Package ‘admmDensestSubmatrix’

October 12, 2022

Type Package

Title Alternating Direction Method of Multipliers to Solve Dense Dubmatrix Problem

Version 0.1.0

Author Brendan Ames <bpames@ua.edu>, Polina Bombina <pbombina@crimson.ua.edu>

Maintainer Polina Bombina <pbombina@crimson.ua.edu>

Description Solves the problem of identifying the densest submatrix in a given or sampled binary matrix, Bombina et al. (2019) <arXiv:1904.03272>.

License CC0

Depends R (>= 3.5.0)

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Imports Rdpack, utils, stats

RdMacros Rdpack

NeedsCompilation no

Repository CRAN

Date/Publication 2019-10-31 16:20:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>densub</td>
<td>2</td>
</tr>
<tr>
<td>mat_shrink</td>
<td>3</td>
</tr>
<tr>
<td>plantedsubmatrix</td>
<td>3</td>
</tr>
</tbody>
</table>

Index 5
Description

Iteratively solves the convex optimization problem using ADMM.

Usage

densub(G, m, n, tau = 0.35, gamma = 6/(sqrt(m * n) * (q - p)), opt_tol = 1e-04, maxiter, quiet = TRUE)

Arguments

G sampled binary matrix
m number of rows in dense submatrix
n number of columns in dense submatrix
tau penalty parameter for equality constraint violation
gamma \(l_1 \) regularization parameter
opt_tol stopping tolerance in algorithm
maxiter maximum number of iterations of the algorithm to run
quiet toggles between displaying intermediate statistics

Details

\[
\min |X|_* + \gamma |Y|_1 + 1_{\Omega_W}(W) + 1_{\Omega_Q}(Q) + 1_{\Omega_Z}(Z)
\]
\[
s.t. \quad X - Y = 0, \quad X = W, \quad X = Z,
\]

where \(\Omega_W(W), \Omega_Q(Q), \Omega_Z(Z) \) are the sets: \(\Omega_W = \text{Win}R^{M \times N}|e^T We = mn \)
\(\Omega_Q = \text{Qin}R^{M \times N}|\text{ProjectionofQnotN} = 0 \)
\(\Omega_Z = \text{Zin}R^{M \times N}|Z_{i,j} <= 1\text{forall}(i,j)\text{in}M \times N \)
\(\Omega_Q = \text{Qin}R^{M \times N}|\text{ProjectionofQnotN} = 0 \)
\(\Omega_Z = \text{Zin}R^{M \times N}|Z_{i,j} <= 1\text{forall}(i,j)\text{in}M \times N \)

1\(_S\) is the indicator function of the set \(S \) in \(R^{N \times M} \) such that \(1_S(X) = 0 \) if \(X \) in \(S \) and +infinity otherwise

Value

Rank one matrix with \(mn \) nonzero entries, matrix \(Y \) that is used to count the number of disagreements between \(G \) and \(X \)
mat_shrink

Soft thresholding operator.

Description

Applies the shrinkage operator for singular value thresholding.

Usage

mat_shrink(K, tau)

Arguments

- **K**
 matrix
- **tau**
 regularization parameter

Value

Matrix

Examples

mat_shrink(matrix(c(1,0,0,0,1,1,1,1,1), nrow=3, ncol=3, byrow=TRUE), 0.35)

plantedsubmatrix
Sample matrix

Description

Generates binary \((M, N)\) - matrix sampled from dense \((m, n)\) - submatrix.

Usage

plantedsubmatrix(M, N, m, n, p, q)

Arguments

- **M**
 number of rows in sampled matrix
- **N**
 number of rows in sampled matrix
- **m**
 number of rows in dense submatrix
- **n**
 natural number used to calculate number of rows in dense submatrix
- **p**
 density outside planted submatrix
- **q**
 density inside planted submatrix
Details

Let U^* and V^* be m and n index sets. For each i in U^*, j in V^* we let $a_{i,j} = 1$ with probability q and 0 otherwise. For each remaining i,j we set $a_{i,j} = 1$ with probability $p < q$ and take $a_{i,j} = 0$ otherwise.

Value

Matrix G sampled from the planted dense (mn)-submatrix model, dense submatrix X_0, matrix Y_0 used to count the number of disagreements between G and X_0.

Examples

plantedsubmatrix(10,10,1,2,0.25,0.75)
Index

densub, 2
mat_shrink, 3
plantedsubmatrix, 3