
                                         numRep = numRep, verbose = FALSE)
```
stepArchetypesRawData_robust

Archetype algorithm to raw data with the robust Frobenius norm

Description

This is a slight modification of `stepArchetypesRawData` to use the archetype algorithm with the robust Frobenius norm.

Usage

```r
stepArchetypesRawData_robust(data, numArch, numRep = 3,
   verbose = TRUE, saveHistory = FALSE, prob)
```

Arguments

- `data`: Data to obtain archetypes.
- `numArch`: Number of archetypes to compute, from 1 to `numArch`.
- `numRep`: For each `numArch`, run the archetype algorithm `numRep` times.
- `verbose`: If TRUE, the progress during execution is shown.
- `saveHistory`: Save execution steps.
- `prob`: Probability with values in [0,1].

Value

A list with the archetypes.

Author(s)

Irene Epifanio

References

See Also

`stepArchetypesRawData_norm_frob`
Examples

data(mtcars)
data <- as.matrix(mtcars)

numArch <- 5
numRep <- 2

lass <- stepArchetypesRawData_robust(data = data, numArch = 1:numArch,
 numRep = numRep, verbose = FALSE,
 saveHistory = FALSE, prob = 0.8)

str(lass)
length(lass[[1]])
class(lass[[1]])
Index

adalara, 2, 7, 56
adalara_no_paral, 4, 5
archetypoids, 9, 10, 12, 14–16, 33
archetypoids_funct, 8, 30
archetypoids_funct_multiv, 9, 32
archetypoids_funct_multiv_robust, 11, 34
archetypoids_funct_robust, 13, 36
archetypoids_norm_frob, 15, 17, 20, 23, 25
archetypoids_robust, 16, 22
bisquare_function, 18
boxplot, 27, 28
do_ada, 4, 7, 19, 21
do_ada_robust, 4, 7, 19, 20
do_alphas_rss, 22
do_alphas_rss_multiv, 24
do_clean, 26
do_clean_multiv, 27
do_fada, 29, 33, 36, 41
do_fada_multiv, 31
do_fada_multiv_robust, 33
do_fada_robust, 29, 31, 35, 41
do_knno, 37
do_outl_degree, 38, 56
evalNpenalty, 8, 10, 12, 13, 23, 24, 30, 31, 33, 36, 40, 43, 48–51, 54, 55, 57, 58, 60, 62

fadalara, 39, 44, 56
fadalara_no_paral, 42
frame_in_r, 46
frobenius_norm, 47
frobenius_norm_funct, 48
frobenius_norm_funct_multiv, 49
frobenius_norm_funct_multiv_robust, 50
frobenius_norm_funct_robust, 51
frobenius_norm_robust, 52

int_prod_mat, 53
int_prod_mat_funct, 53
int_prod_mat_sq, 54
int_prod_mat_sq_funct, 55
out1_toler, 39, 56
stepArchetypes, 64
stepArchetypesRawData, 57, 58, 60, 62–65
stepArchetypesRawData_funct, 8, 10, 11, 30, 57
stepArchetypesRawData_funct_multiv, 32, 58
stepArchetypesRawData_funct_multiv_robust, 34, 60
stepArchetypesRawData_funct_robust, 13, 36, 62
stepArchetypesRawData_norm_frob, 15, 20, 63, 65
stepArchetypesRawData_robust, 16, 22, 65

67