Package ‘adpss’

September 20, 2018

Title Design and Analysis of Locally or Globally Efficient Adaptive Designs

Version 0.1.1

Description Provides the functions for planning and conducting a clinical trial with adaptive sample size determination. Maximal statistical efficiency will be exploited even when dramatic or multiple adaptations are made. Such a trial consists of adaptive determination of sample size at an interim analysis and implementation of frequentist statistical test at the interim and final analysis with a prefixed significance level. The required assumptions for the stage-wise test statistics are independent and stationary increments and normality. Predetermination of adaptation rule is not required.

Depends R (>= 3.5.0)

License GPL (>= 2)

Encoding UTF-8

LazyData true

URL https://github.com/ca4wa/R-adpss

LinkingTo Rcpp (>= 0.12.17)

Imports Rcpp (>= 0.12.17)

RoxygenNote 6.0.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Kosuke Kashiwabara [aut, cre]

Maintainer Kosuke Kashiwabara <kashiwabara-tyky@umin.ac.jp>

Repository CRAN

Date/Publication 2018-09-20 17:10:22 UTC
R topics documented:

- adpss-package
- adaptive_analysis_norm_global
- adaptive_analysis_norm_local
- sample_size_norm_global
- sample_size_norm_local
- work_test_norm_global

Description

This package provides the functions for conducting a trial with adaptive sample size determination. Such a trial consists of adaptive determination of sample size at an interim analysis and implementation of frequentist statistical test of a prefixed significance level. The required assumptions for the stochastic process of the test statistics is Brownian motion. Predetermination of adaptation rule is not required, i.e., adaptations can be made with full flexibility.

adaptive_analysis_norm_global

Analyze data according to a globally efficient adaptive design.

Description

`adaptive_analysis_norm_global` performs an globally efficient adaptive test, a Frequentist adaptive test with the specified significance level with full flexibility. Normality with known variance is assumed for the test statistic (more accurately, the test statistic is assumed to follow Brownian motion.) Null hypothesis is fixed at 0 without loss of generality. Exact p-value, median unbiased estimate and confidence limits proposed by Gao et al. (2013) can also be calculated. For detailed illustration, see vignette("adpss_ex").

Usage

```r
adaptive_analysis_norm_global(initial_test = 0L, times = 0L, stats = 0L, costs = 0L, final_analysis = TRUE, estimate = TRUE, ci_coef = 0.95, tol_est = 1e-08, input_check = TRUE)
```
Arguments

initial_test Designate the initial working test generated by \texttt{work_test_norm_global} function.
times The sequence of times (sample size or information level) at which analyses were conducted.
stats The sequence of test statistics.
costs The sequence of loss required to construct working tests. Specification is optional. Partial specification is allowed, in which non-specification may be represented by 0.
final_analysis If \texttt{TRUE}, the result input will be regarded as complete (no more data will be obtained) and the significance level will be exhausted. If \texttt{FALSE}, the current analysis will be regarded as an interim analysis and the significance level will be preserved.
estimate If \texttt{TRUE}, p-value, median unbiased estimator and upper and lower confidence limits will be calculated.
ci_coef The confidence coefficient. Default is 0.95.
tol_est The precision of the calculated results.
input_check Indicate whether or not the arguments input by user contain invalid values.

Value

It returns whether or not the result was statistically significant, a p-value and an exact confidence limits.

References

See Also

\texttt{work_test_norm_global} and \texttt{sample_size_norm_global}.

Examples

Construct an initial working test
Note: \texttt{cost_type_1_err} will be automatically calculated when 0 is specified.
init_work_test <- \texttt{work_test_norm_global(min_effect_size = log(0.6), cost_type_1_err=1683.458)}

Sample size calculation
sample_size_norm_global(
 initial_test = init_work_test,
 effect_size = 11.11 / 20.02, # needs not be MLE
 time = 20.02,
 target_power = 0.75,
 sample_size = \texttt{TRUE}
)
Adaptive analysis performs an analysis according to a locally efficient adaptive design.

Description

`adaptive_analysis_norm_local` performs an locally efficient adaptive test, a Frequentist adaptive test with the specified significance level with full flexibility. Normality with known variance is assumed for the test statistic (more accurately, the test statistic is assumed to follow Brownian motion.) Null hypothesis is fixed at 0 without loss of generality. No procedure to calculate p-value or confidence intervals is employed. For detailed illustration, see vignette("adpss_ex").

Usage

```r
adaptive_analysis_norm_local(overall_sig_level = 0.025, min_effect_size = 1,
 times = 0, stats = 0, final_analysis = TRUE, estimate = FALSE,
 ci_coef = 0.95, input_check = TRUE)
```

Arguments

- `overall_sig_level` Overall significance level in (0, 1). Default is 0.025.
- `min_effect_size` The minimum effect size. It should be positive. The working test will be constructed to have the power of \(1 - \text{work}_\beta\) for this effect size. Default is 1.
- `times` The sequence of times (sample size or information level) at which analyses were conducted.
- `stats` The sequence of test statistics.
- `final_analysis` If `TRUE`, the result input will be regarded as complete (no more data will be obtained) and the significance level will be exhausted. If `FALSE`, the current analysis will be regarded as an interim analysis and the significance level will be preserved.
- `estimate` If `TRUE`, p-value, median unbiased estimator and upper and lower confidence limits will be calculated.
- `ci_coef` The confidence coefficient. Default is 0.95.
- `input_check` Indicate whether or not the arguments input by user contain invalid values.

Value

List of results including the conditional Type I error probability.

References

Kashiwabara, K., Matsuyama, Y. An efficient adaptive design approximating fixed sample size designs. In preparation.
See Also

sample_size_norm_local.

Examples

```r
# Sample size calculation
sample_size_norm_local(
  overall_sig_level = 0.025,
  min_effect_size = -log(0.65),
  effect_size = 11.11 / 20.02, # needs not be MLE
  time = 20.02,
  target_power = 0.75,
  sample_size = TRUE
)
```

sample_size_norm_global

Calculate sample size or power for a globally efficient adaptive design.

Description

sample_size_norm_global calculates the power if the time of the final analysis is given and otherwise the sample size. The computed power for effect_size is an approximate lower bound. Sample size is also calculated on the basis of the bound.

Usage

```r
sample_size_norm_global(initial_test = 0, sample_size = TRUE,
  effect_size = 0, time = 0, target_power = 0.8, final_time = 0,
  tol_sample_size = 1e-05, input_check = TRUE)
```

Arguments

- `initial_test`: Designate the initial working test generated by `work_test_norm_global` function.
- `sample_size`: If TRUE, the function will return the sample size required by the globally efficient adaptive design to have the power of `target_power`. If FALSE, the function will return the power when the final interim analysis and the final analysis are conducted at time and `final_time`, respectively.
- `effect_size`: The effect size, on the basis of which the power or sample size calculation will be performed. In globally efficient designs, any real value is allowed.
- `time`: The time of the current analysis.
- `target_power`: The power, on the basis of which the sample size calculation will be performed.
- `final_time`: The time of the final analysis.
- `tol_sample_size`: The precision in calculation of the sample size.
- `input_check`: Indicate whether or not the arguments input by user contain invalid values.
Value

It returns the sample size (when \texttt{sample_size} = \texttt{TRUE}) or the power (when \texttt{sample_size} = \texttt{FALSE}).

See Also

\texttt{adaptive_analysis_norm_global} for example of this function.

\texttt{sample_size_norm_local}

\textit{Calculate sample size or power for a locally efficient adaptive design.}

Description

\texttt{sample_size_norm_local} calculates the power if the time of the final analysis is given and otherwise the sample size. The computed power for \texttt{effect_size} is an approximate lower bound. Sample size is also calculated on the basis of the bound.

Usage

\texttt{sample_size_norm_local(overall_sig_level = 0.025, min_effect_size = 1L, sample_size = \texttt{TRUE}, effect_size = 1L, time = 0L, target_power = 0.8L, final_time = 0L, tol_sample_size = 1e-08L, input_check = \texttt{TRUE})}

Arguments

\begin{itemize}
 \item \texttt{overall_sig_level} \hspace{1cm} Overall significance level in \((0, 1)\). Default is 0.025.
 \item \texttt{min_effect_size} \hspace{1cm} The minimum effect size. It should be positive. The working test will be constructed to have the power of \(1 - \text{work_beta}\) for this effect size. Default is 1.
 \item \texttt{sample_size} \hspace{1cm} If \texttt{TRUE}, the function will return the sample size required by the locally efficient adaptive design to have the power of \texttt{target_power}. If \texttt{FALSE}, the function will return the power when the final interim analysis and the final analysis are conducted at \texttt{time} and \texttt{final_time}, respectively.
 \item \texttt{effect_size} \hspace{1cm} The effect size, on the basis of which the power or sample size calculation will be performed. In locally efficient adaptive designs, any real value no less than \(\text{min_effect_size} / 2\) is allowed.
 \item \texttt{time} \hspace{1cm} The time of the current analysis.
 \item \texttt{target_power} \hspace{1cm} The power, on the basis of which the sample size calculation will be performed.
 \item \texttt{final_time} \hspace{1cm} The time of the final analysis.
 \item \texttt{tol_sample_size} \hspace{1cm} The precision in calculation of the sample size.
 \item \texttt{input_check} \hspace{1cm} Indicate whether or not the arguments input by user contain invalid values.
\end{itemize}
Value

It returns the sample size (when `sample_size = TRUE`) or the power (when `sample_size = FALSE`).

See Also

`adaptive_analysis_norm_local` for example of this function.

work_test_norm_global
Construct a working test and implement an interim or the final analysis for a globally efficient adaptive design.

Description

This function is used as a routine by `adaptive_analysis_norm_global` and `sample_size_norm_global`.

Usage

```r
work_test_norm_global(overall_sig_level = 0.025, work_beta = 0.05,
cond_alpha = overall_sig_level, cost_type_1_err = 0,
cost_type_2_err = 0, prev_cost = 0, min_effect_size = 1,
effect_size = 0, basic_schedule_num = 50, basic_schedule_power = 2,
basic_schedule = 0, prior_dist = 0, prev_time = 0, time = 0,
next_time = 0, stat = 0, input_check = TRUE, out_process = FALSE,
simpson_div = 6, tol_boundary = 1e-08, tol_cost = 1e-08)
```

Arguments

- `overall_sig_level`
 Overall significance level in (0, 1). Default is 0.025.

- `work_beta`
 Type II error probability of the working test. Default is 0.05.

- `cond_alpha`
 Conditional Type I error probability in (0, 1). Default is 0.025.

- `cost_type_1_err`
 The loss caused by erroneously rejecting the null hypothesis. If 0 is specified, the loss leading to the working test with its Type I error probability being `significance_level` will be calculated. Default is 0.

- `cost_type_2_err`
 The loss caused by erroneously accepting the null hypothesis. If 0 is specified, the loss will be set to the value of the maximum of the basic analysis schedule. Default is 0.

- `prev_cost`
 The value of `cost_type_1_err` of the working test in the analysis just before the current analysis.

- `min_effect_size`
 The minimum effect size. It should be positive. The working test will be constructed to have the power of $1 - work_beta$ for this effect size. Default is 1.
effect_size The effect size for which the probability of rejecting the null hypothesis will be calculated. If cost_type_1_err = 0, effect_size will be forced to be the null value, 0. Default is 0.

basic_schedule_num The number of analysis of the working test. Default is 50.

basic_schedule_power Determine the intervals between analyses. Default is 2.

basic_schedule The basic analysis schedule arbitrarily specified by user.

prior_dist Prior distribution for effect sizes of min_effect_size * 0:10 / 2.

prev_time The time of the analysis just before the current analysis. Either prev_time or next_time should be 0. See the example below.

time The time of the current analysis.

next_time The time of the next analysis. Either prev_time or next_time should be 0. See the example below.

stat The value of the current test statistic. The value of stat should be 0 at time = 0.

input_check Indicate whether or not the arguments input by user contain invalid values.

out_process The values used in calculation will be output in addition to the main output. Default is FALSE.

simpson_div The precision determining the precision of numerical integration. The default value is 6.

tol_boundary The precision in calculation of the stopping boundary of the working test.

tol_cost The precision in calculation of the loss, cost_type_1_error.

Value

List of values of the parameters specified, information of the working test, and the conditional probability of rejecting the null hypothesis.

See Also

adaptive_analysis_norm_global for example of this function.
Index

adaptive_analysis_norm_global, 2, 6–8
adaptive_analysis_norm_local, 4, 7
adpss-package, 2

sample_size_norm_global, 3, 5, 7
sample_size_norm_local, 5, 6

work_test_norm_global, 3, 5, 7