This article describes creating an ADBCVA ADaM with Best-Corrected Visual Acuity (BCVA) data for ophthalmology endpoints. It is to be used in conjunction with the article on creating a BDS dataset from SDTM. As such, derivations and processes that are not specific to ADBCVA are absent, and the user is invited to consult the aforementioned article for guidance.
Note: All examples assume CDISC SDTM and/or ADaM format as input unless otherwise specified.
As the name ADBCVA implies, {admiralophtha}
suggests to populate ADBCVA solely with BCVA records from the OE SDTM.
The examples of this vignette require the following packages.
library(dplyr)
library(admiral)
library(admiral.test)
library(admiraldev)
library(admiralophtha)
As with all BDS ADaM datasets, one should start from the OE SDTM, where only the BCVA records are of interest. For the purposes of the next two sections, we shall be using the {admiral}
OE and ADSL test data. We will also require a lookup table for the mapping of parameter codes.
Note: to simulate an ophthalmology study, we add a randomly generated STUDYEYE
variable to ADSL, but in practice STUDYEYE
will already have been derived using derive_var_studyeye
.
data("admiral_oe")
data("admiral_adsl")
# Add STUDYEYE to ADSL to simulate an ophtha dataset
<- admiral_adsl %>%
adsl as.data.frame() %>%
mutate(STUDYEYE = sample(c("LEFT", "RIGHT"), n(), replace = TRUE)) %>%
convert_blanks_to_na()
<- convert_blanks_to_na(admiral_oe) %>%
oe ungroup()
# ---- Lookup table ----
<- tibble::tribble(
param_lookup ~OETESTCD, ~OELAT, ~STUDYEYE, ~PARAMCD, ~PARAM, ~PARAMN,
"VACSCORE", "RIGHT", "RIGHT", "SBCVA", "Study Eye Visual Acuity Score", 1,
"VACSCORE", "LEFT", "LEFT", "SBCVA", "Study Eye Visual Acuity Score", 1,
"VACSCORE", "RIGHT", "LEFT", "FBCVA", "Fellow Eye Visual Acuity Score", 2,
"VACSCORE", "LEFT", "RIGHT", "FBCVA", "Fellow Eye Visual Acuity Score", 2
)
Following this setup, the programmer can start constructing ADBCVA. The first step is to subset OE to only BCVA parameters and merge with ADSL. This is required for two reasons: firstly, STUDYEYE
is crucial in the mapping of PARAMCD
’s. Secondly, the treatment start date (TRTSDT
) is also a prerequisite for the derivation of variables such as Analysis Day (ADY
).
<- exprs(TRTSDT, TRTEDT, TRT01A, TRT01P, STUDYEYE)
adsl_vars
<- oe %>%
adbcva filter(
%in% c("VACSCORE")
OETESTCD %>%
) derive_vars_merged(
dataset_add = adsl,
new_vars = adsl_vars,
by_vars = exprs(STUDYID, USUBJID)
)
The next item of business is to derive AVAL
, AVALU
, and DTYPE
. In this example, due to the small number of parameters their derivation is trivial.
<- adbcva %>%
adbcva mutate(
AVAL = OESTRESN,
AVALU = "letters",
DTYPE = NA_character_
)
Moving forwards, PARAM
and PARAMCD
can be assigned using derive_vars_merged
from {admiral}
and the lookup table param_lookup
generated above.
<- adbcva %>%
adbcva derive_vars_merged(
dataset_add = param_lookup,
new_vars = exprs(PARAM, PARAMCD),
by_vars = exprs(OETESTCD, OELAT, STUDYEYE),
filter_add = PARAMCD %in% c("SBCVA", "FBCVA")
)
Often ADBCVA datasets contain derived records for BCVA in LogMAR units. This can easily be achieved as follows using derive_param_computed
. The conversion of units is done using convert_etdrs_to_logmar
. Two separate calls are required due to the parameters being split by study and fellow eye. Once these extra parameters are added, all the records that will be in the end dataset are now present, so AVALC
and day/date variables such as ADY
and ADT
can be derived.
<- adbcva %>%
adbcva derive_param_computed(
by_vars = c(exprs(STUDYID, USUBJID, VISIT, VISITNUM, OEDY, OEDTC), adsl_vars),
parameters = c("SBCVA"),
analysis_value = convert_etdrs_to_logmar(AVAL.SBCVA),
set_values_to = exprs(
PARAMCD = "SBCVALOG",
PARAM = "Study Eye Visual Acuity LogMAR Score",
DTYPE = "DERIVED",
AVALU = "LogMAR"
)%>%
) derive_param_computed(
by_vars = c(exprs(STUDYID, USUBJID, VISIT, OEDY, OEDTC), adsl_vars),
parameters = c("FBCVA"),
analysis_value = convert_etdrs_to_logmar(AVAL.FBCVA),
set_values_to = exprs(
PARAMCD = "FBCVALOG",
PARAM = "Fellow Eye Visual Acuity LogMAR Score",
DTYPE = "DERIVED",
AVALU = "LogMAR"
)%>%
) mutate(AVALC = as.character(AVAL)) %>%
derive_vars_dt(
new_vars_prefix = "A",
dtc = OEDTC,
flag_imputation = "none"
%>%
) derive_vars_dy(reference_date = TRTSDT, source_vars = exprs(ADT))
Importantly, the above calls to derive_param_computed
list the SDTM variables VISIT
, VISITNUM
, OEDY
and OEDTC
as by_vars
for the function. This is because they will be necessary to derive ADaM variables such as AVISIT
and ADY
in successive steps. Once all the ADaM variables which require them are derived, the SDTM variables should be set to missing for the derived records, as per ADaM standards:
<- adbcva %>%
adbcva mutate(
VISIT = ifelse(PARAMCD %in% c("SBCVALOG", "FBCVALOG"), NA_character_, VISIT),
VISITNUM = ifelse(PARAMCD %in% c("SBCVALOG", "FBCVALOG"), NA, VISITNUM),
OEDY = ifelse(PARAMCD %in% c("SBCVALOG", "FBCVALOG"), NA, OEDY),
OEDTC = ifelse(PARAMCD %in% c("SBCVALOG", "FBCVALOG"), NA_character_, OEDTC)
)
The user is invited to consult the article on creating a BDS dataset from SDTM to learn how to add standard BDS variables to ADBCVA. Henceforth, for the purposes of this article, the following sections use the ADBCVA dataset generated by the corresponding {admiralophtha}
template program as a starting point.
Note: This dataset already comes with some criterion flags and analysis value categorisation variables, so for illustration purposes these are removed.
data("admiralophtha_adbcva")
<- admiralophtha_adbcva %>%
adbcva select(-starts_with("CRIT"), -starts_with("AVALCA"))
Some ophthalmology studies may desire to subdivide BCVA records according to which Snellen category they fall into (eg, 20/320, 20/100, 20/20 etc). This is best done through the use of AVALCATx
/AVALCAxN
variable pairs. Currently, {admiralophtha}
does not provide specific functionality to create AVALCATx
/AVALCAxN
pairs, although this may be included in future releases of the package. With the current toolset, the suggested approach to derive such variables is to:
AVALCAxN
) to Snellen categories.AVAL
to a numeric category.AVALCAxN
through a mutate statement using the format function.AVALCATx
using derive_vars_merged in combination with the lookup table.<- tibble::tribble(
avalcat_lookup ~PARAMCD, ~AVALCA1N, ~AVALCAT1,
"SBCVA", 1000, "< 20/800",
"SBCVA", 800, "20/800",
"SBCVA", 640, "20/640",
"SBCVA", 500, "20/500",
"SBCVA", 400, "20/400",
"SBCVA", 320, "20/320",
"SBCVA", 250, "20/250",
"SBCVA", 200, "20/200",
"SBCVA", 160, "20/160",
"SBCVA", 125, "20/125",
"SBCVA", 100, "20/100",
"SBCVA", 80, "20/80",
"SBCVA", 63, "20/63",
"SBCVA", 50, "20/50",
"SBCVA", 40, "20/40",
"SBCVA", 32, "20/32",
"SBCVA", 25, "20/25",
"SBCVA", 20, "20/20",
"SBCVA", 16, "20/16",
"SBCVA", 12, "20/12",
"SBCVA", 1, "> 20/12",
)
<- avalcat_lookup %>%
avalcat_lookup mutate(PARAMCD = "FBCVA") %>%
rbind(avalcat_lookup)
<- function(param, aval) {
format_avalcat1n case_when(
%in% c("SBCVA", "FBCVA") & aval >= 0 & aval <= 3 ~ 1000,
param %in% c("SBCVA", "FBCVA") & aval >= 4 & aval <= 8 ~ 800,
param %in% c("SBCVA", "FBCVA") & aval >= 9 & aval <= 13 ~ 640,
param %in% c("SBCVA", "FBCVA") & aval >= 14 & aval <= 18 ~ 500,
param %in% c("SBCVA", "FBCVA") & aval >= 19 & aval <= 23 ~ 400,
param %in% c("SBCVA", "FBCVA") & aval >= 24 & aval <= 28 ~ 320,
param %in% c("SBCVA", "FBCVA") & aval >= 29 & aval <= 33 ~ 250,
param %in% c("SBCVA", "FBCVA") & aval >= 34 & aval <= 38 ~ 200,
param %in% c("SBCVA", "FBCVA") & aval >= 39 & aval <= 43 ~ 160,
param %in% c("SBCVA", "FBCVA") & aval >= 44 & aval <= 48 ~ 125,
param %in% c("SBCVA", "FBCVA") & aval >= 49 & aval <= 53 ~ 100,
param %in% c("SBCVA", "FBCVA") & aval >= 54 & aval <= 58 ~ 80,
param %in% c("SBCVA", "FBCVA") & aval >= 59 & aval <= 63 ~ 63,
param %in% c("SBCVA", "FBCVA") & aval >= 64 & aval <= 68 ~ 50,
param %in% c("SBCVA", "FBCVA") & aval >= 69 & aval <= 73 ~ 40,
param %in% c("SBCVA", "FBCVA") & aval >= 74 & aval <= 78 ~ 32,
param %in% c("SBCVA", "FBCVA") & aval >= 79 & aval <= 83 ~ 25,
param %in% c("SBCVA", "FBCVA") & aval >= 84 & aval <= 88 ~ 20,
param %in% c("SBCVA", "FBCVA") & aval >= 89 & aval <= 93 ~ 16,
param %in% c("SBCVA", "FBCVA") & aval >= 94 & aval <= 97 ~ 12,
param %in% c("SBCVA", "FBCVA") & aval >= 98 ~ 1
param
)
}
<- adbcva %>%
adbcva mutate(AVALCA1N = format_avalcat1n(param = PARAMCD, aval = AVAL)) %>%
derive_vars_merged(
avalcat_lookup,by = exprs(PARAMCD, AVALCA1N)
)
The resulting output is shown below (limited to the first patient only):
USUBJID | PARAMCD | AVAL | AVALCAT1 | AVALCA1N |
---|---|---|---|---|
01-701-1015 | FBCVA | 97 | 20/12 | 12 |
01-701-1015 | FBCVA | 35 | 20/200 | 200 |
01-701-1015 | FBCVA | 24 | 20/320 | 320 |
01-701-1015 | FBCVA | 62 | 20/63 | 63 |
01-701-1015 | FBCVA | 31 | 20/250 | 250 |
01-701-1015 | FBCVA | 84 | 20/20 | 20 |
01-701-1015 | FBCVA | 35 | 20/200 | 200 |
01-701-1015 | FBCVA | 69 | 20/40 | 40 |
01-701-1015 | FBCVA | 88 | 20/20 | 20 |
01-701-1015 | SBCVA | 82 | 20/25 | 25 |
{admiralophtha}
suggests the use of criterion flag variable pairs (CRITx
/CRITxFL
) to program BCVA endpoints such as Avoiding a loss of x letters or Gain of y letters or Gain of between x and y letters (relative to baseline or other basetypes). The package provides the function derive_var_bcvacritxfl
to program these endpoints efficiently and consistently. In terms of the logic to apply to the variable CHG
, the endpoints fall into three classes, which can be represented by inequalities:
CHG
value lying inside a range, a <= CHG <= b
.CHG
value below an upper limit, CHG <= a
.CHG
value above a lower limit, CHG => b
.By using derive_var_bcvacritxfl
, the ADaM programmer can implement all three types of endpoint at once. This is achieved by feeding the appropriate ranges, upper limits and lower limits to the bcva_ranges
, bcva_uplims
and bcva_lowlims
arguments of the function. For instance, let’s suppose that the endpoints of interest are:
5 <= CHG <= 10
)CHG <= 25
)CHG <= -5
)CHG >= 15
)CHG >= -10
).Then, the following call will implement criterion variable/flag pairs for the endpoints above. The CRITx
variables will automatically encode the correct inequality.
<- adbcva %>% derive_var_bcvacritxfl(
adbcva paramcds = c("SBCVA", "FBCVA"),
bcva_ranges = list(c(5, 10)),
bcva_uplims = list(25, -5),
bcva_lowlims = list(15, -10)
)
The resulting output is shown below (limited to the first patient only):
USUBJID | PARAMCD | AVAL | CHG | CRIT1 | CRIT1FL | CRIT2 | CRIT2FL | CRIT3 | CRIT3FL | CRIT4 | CRIT4FL | CRIT5 | CRIT5FL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01-701-1015 | FBCVA | 97 | 62 | 5 <= CHG <= 10 | N | CHG <= 25 | N | CHG <= -5 | N | CHG >= 15 | Y | CHG >= -10 | Y |
01-701-1015 | FBCVA | 35 | 0 | 5 <= CHG <= 10 | N | CHG <= 25 | Y | CHG <= -5 | N | CHG >= 15 | N | CHG >= -10 | Y |
01-701-1015 | FBCVA | 24 | -11 | 5 <= CHG <= 10 | N | CHG <= 25 | Y | CHG <= -5 | Y | CHG >= 15 | N | CHG >= -10 | N |
01-701-1015 | FBCVA | 62 | 27 | 5 <= CHG <= 10 | N | CHG <= 25 | N | CHG <= -5 | N | CHG >= 15 | Y | CHG >= -10 | Y |
01-701-1015 | FBCVA | 31 | -4 | 5 <= CHG <= 10 | N | CHG <= 25 | Y | CHG <= -5 | N | CHG >= 15 | N | CHG >= -10 | Y |
01-701-1015 | FBCVA | 84 | 49 | 5 <= CHG <= 10 | N | CHG <= 25 | N | CHG <= -5 | N | CHG >= 15 | Y | CHG >= -10 | Y |
01-701-1015 | FBCVA | 35 | 0 | 5 <= CHG <= 10 | N | CHG <= 25 | Y | CHG <= -5 | N | CHG >= 15 | N | CHG >= -10 | Y |
01-701-1015 | FBCVA | 69 | 34 | 5 <= CHG <= 10 | N | CHG <= 25 | N | CHG <= -5 | N | CHG >= 15 | Y | CHG >= -10 | Y |
01-701-1015 | FBCVA | 88 | 53 | 5 <= CHG <= 10 | N | CHG <= 25 | N | CHG <= -5 | N | CHG >= 15 | Y | CHG >= -10 | Y |
01-701-1015 | SBCVA | 82 | 5 | 5 <= CHG <= 10 | Y | CHG <= 25 | Y | CHG <= -5 | N | CHG >= 15 | N | CHG >= -10 | Y |
It is also possible to assign significance to the “x” in CRITxFL
. For instance, one could designate all criterion flags of Class 1 as CRIT1yFL
, Class 2 as CRIT2yFL
, and Class 3 as CRIT3yFL
. The argument critxfl_index
allows a simple implementation of this in conjunction with three separate calls to derive_var_bcvacritxfl
:
<- adbcva %>%
adbcva derive_var_bcvacritxfl(
paramcds = c("SBCVA", "FBCVA"),
bcva_ranges = list(c(5, 10)),
critxfl_index = 10
%>%
) derive_var_bcvacritxfl(
paramcds = c("SBCVA", "FBCVA"),
bcva_uplims = list(25, -5),
critxfl_index = 20
%>%
) derive_var_bcvacritxfl(
paramcds = c("SBCVA", "FBCVA"),
bcva_lowlims = list(15, -10),
critxfl_index = 30
)
CHG >= -5
. One would then use the bcva_lowlims = list(-5)
argument of derive_var_bcvacritxfl
to program such an endpoint. If this is not the case, i.e. one wishes to exclude cases of letter gains, then the inequality of interest would instead be -5 <= CHG <= -1
. Importantly, derive_var_bcvacritxfl
could still be used, but with the argument bcva_ranges = list(c(-5, -1))
.ADaM | Sample Code |
---|---|
ADBCVA | ad_adbcva.R |