Package ‘aggTrees’

February 22, 2023

Type Package
Title Aggregation Trees
Version 2.0.0
Description Nonparametric data-driven approach to discovering heterogeneous subgroups in a selection-on-observables framework.

Aggregation trees allow researchers to assess whether there is relevant heterogeneity in treatment effects. The approach generates a sequence of optimal groupings, one for each level of granularity. For each grouping, we obtain point estimation and inference about the Group Average Treatment Effects. Please reference the use as Di Francesco (2022) <doi:10.2139/ssrn.4304256>.

License MIT + file LICENSE
Encoding UTF-8
Depends R (>= 2.10)
RoxygenNote 7.2.3
Imports car, caret, estimatr, grf, rpart, rpart.plot, stats, stringr
NeedsCompilation no
Author Riccardo Di Francesco [aut, cre]
Maintainer Riccardo Di Francesco <difrancesco.riccardo96@gmail.com>
Repository CRAN
Date/Publication 2023-02-22 00:40:07 UTC

R topics documented:

avg_characteristics_rpart .. 2
balance_measures .. 3
build_aggtree .. 5
causal_ols_rpart ... 8
descriptive_arm ... 11
dr_scores ... 12
Description
Computes the average characteristics of units in each leaf of an \texttt{rpart} object.

Usage
\begin{verbatim}
avg_characteristics_rpart(tree, X)
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{tree} \hspace{1em} An \texttt{rpart} object.
\item \texttt{X} \hspace{1em} Covariate matrix (no intercept).
\end{itemize}

Details
\texttt{avg_characteristics_rpart} regresses each covariate on a set of dummies denoting leaf membership. This way, we get the average characteristics of units in each leaf, together with a standard error.

Leaves are ordered in increasing order of their predictions (from most negative to most positive).

Standard errors are estimated via the Eicker-Huber-White estimator.

Value
A list storing each regression as an \texttt{lm_robust} object.
Author(s)
Riccardo Di Francesco

References

See Also
causal_ols_rpart, estimate_rpart

Examples
Generate data.
set.seed(1986)
n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Construct a tree.
library(rpart)
tree <- rpart(y ~ ., data = data.frame("y" = y, X), maxdepth = 2)

Compute average characteristics in each leaf.
results <- avg_characteristics_rpart(tree, X)
results

balance_measures | Balance Measures

Description
Compute several balance measures to check whether the covariate distributions are balanced across treatment arms.

Usage
balance_measures(X, D)
Arguments

\[\text{X} \quad \text{Covariate matrix (no intercept).} \]
\[\text{D} \quad \text{Treatment assignment vector.} \]

Details

For each covariate in \(\text{X} \), \text{balance_measures} computes sample averages and standard deviations for both treatment arms. Additionally, two balance measures are computed:

- **Norm. Diff.** Normalized differences, computed as the differences in the means of each covariate across treatment arms, normalized by the sum of the within-arm variances. They provide a measure of the discrepancy between locations of the covariate distributions across treatment arms.
- **Log S.D.** Log ratio of standard deviations are computed as the logarithm of the ratio of the within-arm standard deviations. They provide a measure of the discrepancy in the dispersion of the covariate distributions across treatment arms.

Compilation of the LATEX code requires the following packages: \texttt{booktabs, float, adjustbox}.

Value

Prints LATEX code in the console.

Author(s)

Elena Dal Torrione, Riccardo Di Francesco

Examples

```r
## Generate data.
set.seed(1986)
n <- 1000
k <- 3
X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
y <- mu0 + D * (mu1 - mu0) + rnorm(n)

## Print table.
balance_measures(X, D)
```
Description

Nonparametric data-driven approach to discovering heterogeneous subgroups in a selection-on-observables framework. The approach constructs a sequence of groupings, one for each level of granularity. Groupings are nested and feature an optimality property. For each grouping, we obtain point estimation and standard errors for the group average treatment effects (GATEs). Additionally, we assess whether systematic heterogeneity is found by testing the hypotheses that the differences in the GATEs across all pairs of groups are zero. Finally, we investigate the driving mechanisms of effect heterogeneity by computing the average characteristics of units in each group.

Usage

```r
build_aggtree(
  y,
  D,
  X,
  honest_frac = 0.5,
  method = "aipw",
  scores = NULL,
  cates = NULL,
  is_honest = NULL,
  ...
)
```

```r
inference_aggtree(object, n_groups)
```

Arguments

- `y`
 Outcome vector.
- `D`
 Treatment vector.
- `X`
 Covariate matrix (no intercept).
- `honest_frac`
 Fraction of observations to be allocated to honest sample.
- `method`
 Either "raw" or "aipw", controls how node predictions are computed.
- `scores`
 Optional, vector of scores to be used in computing node predictions. Useful to save computational time if scores have already been estimated. Ignored if method == "raw".
- `cates`
 Optional, estimated CATEs. If not provided by the user, CATEs are estimated internally via a causal_forest.
- `is_honest`
 Logical vector denoting which observations belong to the honest sample. Required only if the cates argument is used.
- `...`
 Further arguments from rpart.control.
- `object`
 An aggTrees object.
- `n_groups`
 Number of desired groups.
Details

Aggregation trees are a three-step procedure. First, the conditional average treatment effects (CATEs) are estimated using any estimator. Second, a tree is grown to approximate the CATEs. Third, the tree is pruned to derive a nested sequence of optimal groupings, one for each granularity level. For each level of granularity, we can obtain point estimation and inference about the GATEs.

To implement this methodology, the user can rely on two core functions that handle the various steps.

Constructing the Sequence of Groupings:

`build_aggtree` constructs the sequence of groupings (i.e., the tree) and estimate the GATEs in each node. The GATEs can be estimated in several ways. This is controlled by the `method` argument. If `method == "raw"`, we compute the difference in mean outcomes between treated and control observations in each node. This is an unbiased estimator in randomized experiment. If `method == "aipw"`, we construct doubly-robust scores and average them in each node. This is unbiased also in observational studies. Honest regression forests and 5-fold cross fitting are used to estimate the propensity score and the conditional mean function of the outcome (unless the user specifies the argument `scores`).

The user can provide a vector of the estimated CATEs via the `cates` argument. If so, the user needs to specify a logical vector to denote which observations belong to the honest sample. If honesty is not desired, `is_honest` must be a vector of `FALSE`s. If no vector of CATEs is provided, these are estimated internally via a `causal_forest`.

GATEs Estimation and Inference:

`inference_aggtree` takes as input an `aggTrees` object constructed by `build_aggtree`. Then, for the desired granularity level, chosen via the `n_groups` argument, it provides point estimation and standard errors for the GATEs. Additionally, it performs some hypothesis testing to assess whether we find systematic heterogeneity and computes the average characteristics of the units in each group to investigate the driving mechanisms.

Point estimates and standard errors for the GATEs:

GATEs and their standard errors are obtained by fitting an appropriate linear model. If `method == "raw"`, we estimate via OLS the following:

$$Y_i = \sum_{l=1}^{|T|} L_{i,l} \gamma_l + \sum_{l=1}^{|T|} L_{i,l} D_i \beta_l + \epsilon_i$$

with $L_{i,l}$ a dummy variable equal to one if the i-th unit falls in the l-th group, and $|T|$ the number of groups. If the treatment is randomly assigned, one can show that the betas identify the GATE of each group. However, this is not true in observational studies due to selection into treatment. In this case, the user is expected to use `method == "aipw"` when calling `build_aggtree`. In this case, `inference_aggtree` uses the scores in the following regression:

$$score_i = \sum_{l=1}^{|T|} L_{i,l} \beta_l + \epsilon_i$$
This way, betas again identify the GATEs. Regardless of method, standard errors are estimated via the Eicker-Huber-White estimator.

Hypothesis testing:
inference_aggtree uses the standard errors obtained by fitting the linear models above to test the hypotheses that the GATEs are different across all pairs of leaves. Here, we adjust p-values to account for multiple hypotheses testing using Holm’s procedure.

Average Characteristics:
inference_aggtree regresses each covariate on a set of dummies denoting group membership. This way, we get the average characteristics of units in each leaf, together with a standard error. Leaves are ordered in increasing order of their predictions (from most negative to most positive). Standard errors are estimated via the Eicker-Huber-White estimator.

Caution on Inference:
Regardless of the chosen method, both functions estimate the GATEs, the linear models, and the average characteristics of units in each group using only observations in the honest sample. If the honest sample is empty (this happens because the user either sets honest_frac = 0 or passes a vector of FALSEs as is_honest when calling build_aggtree), the same data used to construct the tree are used to estimate the above quantities. This is fine for prediction but invalidates inference.

Value

build_aggtree returns an aggTrees object.

inference_aggtree returns an aggTrees.inference object, which in turn contains the aggTrees object used in the call.

Author(s)

Riccardo Di Francesco

References

See Also

plot.aggTrees print.aggTrees.inference

Examples

```r
## Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
```
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Construct sequence of groupings. CATEs estimated internally.
groupings <- build_aggtree(y, D, X, method = "aipw")

Alternatively, we can estimate the CATEs and pass them.
splits <- sample_split(length(y), training_frac = 0.5)
training_idx <- splits$training_idx
honest_idx <- splits$honest_idx

y_tr <- y[training_idx]
D_tr <- D[training_idx]
X_tr <- X[training_idx,]

y_hon <- y[honest_idx]
D_hon <- D[honest_idx]
X_hon <- X[honest_idx,]

library(grf)
forest <- causal_forest(X_tr, y_tr, D_tr) # Use training sample.
cates <- predict(forest, X)$predictions
groupings <- build_aggtree(y, D, X, method = "aipw", cates = cates,
is_honest = 1:length(y) %in% honest_idx)

We have compatibility with generic S3-methods.
summary(groupings)
print(groupings)
plot(groupings) # Try also setting 'sequence = TRUE'.

To predict, do the following.
tree <- subtree(groupings$tree, cv = TRUE) # Select by cross-validation.
predict(tree, data.frame(X))

Inference with 4 groups.
results <- inference_aggtree(groupings, n_groups = 4)

summary(results$model) # Coefficient of leafk is GATE in k-th leaf.
results$gates_diff_pairs$gates_diff # GATEs differences.
results$gates_diff_pairs$holm_pvalues # leaves 1-2 not statistically different.

LATEX.
print(results, table = "diff")
print(results, table = "avg_char")
Description

Obtains point estimates and standard errors for the group average treatment effects (GATEs), where groups correspond to the leaves of an `rpart` object. Additionally, performs some hypothesis testing.

Usage

`causal_ols_rpart(tree, y, D, X, method = "aipw", scores = NULL)`

Arguments

- `tree` An `rpart` object.
- `y` Outcome vector.
- `D` Treatment assignment vector.
- `X` Covariate matrix (no intercept).
- `method` Either "raw" or "aipw", defines the outcome used in the regression.
- `scores` Optional, vector of scores to be used in the regression. Useful to save computational time if scores have already been estimated. Ignored if `method == "raw"`.

Details

Point estimates and standard errors for the GATEs:

The GATEs and their standard errors are obtained by fitting an appropriate linear model. If `method == "raw"`, we estimate via OLS the following:

\[
Y_i = \sum_{l=1}^{|T|} L_{i,l} \gamma_l + \sum_{l=1}^{|T|} L_{i,l} D_i \beta_l + \epsilon_i
\]

with \(L_{i,l}=1\) a dummy variable equal to one if the \(i\)-th unit falls in the \(l\)-th leaf of `tree`, and \(|T|\) the number of groups. If the treatment is randomly assigned, one can show that the betas identify the GATE in each leaf. However, this is not true in observational studies due to selection into treatment. In this case, the user is expected to use `method == "aipw"` to run the following regression:

\[
score_i = \sum_{l=1}^{|T|} L_{i,l} \beta_l + \epsilon_i
\]

where `score_i` are doubly-robust scores constructed via honest regression forests and 5-fold cross fitting (unless the user specifies the argument `scores`). This way, betas again identify the GATEs.

Regardless of `method`, standard errors are estimated via the Eicker-Huber-White estimator.

If `tree` consists of a root only, `causal_ols_rpart` regresses \(y\) on a constant and \(D\) if `method == "raw"`, or regresses the doubly-robust scores on a constant if `method == "aipw"`. This way, we get an estimate of the overall average treatment effect.
Hypothesis testing:

`causal_ols_rpart` uses the standard errors obtained by fitting the linear models above to test the hypotheses that the GATEs are different across all pairs of leaves. Here, we adjust p-values to account for multiple hypotheses testing using Holm’s procedure.

Caution on Inference:

"honesty" is a necessary requirement to get valid inference. Thus, observations in y, D, and X must not have been used to construct the tree and the scores.

Value

A list storing:

- **model**: The model fitted to get point estimates and standard errors for the GATEs, as an `lm_robust` object.
- **gates_diff_pairs**: Results of testing whether GATEs differ across all pairs of leaves. This is a list storing GATEs differences and p-values adjusted using Holm’s procedure (check `p.adjust`). NULL if the tree consists of a root only.
- **scores**: Vector of doubly robust scores. NULL if method == 'raw'.

Author(s)

Riccardo Di Francesco

References

See Also

`estimate_rpart` `avg_characteristics_rpart`

Examples

```r
causal_ols_rpart
```

```r
## Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
y <- mu0 + D * (mu1 - mu0) + rnorm(n)

## Split the sample.
```
splits <- sample_split(length(y), training_frac = 0.5)
training_idx <- splits$training_idx
honest_idx <- splits$honest_idx

y_tr <- y[training_idx]
D_tr <- D[training_idx]
X_tr <- X[training_idx,]

y_hon <- y[honest_idx]
D_hon <- D[honest_idx]
X_hon <- X[honest_idx,]

Construct a tree using training sample.
library(rpart)
tree <- rpart(y ~ ., data = data.frame("y" = y_tr, X_tr), maxdepth = 2)

Estimate GATEs in each node (internal and terminal) using honest sample.
results <- causal_ols_rpart(tree, y_hon, D_hon, X_hon, method = "raw")

summary(results$model) # Coefficient of leafk:D is GATE in k-th leaf.
results$gates_diff_pair$gates_diff # GATEs differences.
results$gates_diff_pair$holm_pvalues # leaves 1-2 and 3-4 not statistically different.

descriptive_arm

Descriptive Statistics by Treatment Arm (Internal Use)

Description

Computes sample averages and standard deviations of the covariates across treatment arms.

Usage

descriptive_arm(X, D)

Arguments

- **X**: Covariate matrix (no intercept).
- **D**: Treatment assignment vector.

Details

Sample means and standard deviations across treatment arms are a first, useful insight to assess covariate balance.

Value

4xp array, storing the desired statistics.
dr_scores

Doubly-Robust Scores

Description

Constructs doubly-robust scores via K-fold cross-fitting.

Usage

```r
dr_scores(y, D, X, k = 5)
```

Arguments

- `y`: Outcome vector.
- `D`: Treatment assignment vector.
- `X`: Covariate matrix (no intercept).
- `k`: Number of folds.

Details

Honest regression forests are used to estimate the propensity score and the conditional mean function of the outcome.

Value

A vector of scores.

Author(s)

Riccardo Di Francesco

estimate_rpart

GATE Estimation with rpart Objects

Description

Replaces node predictions of an `rpart` object using external data to estimate the group average treatment effects (GATEs).

Usage

```r
estimate_rpart(tree, y, D, X, method = "aipw", scores = NULL)
```
estimate_rpart

Arguments

tree An rpart object.
y Outcome vector.
D Treatment assignment vector.
X Covariate matrix (no intercept).
method Either "raw" or "aipw", controls how node predictions are replaced.
scores Optional, vector of scores to be used in replacing node predictions. Useful to save computational time if scores have already been estimated. Ignored if method == "raw".

Details

If method == "raw", estimate_rpart replaces node predictions with the differences between the sample average of the observed outcomes of treated units and the sample average of the observed outcomes of control units in each node, which is an unbiased estimator of the GATEs if the assignment to treatment is randomized.

If method == "aipw", estimate_rpart replaces node predictions with sample averages of doubly-robust scores in each node. This is a valid estimator of the GATEs in observational studies. Honest regression forests and 5-fold cross fitting are used to estimate the propensity score and the conditional mean function of the outcome (unless the user specifies the argument scores).

estimate_rpart allows the user to implement "honest" estimation. If observations in y, D and X have not been used to construct the tree, then the new predictions are honest in the sense of Athey and Imbens (2016). To get standard errors for the tree’s estimates, please use causal_ols_rpart.

Value

A tree with node predictions replaced, as an rpart object, and the scores (if method == "raw", this is NULL).

Author(s)

Riccardo Di Francesco

References

See Also

causal_ols_rpart avg_characteristics_rpart
Expand_df

Covariate Matrix Expansion

Description

Expands the covariate matrix, adding interactions and polynomials. This is particularly useful for penalized regressions.

Usage

```r
expand_df(X, int_order = 2, poly_order = 4, threshold = 0)
```
get_leaves

Arguments

- **X**: Covariate matrix (no intercept).
- **int_order**: Order of interactions to be added. Set equal to one if no interactions are desired.
- **poly_order**: Order of the polynomials to be added. Set equal to one if no polynomials are desired.
- **threshold**: Drop binary variables representing less than threshold% of the population. Useful to speed up computation.

Details

expansion_df assumes that categorical variables are coded as factors. Also, no missing values are allowed.

Value

The expanded covariate matrix, as a data frame.

<table>
<thead>
<tr>
<th>get_leaves</th>
<th>Number of Leaves</th>
</tr>
</thead>
</table>

Description

Extracts the number of leaves of an rpart object.

Usage

get_leaves(tree)

Arguments

- **tree**: An rpart object.

Value

The number of leaves.

Author(s)

Riccardo Di Francesco

See Also

- subtree
- node_membership
- leaf_membership
Examples

```r
## Generate data.
set.seed(1986)

n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))

y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

## Construct tree.
library(rpart)
tree <- rpart(y ~ ., data = data.frame(y, X))

## Extract number of leaves.
n_leaves <- get_leaves(tree)

n_leaves
```

leaf_membership

Leaf Membership

Description

Constructs a variable that encodes in which leaf of an *rpart* object the units in a given data frame fall.

Usage

```r
leaf_membership(tree, X)
```

Arguments

- `tree` An *rpart* object.
- `X` Covariate matrix (no intercept).

Value

A factor whose levels denote in which leaf each unit falls. Leaves are ordered in increasing order of their predictions (from most negative to most positive).

Author(s)

Riccardo Di Francesco
log_ratio_sd

See Also

subtree node_membership get_leaves

Examples

```r
## Generate data.
set.seed(1986)

n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))

y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

## Construct tree.
library(rpart)
tree <- rpart(y ~ ., data = data.frame(y, X))

## Extract number of leaves.
leaves_factor <- leaf_membership(tree, X)
leaves_factor
```

Description

Computes a measure of the difference in the dispersion of the covariate distributions across treatment arms.

Usage

```r
log_ratio_sd(X, D)
```

Arguments

- **X**: Covariate matrix (no intercept).
- **D**: Treatment assignment vector.

Details

Log ratio of standard deviations are computed as the logarithm of the ratio of the within-arm standard deviations.

Value

1xp data frame storing logarithm of the ratio of standard deviations of each covariate.
Description

Constructs a binary variable that encodes whether each observation falls into a particular node of an rpart object.

Usage

node_membership(tree, X, node)

Arguments

tree An rpart object.
X Covariate matrix (no intercept).
node Number of node.

Value

Logical vector denoting whether each observation in X falls into node.

Author(s)

Riccardo Di Francesco

See Also

subtree leaf_membership get_leaves

Examples

Generate data.
set.seed(1986)
n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

Construct tree.
library(rpart)
tree <- rpart(y ~ ., data = data.frame(y, X))

Extract number of leaves.
is_in_third_node <- node_membership(tree, X, 3)
normalized_diff

Normal Differences (Internal Use)

Description

Computes a measure of the difference between locations of the covariate distributions across treatment arms.

Usage

```r
normalized_diff(X, D)
```

Arguments

- `X` Covariate matrix (no intercept).
- `D` Treatment assignment vector.

Details

Normalized differences are computed as the difference in the means of each covariate across treatment arms, normalized by the sum of the within-arm variances.

Value

1xp data frame storing the normalized difference of each covariate.

plot.aggTrees

Plot Method for aggTrees Objects

Description

Plots an aggTrees object.

Usage

```r
## S3 method for class 'aggTrees'
plot(x, leaves = get_leaves(x$tree), sequence = FALSE, ...)```
plot.aggTrees

Arguments

- **x**: An aggTrees object.
- **leaves**: Number of leaves of the desired tree. This can be used to plot subtrees.
- **sequence**: If TRUE, the whole sequence of optimal groupings is displayed in a short animation.
- **...**: Further arguments from prp.

Details

Nodes are colored using a diverging palette. Nodes with predictions smaller than the ATE (i.e., the root prediction) are colored in blue shades, and nodes with predictions larger than the ATE are colored in red shades. Moreover, predictions that are more distant in absolute value from the ATE get darker shades. This way, we have an immediate understanding of the groups with extreme GATEs.

Value

Plots an aggTrees object.

Author(s)

Riccardo Di Francesco

References


See Also

build_aggtree, inference_aggtree

Examples

```r
Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Construct sequence of groupings. CATEs estimated internally,
groupings <- build_aggtree(y, D, X, method = "aipw")
```
## Plot.
plot(groupings)
plot(groupings, leaves = 3)
plot(groupings, sequence = TRUE)

---

**print.aggTrees**  
*Print Method for aggTrees Objects*

---

### Description
Prints an `aggTrees` object.

### Usage
```r
S3 method for class 'aggTrees'
print(x, ...)
```

### Arguments
- `x`  
  - `aggTrees` object.
- `...`  
  - Further arguments passed to or from other methods.

### Value
Prints an `aggTrees` object.

### Author(s)
Riccardo Di Francesco

### References

### See Also
- `build_aggtree`
- `inference_aggtree`
print.aggTrees.inference

Print Method for aggTrees.inference Objects

Description

Prints an aggTrees.inference object.

Usage

## S3 method for class 'aggTrees.inference'
print(x, table = "avg_char", ...)

Arguments

x aggTrees.inference object.

table Either "avg_char" or "diff", controls which table must be produced.

... Further arguments passed to or from other methods.

Details

A description of each table is provided in its caption.

Some covariates may feature zero variation in some leaf. This generally happens to dummy variables used to split some nodes. In this case, when table == "avg_char" a warning message is produced displaying the names of the covariates with zero variation in one or more leaves. The user should correct the table by removing the associated standard errors.

Compilation of the LATEX code requires the following packages: booktabs, float, adjustbox, multirow.

Value

Prints LATEX code.

Author(s)

Riccardo Di Francesco

References


See Also

build_aggtree, inference_aggtree
Examples

```r
Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Construct sequence of groupings. CATEs estimated internally,
groupings <- build_aggtree(y, D, X, method = "aipw")

Analyze results with 4 groups.
results <- inference_aggtree(groupings, n_groups = 4)

Print results.
print(results, table = "diff")
print(results, table = "avg_char")
```

---

**rename_latex**  
Renaming Variables for LATEX Usage (Internal Use)

**Description**

Renames variables where the character "_" is used, which causes clashes in LATEX. Useful for the phased print method.

**Usage**

```r
rename_latex(names)
```

**Arguments**

- `names`  
  string vector.

**Value**

The renamed string vector. Strings where "_" is not found are not modified by `rename_latex`. 
Sample Splitting

Description
Splits the sample into training and honest subsamples.

Usage
```r
sample_split(n, training_frac = 0.5)
```

Arguments
- `n` Size of the sample to be split.
- `training_frac` Fraction of units for the training sample.

Value
A list storing the indexes for the two different subsamples.

Author(s)
Riccardo Di Francesco

Subtree

Description
Extracts a subtree with a user-specified number of leaves from an `rpart` object.

Usage
```r
subtree(tree, leaves = NULL, cv = FALSE)
```

Arguments
- `tree` An `rpart` object.
- `leaves` Number of leaves of the desired subtree.
- `cv` If `TRUE`, `leaves` is ignored and a cross-validation criterion is used to select a partition.

Value
The subtree, as an `rpart` object.
**summary.aggTrees**

**Author(s)**

Riccardo Di Francesco

**See Also**

`get_leaves node_membership leaf_membership`

**Examples**

```r
Generate data.
set.seed(1986)

n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))

y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

Construct tree.
library(rpart)
tree <- rpart(y ~ ., data = data.frame(y, X), cp = 0)

Extract subtree.
sub_tree <- subtree(tree, leaves = 4)
sub_tree_cv <- subtree(tree, cv = TRUE)
```

---

**summary.aggTrees**  
*Summary Method for aggTrees Objects*

**Description**

Summarizes an `aggTrees` object.

**Usage**

```r
S3 method for class 'aggTrees'
summary(object, ...)```

Arguments

- `object`
 `aggTrees` object.
- `...`
 Further arguments passed to or from other methods.

Value

Prints the summary of an `aggTrees` object.
Author(s)

Riccardo Di Francesco

References

See Also

build_aggtree, inference_aggtree
Index

avg_characteristics_rpart, 2, 2, 10, 13
balance_measures, 3
build_aggtree, 5, 6, 7, 20–22, 26
causal_forest, 5, 6
causal_ols_rpart, 3, 8, 10, 13
descriptive_arm, 11
dr_scores, 12
estimate_rpart, 3, 10, 12
expand_df, 14
get_leaves, 15, 17, 18, 25
inference_aggtree, 6, 7, 20–22, 26
inference_aggtree (build_aggtree), 5
leaf_membership, 15, 16, 18, 25
lm_robust, 2, 10
log_ratio_sd, 17
node_membership, 15, 17, 18, 25
normalized_diff, 19
p.adjust, 10
plot.aggTrees, 7, 19
print.aggTrees, 21
print.aggTrees.inference, 7, 22
prp, 20
rename_latex, 23
rpart, 2, 9, 12, 13, 15, 16, 18, 24
rpart.control, 5
sample_split, 24
subtree, 15, 17, 18, 24
summary.aggTrees, 25