Package ‘aghq’

May 13, 2021

Type Package

Title Adaptive Gauss Hermite Quadrature for Bayesian Inference

Version 0.2.1

Author Alex Stringer

Maintainer Alex Stringer <alex.stringer@mail.utoronto.ca>

Description Adaptive Gauss Hermite Quadrature for Bayesian inference. The AGHQ method for normalizing posterior distributions and making Bayesian inferences based on them. Functions are provided for doing quadrature and marginal Laplace approximations, and summary methods are provided for making inferences based on the results.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Imports methods, mvQuad, Matrix, rlang, polynom

Suggests trustOptim, trust, numDeriv, testthat (>= 2.1.0), knitr, rmarkdown

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Repository CRAN

Date/Publication 2021-05-13 15:12:14 UTC

R topics documented:

aghq ... 2
compute_moment .. 4
Description

Normalize the log-posterior distribution using Adaptive Gauss-Hermite Quadrature. This function takes in a function and its gradient and Hessian, and returns a list of information about the normalized posterior, with methods for summarizing and plotting.

Usage

aghq(ff, k, startingvalue, optresults = NULL, control = default_control(), ...)

Arguments

ff

A list with three elements:

- *fn*: function taking argument theta and returning a numeric value representing the log-posterior at theta
- *gr*: function taking argument theta and returning a numeric vector representing the gradient of the log-posterior at theta
- *he*: function taking argument theta and returning a numeric matrix representing the hessian of the log-posterior at theta
The user may wish to use numDeriv::grad and/or numDeriv::hessian to obtain these. Alternatively, the user may consider the TMB package. This list is deliberately formatted to match the output of TMB::MakeADFun.

k
Integer, the number of quadrature points to use. I suggest at least 3. \(k = 1 \) corresponds to a Laplace approximation.

startingvalue
Value to start the optimization. \texttt{ff$fn(startingvalue)}, \texttt{ff$gr(startingvalue)}, and \texttt{ff$he(startingvalue)} must all return appropriate values without error.

optresults
Optional. A list of the results of the optimization of the log posterior, formatted according to the output of \texttt{aghq::optimize_theta}. The \texttt{aghq::aghq} function handles the optimization for you; passing this list overrides this, and is useful for when you know your optimization is too difficult to be handled by general-purpose software. See the software paper for several examples of this. If you’re unsure whether this option is needed for your problem then it probably is not.

control
A list with elements

- **method**: optimization method to use:
 - 'sparse_trust' (default): trustOptim::trust.optim with method = 'sparse'
 - 'SR1' (default): trustOptim::trust.optim with method = 'SR1'
 - 'trust': trust::trust
 - 'BFGS': optim(..., method = "BFGS")
 Default is 'sparse_trust'.

- **optcontrol**: optional: a list of control parameters to pass to the internal optimizer you chose. The \texttt{aghq} package uses sensible defaults.

...
Additional arguments to be passed to \texttt{ff$fn}, \texttt{ff$gr}, and \texttt{ff$he}.

Details

When \(k = 1 \) the AGHQ method is a Laplace approximation, and you should use the \texttt{aghq::laplace_approximation} function, since some of the methods for \texttt{aghq} objects won’t work with only one quadrature point. Objects of class \texttt{laplace} have different methods suited to this case. See \texttt{?aghq::laplace_approximation}.

Value

An object of class \texttt{aghq} which is a list containing elements:

- **normalized_posterior**: The output of the \texttt{normalize_logpost} function, which itself is a list with elements:
 - **nodesandweights**: a dataframe containing the nodes and weights for the adaptive quadrature rule, with the un-normalized and normalized log posterior evaluated at the nodes.
 - **thegrid**: a \texttt{NIGrid} object from the \texttt{mvQuad} package, see \texttt{?mvQuad::createNIGrid}.
 - **lognormconst**: the actual result of the quadrature: the log of the normalizing constant of the posterior.

- **marginals**: a list of the same length as startingvalue of which element \(j \) is the result of calling \texttt{aghq::marginal_posterior} with that \(j \). This is a \texttt{tbl_df.tbl/data.frame} containing the normalized log marginal posterior for \(\theta_j \) evaluated at the original quadrature points. Has columns "thetaj", "logpost_normalized", "weights", where \(j \) is the \(j \) you specified.
• optresults: information and results from the optimization of the log posterior, the result of calling aghq::optimize_theta. This a list with elements:
 – ff: the function list that was provided
 – mode: the mode of the log posterior
 – hessian: the hessian of the log posterior at the mode
 – convergence: specific to the optimizer used, a message indicating whether it converged

See Also

Other quadrature: laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), normalize_logpost(), optimize_theta(), plot.aghq(), print.aghqsummary(), print.aghq(), print.laplacesummary(), print.laplace(), summary.aghq(), summary.laplace()

Examples

logfteta2d <- function(eta,y) {
 # eta is now (eta1,eta2)
 # y is now (y1,y2)
 n <- length(y)
 n1 <- ceiling(n/2)
 n2 <- floor(n/2)
 y1 <- y[1:n1]
 y2 <- y[(n1+1):(n1+n2)]
 eta1 <- eta[1]
 eta2 <- eta[2]
 sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
 sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
 fn = objfunc2d,
 gr = function(x) numDeriv::grad(objfunc2d,x),
 he = function(x) numDeriv::hessian(objfunc2d,x)
)
thequadrature <- aghq(funlist2d,3,c(0,0))
compute_moment

Description

Compute the moment of any function \(ff \) using AGHQ.

Usage

compute_moment(obj, ...)

Default S3 method:
compute_moment(obj, ff = function(x) 1, ...)

S3 method for class 'aghq'
compute_moment(obj, ff = function(x) 1, ...)

Arguments

obj Object of class aghq output by aghq::aghq(), or its normalized_posterior element. See ?aghq.

... Used to pass additional argument ff.

ff Any R function which takes in a numeric vector and returns a numeric vector.

Value

A numeric vector containing the moment(s) of \(ff \) with respect to the joint distribution being approximated using AGHQ.

See Also

Other summaries: compute_pdf_and_cdf(), compute_quantiles(), interpolate_marginal_posterior(), marginal_posterior()

Examples

logfteta2d <- function(eta,y) {
 # eta is now (eta1,eta2)
 # y is now (y1,y2)
 n <- length(y)
 n1 <- ceiling(n/2)
 n2 <- floor(n/2)
 y1 <- y[1:n1]
 y2 <- y[(n1+1):(n1+n2)]
 eta1 <- eta[1]
 eta2 <- eta[2]
 sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
 sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
\begin{verbatim}
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfeta2d(x,c(y1,y2))
funlist2d <- list(
 fn = objfunc2d,
 gr = function(x) numDeriv::grad(objfunc2d,x),
 he = function(x) numDeriv::hessian(objfunc2d,x)
)

opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5))
norm_sparse_2d_7 <- normalize_logpost(opt_sparsetrust_2d,7,1)

ff = function(x) 1 should return 1,
the normalizing constant of the (already normalized) posterior:
compute_moment(norm_sparse_2d_7)
Compute the mean of theta1 and theta2
compute_moment(norm_sparse_2d_7,ff = function(x) x)
Compute the mean of lambda1 = exp(theta1) and lambda2 = exp(theta2)
lambdameans <- compute_moment(norm_sparse_2d_7,ff = function(x) exp(x))
lambdameans
Compare them to the truth:
(sum(y1) + 1)/(length(y1) + 1)
(sum(y2) + 1)/(length(y2) + 1)
Compute the standard deviation of lambda1
lambda1sd <- sqrt(compute_moment(norm_sparse_2d_7,ff = function(x) (exp(x) - lambdameans[1])^2))[1]
...and so on.
\end{verbatim}

compute_pdf_and_cdf

Density and Cumulative Distribution Function

Description

Compute the density and cumulative distribution function of the approximate posterior. The density is approximated on a fine grid using a polynomial interpolant. The CDF can’t be computed exactly (if it could, you wouldn’t be using quadrature!), so a fine grid is laid down and the CDF is approximated at each grid point using a simpler integration rule and a polynomial interpolant. This method tends to work well, but won’t always.

Usage

\[\text{compute_pdf_and_cdf(obj, \ldots)}\]

Default S3 method:
\[\text{compute_pdf_and_cdf(obj, transformation = NULL, finegrid = NULL, \ldots)}\]

S3 method for class 'list'
\[\text{compute_pdf_and_cdf(obj, \ldots)}\]

S3 method for class 'aghq'
\[\text{compute_pdf_and_cdf(obj, \ldots)}\]
compute_pdf_and_cdf

Arguments

obj
Either the output of `aghq::aghq()`, its list of marginal distributions (element marginals), or an individual data.frame containing one of these marginal distributions as output by `aghq::marginal_posterior()`.

...
Used to pass additional arguments.

transformation
Optional. A list containing two functions, fromtheta and totheta, which accept and return numeric vectors, defining a parameter transformation for which you would also like the pdf calculated for. See examples. May also have an element jacobian, a function which takes a numeric vector and computes the jacobian of the transformation; if not provided, this is done using `numDeriv::jacobian`.

finegrid
Optional, a grid of values on which to compute the CDF. The default makes use of the values in margpost but if the results are unsuitable, you may wish to modify this manually.

Value

A tbl_df/tbl/data.frame with columns theta, pdf and cdf corresponding to the value of the parameter and its estimated PDF and CDF at that value.

See Also

Other summaries: `compute_moment()`, `compute_quantiles()`, `interpolate_marginal_posterior()`, `marginal_posterior()`

Examples

```r
logfteta2d <- function(eta,y) {
    # eta is now (eta1,eta2)
    # y is now (y1,y2)
    n <- length(y)
    n1 <- ceiling(n/2)
    n2 <- floor(n/2)
    y1 <- y[1:n1]
    y2 <- y[(n1+1):(n1+n2)]
    eta1 <- eta[1]
    eta2 <- eta[2]
    sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
    sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
    fn = objfunc2d,
    gr = function(x) numDeriv::grad(objfunc2d,x),
    he = function(x) numDeriv::hessian(objfunc2d,x)
)```
compute_quantiles

Quantiles

Description

Compute marginal quantiles using AGHQ. This function works by first approximating the CDF using `aghq::compute_pdf_and_cdf` and then inverting the approximation numerically.

Usage

```r
compute_quantiles(obj, ...) # Default S3 method:
compute_quantiles(obj, q = c(0.025, 0.975), transformation = NULL, ...)
```

## S3 method for class 'list'
```
compute_quantiles(obj, q = c(0.025, 0.975), transformation = NULL, ...)
```

## S3 method for class 'aghq'
```
compute_quantiles(obj, q = c(0.025, 0.975), transformation = NULL, ...)
```

Arguments

- `obj` Either the output of `aghq::aghq()`, its list of marginal distributions (element `marginals`), or an individual `data.frame` containing one of these marginal distributions as output by `aghq::marginal_posterior()`.
- `...` Used to pass additional arguments.
- `q` Numeric vector of values in (0,1). The quantiles to compute.
- `transformation` Optional. A list containing function `fromtheta()` which accepts and returns numeric vectors, defining a parameter transformation for which you would like the quantiles of. See `compute_pdf_and_cdf`. This transformation must be monotone and the function checks whether it's increasing or decreasing and returns the transformed quantiles, ordered appropriately.

Value

A named numeric vector containing the quantiles you asked for, for the variable whose marginal posterior you provided.

```r
)
opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5))
margpost <- marginal_posterior(opt_sparsetrust_2d,3,1) # margpost for thetal
thepdfandcdf <- compute_pdf_and_cdf(margpost)
with(thepdfandcdf,
 plot(pdf~theta,type='l')
 plot(cdf~theta,type='l')
)
```
See Also

Other summaries: `compute_moment()`, `compute_pdf_and_cdf()`, `interpolate_marginal_posterior()`, `marginal_posterior()`

Examples

```r
logfteta2d <- function(eta,y) {
 # eta is now (eta1,eta2)
 # y is now (y1,y2)
 n <- length(y)
 n1 <- ceiling(n/2)
 n2 <- floor(n/2)
 y1 <- y[1:n1]
 y2 <- y[(n1+1):(n1+n2)]
 eta1 <- eta[1]
 eta2 <- eta[2]
 sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
 sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
 fn = objfunc2d,
 gr = function(x) numDeriv::grad(objfunc2d,x),
 he = function(x) numDeriv::hessian(objfunc2d,x)
)
opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5))
margpost <- marginal_posterior(opt_sparsetrust_2d,3,1) # margpost for theta1
etaquant <- compute_quantiles(margpost)
etaquant
lambda = exp(eta)
exp(etaquant)
Compare to truth
qgamma(.025,1+sum(y1),1+n1)
qgamma(.975,1+sum(y1),1+n1)
```

---

`default_control`  
*Default control arguments for aghq::aghq().*

Description

Run `default_control()` to print the list of valid control parameters and their defaults, and run with named arguments to change the defaults.
Usage

default_control(...)
default_control_marglaplace

Default control arguments for aghq::marginal_laplace().

Description

Run default_control_marglaplace() to print the list of valid control parameters and their defaults, and run with named arguments to change the defaults.

Usage

default_control_marglaplace(...)  

Arguments

... You can provide a named value for any control parameter and its value will be set accordingly. See ?marginal_laplace and examples here.

Details

Valid options are:

- method: optimization method to use for the theta optimization:
  - 'sparse_trust' (default): trustOptim::trust.optim
  - 'sparse': trust::trust
  - 'BFGS': optim(..., method = "BFGS")
- inner_method: optimization method to use for the W optimization; same options as for method. Default inner_method is 'sparse_trust' and default method is 'BFGS'.
- negate: default FALSE. Multiply the functions in ff by -1? The reason for having this option is for full compatibility with TMB: while of course TMB allows you to code up your log-posterior any way you like, all of its excellent features including its automatic Laplace approximation and MCMC sampling with tmbstan assume you have coded your template to return the negated log-posterior. However, by default, aghq assumes you have provided the log-posterior without negation. Set negate = TRUE if you have provided a template which computes the negated log-posterior and its derivatives. Note that I don’t expect there to be any reason to need this argument for marginal_laplace; if you are doing a marginal Laplace approximation using the automatic Laplace approximation provided by TMB, you should check out aghq::marginal_laplace_tmb().

Value

A list of argument values.
**Examples**

```r
default_control_marglaplace()
default_control_marglaplace(method = "trust")
default_control_marglaplace(method = "trust", inner_method = "trust")
default_control_marglaplace(negate = TRUE)
```

---

**Description**

Run `default_control_marglaplace()` to print the list of valid control parameters and their defaults, and run with named arguments to change the defaults.

**Usage**

```r
default_control_tmb(...)
```

**Arguments**

`...` You can provide a named value for any control parameter and its value will be set accordingly. See `?marginal_laplace` and examples here.

**Details**

Valid options are:

- **method**: optimization method to use for the theta optimization:
  - `"sparse_trust"` (default): `trustOptim::trust.optim`
  - `"sparse"`: `trust::trust`
  - `"BFGS"`: `optim(..., method = "BFGS")`
- **negate**: default `TRUE`. Assumes that your TMB function template computes the **negated** log-posterior, which it must if you’re using TMB’s automatic Laplace approximation, which you must be if you’re using this function!

**Value**

A list of argument values.

**Examples**

```r
default_control_marglaplace()
default_control_marglaplace(method = "trust")
default_control_marglaplace(method = "trust", inner_method = "trust")
default_control_marglaplace(negate = TRUE)
```
**gcdata**

_Globular Clusters data for Milky Way mass estimation_

**Description**

Measurements on star clusters from Eadie and Harris (2016), for use within the Milky Way mass estimation example. Data are documented extensively by that source.

**Usage**

`gcdata`

**Format**

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 70 rows and 25 columns.

**Source**


---

**gcdatalist**

_Transformed Globular Clusters data_

**Description**

GC data prepared for input into the TMB template, for purposes of example. There are a lot of example-specific data preprocessing steps that are not related to the AGHQ method, so for brevity these are done beforehand.

**Usage**

`gcdatalist`

**Format**

An object of class `list` of length 6.

**Source**

interpolate_marginal_posterior

Interpolate the Marginal Posterior

Description

Build a Lagrange polynomial interpolant of the marginal posterior, for plotting and for computing quantiles.

Usage

interpolate_marginal_posterior(margpost)

Arguments

margpost The output of aghq::marginal_posterior. See the documentation for that function.

Value

A function of theta which computes the log interpolated normalized marginal posterior.

See Also

Other summaries: compute_moment(), compute_pdf_and_cdf(), compute_quantiles(), marginal_posterior()

laplace_approximation

Laplace Approximation

Description

Wrapper function to implement a Laplace approximation to the posterior. A Laplace approximation is AGHQ with k = 1 quadrature points. However, the returned object is of a different class laplace, and a different summary method is given for it. It is especially useful for high-dimensional problems where the curse of dimensionality renders the use of k > 1 quadrature points infeasible. The summary method reflects the fact that the user may be using this for a high-dimensional problem, and no plot method is given, because there isn’t anything interesting to plot.

Usage

laplace_approximation(
  ff,
  startingvalue,
  optresults = NULL,
  control = default_control(),
  ...)
  )
Arguments

\textit{ff} A list with three elements:

- \textit{fn}: function taking argument theta and returning a numeric value representing the log-posterior at theta
- \textit{gr}: function taking argument theta and returning a numeric vector representing the gradient of the log-posterior at theta
- \textit{he}: function taking argument theta and returning a numeric matrix representing the hessian of the log-posterior at theta

The user may wish to use \texttt{numDeriv::grad} and/or \texttt{numDeriv::hessian} to obtain these. Alternatively, the user may consider the TMB package. This list is deliberately formatted to match the output of TMB::MakeADFun.

\textit{startingvalue} Value to start the optimization. \texttt{ff$fn(startingvalue), ff$gr(startingvalue), and ff$he(startingvalue)} must all return appropriate values without error.

\textit{optresults} Optional. A list of the results of the optimization of the log posterior, formatted according to the output of \texttt{aghq::optimize_theta}. The \texttt{aghq::aghq} function handles the optimization for you; passing this list overrides this, and is useful for when you know your optimization is too difficult to be handled by general-purpose software. See the software paper for several examples of this. If you're unsure whether this option is needed for your problem then it probably is not.

\textit{control} A list with elements

- \texttt{method}: optimization method to use:
  - 'sparse\textunderscore trust' (default): trustOptim::trust\_optim with method = \textquote{\textquote{'sparse'}}
  - 'SR1' (default): trustOptim::trust\_optim with method = \textquote{\textquote{'SR1'}}
  - 'trust': trust::trust
  - 'BFGS': optim(..., method = \textquote{\textquote{\textquote{"BFGS"}}})
  
  Default is 'sparse\textunderscore trust'.
- \texttt{optcontrol}: optional: a list of control parameters to pass to the internal optimizer you chose. The \texttt{aghq} package uses sensible defaults.

\texttt{...} Additional arguments to be passed to \texttt{ff$fn, ff$gr, and ff$he}.

Value

An object of class \texttt{laplace} with summary and plot methods. This is simply a list with elements \texttt{lognormconst} containing the log of the approximate normalizing constant, and \texttt{optresults} containing the optimization results formatted the same way as \texttt{optimize\_theta} and \texttt{aghq}.

See Also

Other quadrature: \texttt{aghq()}, \texttt{marginal\_laplace\_tmb()}, \texttt{marginal\_laplace()}, \texttt{normalize\_logpost()}, \texttt{optimize\_theta()}, \texttt{plot\_aghq()}, \texttt{print\_aghq\_summary()}, \texttt{print\_aghq()}, \texttt{print\_laplace\_summary()}, \texttt{print\_laplace()}, \texttt{summary\_aghq()}, \texttt{summary\_laplace()}
Examples

logfteta2d <- function(eta,y) {
    # eta is now (eta1,eta2)
    # y is now (y1,y2)
    n <- length(y)
    n1 <- ceiling(n/2)
    n2 <- floor(n/2)
    y1 <- y[1:n1]
    y2 <- y[(n1+1):(n1+n2)]
    eta1 <- eta[1]
    eta2 <- eta[2]
    sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
    sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}

set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
    fn = objfunc2d,
    gr = function(x) numDeriv::grad(objfunc2d,x),
    he = function(x) numDeriv::hessian(objfunc2d,x)
)

thequadrature <- aghq(funlist2d,3,c(0,0))

marginal_laplace

Marginal Laplace approximation

Description

Implement the marginal Laplace approximation of Tierney and Kadane (1986) for finding the
marginal posterior (theta | Y) from an unnormalized joint posterior (W,theta,Y) where W is high
dimensional and theta is low dimensional. See the AGHQ software paper for a detailed example, or
Stringer et. al. (2020).

Usage

marginal_laplace(
    ff,
    k,
    startingvalue,
    optresults = NULL,
    control = default_control_marglaplace(),
)
Arguments

**ff**
A function list similar to that required by aghq. However, each function now takes arguments \( W \) and \( \theta \). Explicitly, this is a list containing elements:

- **fn**: function taking arguments \( W \) and \( \theta \) and returning a numeric value representing the log-joint posterior at \( W, \theta \)
- **gr**: function taking arguments \( W \) and \( \theta \) and returning a numeric vector representing the gradient with respect to \( W \) of the log-joint posterior at \( W, \theta \)
- **he**: function taking arguments \( W \) and \( \theta \) and returning a numeric matrix representing the hessian with respect to \( W \) of the log-joint posterior at \( W, \theta \)

**k**
Integer, the number of quadrature points to use. I suggest at least 3. \( k = 1 \) corresponds to a Laplace approximation.

**startingvalue**
A list with elements \( W \) and \( \theta \), which are numeric vectors to start the optimizations for each variable. If you’re using this method then the log-joint posterior should be concave and these optimizations should not be sensitive to starting values.

**optresults**
Optional. A list of the results of the optimization of the log posterior, formatted according to the output of aghq::optimize_theta. The aghq::aghq function handles the optimization for you; passing this list overrides this, and is useful for when you know your optimization is too difficult to be handled by general-purpose software. See the software paper for several examples of this. If you’re unsure whether this option is needed for your problem then it probably is not.

**control**
A list with elements

- **method**: optimization method to use for the \( \theta \) optimization:
  - 'sparse_trust' (default): trustOptim::trust.optim
  - 'sparse': trust::trust
  - "BFGS": optim(...,method = "BFGS")
- **inner_method**: optimization method to use for the \( W \) optimization; same options as for method

  Default inner_method is 'sparse_trust' and default method is 'BFGS'.

Additional arguments to be passed to ff$fn, ff$gr, and ff$he.

Value

If \( k > 1 \), an object of class marginaLaplace, which includes the result of calling aghq::aghq on the Laplace approximation of \( (\theta|Y) \). See software paper for full details. If \( k = 1 \), an object of class laplace which is the result of calling aghq::laplace_approximation on the Laplace approximation of \( (\theta|Y) \).
See Also

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), normalize_logpost(), optimize_theta(), plot.aghq(), print.aghqsummary(), print.aghq(), print.laplace(), summary.aghq(), summary.laplace()

Examples

logfteta2d <- function(eta, y) {
  # eta is now (eta1,eta2)
  # y is now (y1,y2)
  n <- length(y)
  n1 <- ceiling(n/2)
  n2 <- floor(n/2)
  y1 <- y[1:n1]
  y2 <- y[(n1+1):(n1+n2)]
  eta1 <- eta[1]
  eta2 <- eta[2]
  sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
  sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}

set.seed(84343124)

n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)

objfunc2d <- function(x) logfteta2d(x,c(y1,y2))

objfunc2dmargin <- function(W, theta) objfunc2d(c(W, theta))

objfunc2dmargingrad <- function(W, theta) {
  fn <- function(W) objfunc2dmargin(W, theta)
  numDeriv::grad(fn, W)
}

objfunc2dmarginhessian <- function(W, theta) {
  fn <- function(W) objfunc2dmargin(W, theta)
  numDeriv::hessian(fn, W)
}

funlist2dmargin <- list(
  fn = objfunc2dmargin,
  gr = objfunc2dmargingrad,
  he = objfunc2dmarginhessian
)
Description

Implement the algorithm from aghq::marginal_laplace(), but making use of TMB's automatic Laplace approximation. This function takes a function list from TMB::MakeADFun() with a non-empty set of random parameters, in which the fn and gr are the unnormalized marginal Laplace approximation and its gradient. It then calls aghq::aghq() and formats the resulting object so that its contents and class match the output of aghq::marginal_laplace() and are hence suitable for post-processing with summary, aghq::sample_marginal(), and so on.

Usage

marginal_laplace_tmb(
  ff,
  k,
  startingvalue,
  optresults = NULL,
  control = default_control_tmb(),
  ...
)

Arguments

ff
  The output of calling TMB::MakeADFun() with random set to a non-empty subset of the parameters. **VERY IMPORTANT:** TMB's automatic Laplace approximation requires you to write your template implementing the negated log-posterior. Therefore, this list that you input here will contain components fn, gr and he that implement the negated log-posterior and its derivatives. This is **opposite** to every other comparable function in the aghq package, and is done here to emphasize compatibility with TMB.

k
  Integer, the number of quadrature points to use. I suggest at least 3. k = 1 corresponds to a Laplace approximation.

startingvalue
  Value to start the optimization. ff$fn(startingvalue), ff$gr(startingvalue), and ff$he(startingvalue) must all return appropriate values without error.

optresults
  Optional. A list of the results of the optimization of the log posterior, formatted according to the output of aghq::optimize_theta. The aghq::aghq function handles the optimization for you; passing this list overrides this, and is useful for when you know your optimization is too difficult to be handled by general-purpose software. See the software paper for several examples of this. If you're unsure whether this option is needed for your problem then it probably is not.

control
  A list of control parameters. See ?default_control for details. Valid options are:
  - method: optimization method to use for the theta optimization:
    - 'sparse_trust' (default): trustOptim::trust.optim
    - 'sparse': trust::trust
    - 'BFGS': optim(..., method = "BFGS")
  - inner_method: optimization method to use for the W optimization; same options as for method. Default inner_method is 'sparse_trust' and default method is 'BFGS'.


• negate: default TRUE. See ?default_control_tmb. Assumes that your
TMB function template computes the negated log-posterior, which it must if
you’re using TMB’s automatic Laplace approximation, which you must be if
you’re using this function!

Additional arguments to be passed to \texttt{ff$fn}, \texttt{ff$gr}, and \texttt{ff$he}.

Details
Because TMB does not yet have the Hessian of the log marginal Laplace approximation implemented,
a numerically-differentiated jacobian of the gradient is used via \texttt{numDeriv::jacobian()}. You can
turn this off (using \texttt{ff$he()} instead, which you’ll have to modify yourself) using \texttt{default_control_tmb(numhessian = FALSE)}.

Value
If \(k > 1\), an object of class \texttt{marginallaplace} (and inheriting from class \texttt{aghq}) of the same structure
as that returned by \texttt{aghq::marginal_laplace()}, with plot and summary methods, and suitable
for input into \texttt{aghq::sample_marginal()} for drawing posterior samples.

See Also
Other quadrature: \texttt{aghq()}, \texttt{laplace_approximation()}, \texttt{marginal_laplace()}, \texttt{normalize_logpost()}, \texttt{optimize_theta()}, \texttt{plot.aghq()}, \texttt{print.aghqsummary()}, \texttt{print.aghq()}, \texttt{print.laplacesummary()}, \texttt{print.laplace()}, \texttt{summary.aghq()}, \texttt{summary.laplace()}

---

**marginal_posterior**

**Marginal Posteriors**

**Description**
Compute the marginal posterior for a given parameter using AGHQ. This function is mostly called
within \texttt{aghq()}.

**Usage**
marginal_posterior(optresults, k, j, ndConstruction = "product")

**Arguments**
- \texttt{optresults} The results of calling \texttt{aghq::optimize_theta()}; see return value of that func-
tion.
- \texttt{k} Integer, the number of quadrature points to use. I suggest at least 3. \(k = 1\) corresponds to a Laplace approximation.
- \texttt{j} Integer between 1 and the dimension of the parameter space. Which index of
the parameter vector to compute the marginal posterior for.
Create a multivariate grid using a product or sparse construction? Passed directly to `mvQuad::createNIGrid()`, see that function for further details. Note that the use of sparse grids within `aghq` is currently experimental and not supported by tests. In particular, calculation of marginal posteriors is known to fail currently.

Value

a data.frame containing the normalized log marginal posterior for \(\theta_j\) evaluated at the original quadrature points. Has columns "thetaj", "logpost_normalized", "weights", where \(j\) is the \(j\) you specified.

See Also

Other summaries: `compute_moment()`, `compute_pdf_and_cdf()`, `compute_quantiles()`, `interpolate_marginal_posterior()`.

Examples

```r
A 2d example
logfteta2d <- function(eta, y) {
 # eta is now (eta1, eta2)
 # y is now (y1, y2)
 n <- length(y)
 n1 <- ceiling(n/2)
 n2 <- floor(n/2)
 y1 <- y[1:n1]
 y2 <- y[(n1+1):(n1+n2)]
 eta1 <- eta[1]
 eta2 <- eta[2]
 sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
 sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1, 5)
y2 <- rpois(n2, 5)
objfunc2d <- function(x) logfteta2d(x, c(y1, y2))
funlist2d <- list(
 fn = objfunc2d,
 gr = function(x) numDeriv::grad(objfunc2d, x),
 he = function(x) numDeriv::hessian(objfunc2d, x)
)
opt_sparse_trust_2d <- optimize_theta(funlist2d, c(1.5, 1.5))

Now actually do the marginal posteriors
marginal_posterior(opt_sparse_trust_2d, 3, 1)
marginal_posterior(opt_sparse_trust_2d, 3, 2)
marginal_posterior(opt_sparse_trust_2d, 7, 2)
```
**normalize_logpost**

**Normalize the joint posterior using AGHQ**

**Description**

This function takes in the optimization results from `aghq::optimize_theta()` and returns a list with the quadrature points, weights, and normalization information. Like `aghq::optimize_theta()`, this is designed for use only within `aghq::aghq`, but is exported for debugging and documented in case you want to modify it somehow, or something.

**Usage**

```r
normalize_logpost(
 optresults,
 k,
 whichfirst = 1,
 ndConstruction = "product",
 ...
)
```

**Arguments**

- **optresults** The results of calling `aghq::optimize_theta()`: see return value of that function.
- **k** Integer, the number of quadrature points to use. I suggest at least 3. `k = 1` corresponds to a Laplace approximation.
- **whichfirst** Integer between 1 and the dimension of the parameter space, default 1. The user shouldn’t have to worry about this: it’s used internally to re-order the parameter vector before doing the quadrature, which is useful when calculating marginal posteriors.
- **ndConstruction** Create a multivariate grid using a product or sparse construction? Passed directly to `mvQuad::createNIGrid()`, see that function for further details. Note that the use of sparse grids within `aghq` is currently experimental and not supported by tests. In particular, calculation of marginal posteriors is known to fail currently.
- **...** Additional arguments to be passed to `optresults$ff`, see `?optimize_theta`.

**Value**

If `k > 1`, a list with elements:

- **nodesandweights**: a dataframe containing the nodes and weights for the adaptive quadrature rule, with the un-normalized and normalized log posterior evaluated at the nodes.
- **thegrid**: a `NIGrid` object from the `mvQuad` package, see `?mvQuad::createNIGrid`.
- **lognormconst**: the actual result of the quadrature: the log of the normalizing constant of the posterior.

If `k = 1`, then the method returns a numeric value representing the log of the normalizing constant computed using a Laplace approximation.
optimize_theta

Obtain function information necessary for performing quadrature

Description

This function computes the two pieces of information needed about the log posterior to do adaptive quadrature: the mode, and the hessian at the mode. It is designed for use within aghq::aghq, but is exported in case users need to debug the optimization process and documented in case users want to write their own optimizations.

See Also

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), optimize_theta(), plot.aghq(), print.aghq_summary(), print.aghq(), print.laplace_summary(), print.laplace(), summary.aghq(), summary.laplace()

Examples

# Same setup as optimize_theta
logfteta <- function(eta,y) {
  sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta
}
set.seed(84343124)
y <- rpois(10,5) # Mode should be sum(y) / (10 + 1)
truemode <- log((sum(y) + 1)/(length(y) + 1))
objcfunc <- function(x) logfteta(x,y)
funlist <- list(
  fn = objcfunc,
  gr = function(x) numDeriv::grad(objfunc,x),
  he = function(x) numDeriv::hessian(objfunc,x)
)
opt_sparsetrust <- optimize_theta(funlist,1.5)
opt_trust <- optimize_theta(funlist,1.5,control = list(method = "trust"))
opt_bfgs <- optimize_theta(funlist,1.5,control = list(method = "BFGS"))

# Quadrature with 3, 5, and 7 points using sparse trust region optimization:
norm_sparse_3 <- normalize_logpost(opt_sparsetrust,3,1)
norm_sparse_5 <- normalize_logpost(opt_sparsetrust,5,1)
norm_sparse_7 <- normalize_logpost(opt_sparsetrust,7,1)

# Quadrature with 3, 5, and 7 points using dense trust region optimization:
norm_trust_3 <- normalize_logpost(opt_trust,3,1)
norm_trust_5 <- normalize_logpost(opt_trust,5,1)
norm_trust_7 <- normalize_logpost(opt_trust,7,1)

# Quadrature with 3, 5, and 7 points using BFGS optimization:
norm_bfgs_3 <- normalize_logpost(opt_bfgs,3,1)
norm_bfgs_5 <- normalize_logpost(opt_bfgs,5,1)
norm_bfgs_7 <- normalize_logpost(opt_bfgs,7,1)
Usage

optimize_theta(ff, startingvalue, control = default_control(), ...)

Arguments

ff A list with three elements:
  • fn: function taking argument theta and returning a numeric value representing the log-posterior at theta
  • gr: function taking argument theta and returning a numeric vector representing the gradient of the log-posterior at theta
  • he: function taking argument theta and returning a numeric matrix representing the hessian of the log-posterior at theta

The user may wish to use numDeriv::grad and/or numDeriv::hessian to obtain these. Alternatively, the user may consider the TMB package. This list is deliberately formatted to match the output of TMB::MakeADFun.

startingvalue Value to start the optimization. ff$fn(startingvalue), ff$gr(startingvalue), and ff$he(startingvalue) must all return appropriate values without error.

control A list with elements
  • method: optimization method to use:
    – 'sparse_trust' (default): trustOptim::trust.optim with method = 'sparse'
    – 'SR1' (default): trustOptim::trust.optim with method = 'SR1'
    – 'trust': trust::trust
    – 'BFGS': optim(...,method = "BFGS")

Default is 'sparse_trust'.
  • optcontrol: optional: a list of control parameters to pass to the internal optimizer you chose. The aghq package uses sensible defaults.

... Additional arguments to be passed to ff$fn, ff$gr, and ff$he.

Value

A list with elements
  • ff: the function list that was provided
  • mode: the mode of the log posterior
  • hessian: the hessian of the log posterior at the mode
  • convergence: specific to the optimizer used, a message indicating whether it converged

See Also

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), normalize_logpost(), plot.aghq(), print.aghqsummary(), print.aghq(), print.laplacesummary(), print.laplace(), summary.aghq(), summary.laplace()
Examples

# Poisson/Exponential example
logfteta <- function(eta,y) {
  sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta
}

y <- rpois(10,5) # Mode should be (sum(y) + 1) / (length(y) + 1)

objfunc <- function(x) logfteta(x,y)
funlist <- list(
  fn = objfunc,
  gr = function(x) numDeriv::grad(objfunc,x),
  he = function(x) numDeriv::hessian(objfunc,x)
)

optimize_theta(funlist,1.5)
optimize_theta(funlist,1.5,control = list(method = "trust"))
optimize_theta(funlist,1.5,control = list(method = "BFGS"))

plot.aghq

Plot method for AGHQ objects

Description

Plot the marginal pdf and cdf from an aghq object.

Usage

## S3 method for class 'aghq'
plot(x, ...)

Arguments

x
## The return value of aghq::aghq.
...
## not used.

Value

Silently plots.

See Also

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(),
normalize_logpost(), optimize_theta(), print.aghqsammary(), print.aghq(), print.laplacesummary(),
print.laplace(), summary.aghq(), summary.laplace()

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(),
normalize_logpost(), optimize_theta(), print.aghqsammary(), print.aghq(), print.laplacesummary(),
print.laplace(), summary.aghq(), summary.laplace()
Examples

```r
logfteta2d <- function(eta, y) {
eta is now (eta1, eta2)
y is now (y1, y2)
n <- length(y)
n1 <- ceiling(n/2)
n2 <- floor(n/2)
y1 <- y[1:n1]
y2 <- y[(n1+1):(n1+n2)]
eta1 <- eta[1]
eta2 <- eta[2]
sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1, 5)
y2 <- rpois(n2, 5)
objfunc2d <- function(x) logfteta2d(x, c(y1, y2))
funlist2d <- list(
 fn = objfunc2d,
 gr = function(x) numDeriv::grad(objfunc2d, x),
 he = function(x) numDeriv::hessian(objfunc2d, x)
)
thequadrature <- aghq(funlist2d, 3, c(0, 0))
plot(thequadrature)
```

print.aghq

Print method for AGHQ objects

Description

Pretty print the object—just gives some basic information and then suggests the user call `summary(...)`.

Usage

```r
S3 method for class 'aghq'
print(x, ...)
```

Arguments

- `x` An object of class `aghq`.
- `...` not used.
Value

Silently prints summary information.

See Also

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), normalize_logpost(), optimize_theta(), plot.aghq(), print.aghqsummary(), print.laplacesummary(), print.laplace(), summary.aghq(), summary.laplace()

Examples

logfteta2d <- function(eta,y) {
  # eta is now (eta1,eta2)
  # y is now (y1,y2)
  n <- length(y)
  n1 <- ceiling(n/2)
  n2 <- floor(n/2)
  y1 <- y[1:n1]
  y2 <- y[(n1+1):(n1+n2)]
  eta1 <- eta[1]
  eta2 <- eta[2]
  sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
  sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(  
  fn = objfunc2d,
  gr = function(x) numDeriv::grad(objfunc2d,x),
  he = function(x) numDeriv::hessian(objfunc2d,x)
  )
thequadrature <- aghq(funlist2d,3,c(0,0))
thequadrature
Usage

## S3 method for class 'aghqsummary'
print(x, ...)

Arguments

x

The result of calling summary(...) on an object of class aghq.

... not used.

Value

Silently prints summary information.

See Also

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), normalize_logpost(), optimize_theta(), plot.aghq(), print.aghq(), print.laplace(), summary.aghq(), summary.laplace()

Examples

logfteta2d <- function(eta, y)
{
  # eta is now (eta1, eta2)
  # y is now (y1, y2)
  n <- length(y)
  n1 <- ceiling(n/2)
  n2 <- floor(n/2)
  y1 <- y[1:n1]
  y2 <- y[(n1+1):(n1+n2)]
  eta1 <- eta[1]
  eta2 <- eta[2]
  sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
  sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1, 5)
y2 <- rpois(n2, 5)
objfunc2d <- function(x) logfteta2d(x, c(y1, y2))
funlist2d <- list(
  fn = objfunc2d,
  gr = function(x) numDeriv::grad(objfunc2d, x),
  he = function(x) numDeriv::hessian(objfunc2d, x)
)}
thequadrature <- aghq(funlist2d,3,c(0,0))
# Summarize and automatically call its print() method when called interactively:
summary(thequadrature)

print.laplace

Print method for AGHQ objects

Description
Pretty print the object--just gives some basic information and then suggests the user call summary(...).

Usage
## S3 method for class 'laplace'
print(x, ...)  

Arguments

x
An object of class aghq.

... not used.

Value
Silently prints summary information.

See Also
Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), 
normalize_logpost(), optimize_theta(), plot.aghq(), print.aghqsummary(), print.aghq(), 
print.laplacesummary(), summary.aghq(), summary.laplace()

Examples

logfteta2d <- function(eta,y) {
  # eta is now (eta1,eta2)
  # y is now (y1,y2)
  n <- length(y)
  n1 <- ceiling(n/2)
  n2 <- floor(n/2)
  y1 <- y[1:n1]
  y2 <- y[(n1+1):(n1+n2)]
  eta1 <- eta[1]
  eta2 <- eta[2]
  sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
  sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}

print.laplace
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
  fn = objfunc2d,
  gr = function(x) numDeriv::grad(objfunc2d,x),
  he = function(x) numDeriv::hessian(objfunc2d,x)
)
thequadrature <- aghq(funlist2d,3,c(0,0))
thequadrature

print.laplace_summary
Print method for laplace_summary objects

Description
Print the summary of an laplace object. Almost always called by invoking summary(...) interactively in the console.

Usage
## S3 method for class 'laplace_summary'
print(x, ...)

Arguments
x The result of calling summary(...) on an object of class laplace.
... not used.

Value
Silently prints summary information.

See Also
Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), normalize_logpost(), optimize_theta(), plot.aghq(), print.aghqsummary(), print.aghq(), print.laplace(), summary.aghq(), summary.laplace()
Examples

logfteta2d <- function(eta,y) {
  # eta is now (eta1,eta2)
  # y is now (y1,y2)
  n <- length(y)
  n1 <- ceiling(n/2)
  n2 <- floor(n/2)
  y1 <- y[1:n1]
  y2 <- y[(n1+1):(n1+n2)]
  eta1 <- eta[1]
  eta2 <- eta[2]
  sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
  sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
  fn = objfunc2d,
  gr = function(x) numDeriv::grad(objfunc2d,x),
  he = function(x) numDeriv::hessian(objfunc2d,x)
)

thelaplace <- laplace_approximation(funlist2d,c(0,0))
# Summarize and automatically call its print() method when called interactively:
summary(thelaplace)

---

sample_marginal

Exact independent samples from an approximate posterior distribution

Description

Draws samples from an approximate marginal distribution for general posteriors approximated using aghq, or from the mixture-of-Gaussians approximation to the variables that were marginalized over in a marginal Laplace approximation fit using aghq::marginal_laplace or aghq::marginal_laplace_tmb.

Usage

sample_marginal(quad, ...)

## S3 method for class 'aghq'
sample_marginal(quad, M, transformation = NULL, ...)
## S3 method for class 'marginallaplace'
sample_marginal(quad, M, transformation = NULL, ...)

### Arguments

- **quad**: Object from which to draw samples. An object inheriting from class `marginallaplace` (the result of running `aghq::marginal_laplace` or `aghq::marginal_laplace_tmb`), or an object inheriting from class `aghq` (the result of running `aghq::aghq()`). Can also provide a data.frame returned by `aghq::compute_pdf_and_cdf` in which case samples are returned for `transparam` if `transformation` is provided, and for `param` if `transformation = NULL`.
- **M**: Numeric, integer saying how many samples to draw
- **transformation**: Optional. A list containing function `fromtheta()` which accepts and returns numeric vectors, defining a parameter transformation for which you would like samples to be taken. See `?compute_pdf_and_cdf`. Note that unlike there, where this operation is a bit more complicated, here all is done is samples are taken on the original scale and then `transformation$fromtheta()` is called on them before returning.

### Details

For objects of class `aghq` or their marginal distribution components, sampling is done using the inverse CDF method, which is just `compute_quantiles(quad$marginals[[1]], runif(M))`.

For marginal Laplace approximations (`aghq::marginal_laplace()`): this method samples from the posterior and returns a vector that is ordered the same as the "W" variables in your marginal Laplace approximation. See Algorithm 1 in Stringer et al. (2021, https://arxiv.org/abs/2103.07425) for the algorithm; the details of sampling from a Gaussian are described in the reference(s) therein, which makes use of the (sparse) Cholesky factors. These are computed once for each quadrature point and stored.

For the marginal Laplace approximations where the "inner" model is handled entirely by TMB (`aghq::marginal_laplace_tmb`), the interface here is identical to above, with the order of the "W" vector being determined by TMB. See the names of `ff$env$last.par`, for example (where `ff` is your template obtained from a call to `TMB::MakeADFun`.

### Value

If run on a `marginallaplace` object, a list containing elements:

- **samps**: d x M matrix where d = dim(W) and each column is a sample from $pi(W|Y, \theta)$
- **theta**: M x S tibble where S = dim(\theta) containing the value of \theta for each sample
- **thetasamples**: A list of S numeric vectors each of length M where the jth element is a sample from $pi(\theta_{j}|Y)$. These are samples from the **marginals**, NOT the **joint**. Sampling from the joint is a much more difficult problem and how to do so in this context is an active area of research.
If run on an aghq object, then a list with just the thetasamples element. It still returns a list to maintain output consistency across inputs.

If, for some reason, you don’t want to do the sampling from $p_\pi(\theta|Y)$, you can manually set `quad$marginals = NULL`. Note that this sampling is typically very fast and so I don’t know why you would need to not do it but the option is there if you like.

If, again for some reason, you just want samples from one marginal distribution using inverse CDF, you can just do `compute_quantiles(quad$marginals[[1]], runif(M))`.

**Examples**

```r
def <- function(eta, y) {
 # eta is now (eta1, eta2)
 # y is now (y1, y2)
 n <- length(y)
 n1 <- ceiling(n/2)
 n2 <- floor(n/2)
 y1 <- y[1:n1]
 y2 <- y[(n1+1):(n1+n2)]
 eta1 <- eta[1]
 eta2 <- eta[2]
 sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
 sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
def <- def
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1, 5)
y2 <- rpois(n2, 5)
objfunc2d <- function(x) def(x, c(y1, y2))
objfunc2dmarg2d <- function(W, theta) objfunc2d(c(W, theta))
objfunc2dmarggr2d <- function(W, theta) {
 fn <- function(W) objfunc2dmarg2d(W, theta)
 numDeriv::grad(fn, W)
}
objfunc2dmarghe2d <- function(W, theta) {
 fn <- function(W) objfunc2dmarg2d(W, theta)
 numDeriv::hessian(fn, W)
}
funlist2dmarg2d <- list(
 fn = objfunc2dmarg2d,
 gr = objfunc2dmarggr2d,
 he = objfunc2dmarghe2d
)
```

**Summary statistics computed using AGHQ**
Description

The `summary.aghq` method computes means, standard deviations, and quantiles and the associated
print method prints these along with diagnostic and other information about the quadrature.

Usage

```r
S3 method for class 'aghq'
summary(object, ...)
```

Arguments

- `object` The return value from `aghq::aghq`.
- `...` not used.

Value

A list of class `aghqsummary`, which has a print method. Elements:

- mode: the mode of the log posterior
- hessian: the hessian of the log posterior at the mode
- covariance: the inverse of the hessian of the log posterior at the mode
- cholesky: the upper cholesky triangle of the hessian of the log posterior at the mode
- quadpoints: the number of quadrature points used in each dimension
- dim: the dimension of the parameter space
- summarytable: a table containing the mean, median, mode, standard deviation and quantiles
  of each parameter, computed according to the posterior normalized using AGHQ

See Also

Other quadrature: `aghq()`, `laplace_approximation()`, `marginal_laplace_tmb()`, `marginal_laplace()`,
`normalize_logpost()`, `optimize_theta()`, `plot.aghq()`, `print.aghqsummary()`, `print.aghq()`,
`print.laplacesummary()`, `print.laplace()`, `summary.laplace()`

Examples

```r
logfteta2d <- function(eta, y) {
 # eta is now (eta1, eta2)
 # y is now (y1, y2)
 n <- length(y)
 n1 <- ceiling(n/2)
 n2 <- floor(n/2)
 y1 <- y[1:n1]
 y2 <- y[(n1+1):(n1+n2)]
 eta1 <- eta[1]
 eta2 <- eta[2]
 sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
 sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
```
```r
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
 fn = objfunc2d,
 gr = function(x) numDeriv::grad(objfunc2d,x),
 he = function(x) numDeriv::hessian(objfunc2d,x)
)

thequadrature <- aghq(funlist2d,3,c(0,0))
Summarize and automatically call its print() method when called interactively:
summary(thequadrature)
or, compute the summary and save for further processing:
ss <- summary(thequadrature)
str(ss)
```

---

### summary.laplace

**Summary method for Laplace Approximation objects**

#### Description

Summary method for objects of class `laplace`. Similar to the method for objects of class `aghq`, but assumes the problem is high-dimensional and does not compute or print any large objects or summaries. See `summary.aghq` for further information.

#### Usage

```r
S3 method for class 'laplace'
summary(object, ...)
```

#### Arguments

- `object` An object of class `laplace`.
- `...` not used.

#### Value

Silently prints summary information.
See Also

Other quadrature: aghq(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), normalize_logpost(), optimize_theta(), plot.aghq(), print.aghqsummary(), print.aghq(), print.laplace(), summary.aghq()

Examples

```r
logfteta2d <- function(eta,y) {
 # eta is now (eta_1, eta_2)
 # y is now (y_1, y_2)
 n <- length(y)
 n1 <- ceiling(n/2)
 n2 <- floor(n/2)
 y1 <- y[1:n1]
 y2 <- y[(n1+1):(n1+n2)]
 eta1 <- eta[1]
 eta2 <- eta[2]
 sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
 sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
 fn = objfunc2d,
 gr = function(x) numDeriv::grad(objfunc2d,x),
 he = function(x) numDeriv::hessian(objfunc2d,x)
)
thealaplace <- laplace_approximation(funlist2d,c(0,0))
Summarize and automatically call its print() method when called interactively:
summary(thealaplace)
```
Index

* datasets
  gcdata, 13
  gcdatalist, 13

* quadrature
  aghq, 2
  laplace_approximation, 14
  marginal_laplace, 16
  marginal_laplace_tmb, 18
  normalize_logpost, 22
  optimize_theta, 23
  plot.aghq, 25
  print.aghq, 26
  print.aghqsummary, 27
  print.laplace, 29
  print.laplacesummary, 30
  summary.aghq, 33
  summary.laplace, 35

* sampling
  sample_marginal, 31

* summaries
  compute_moment, 4
  compute-pdf_and_cdf, 6
  compute_quantiles, 8
  interpolate_marginal_posterior, 14
  marginal_posterior, 20
  aghq, 2, 15, 18, 20, 23–25, 27–30, 34, 36
  compute_moment, 4, 7, 9, 14, 21
  compute_pdf_and_cdf, 5, 6, 9, 14, 21
  compute_quantiles, 5, 7, 8, 14, 21
  default_control, 9
  default_control_marglaplace, 11
  default_control_tmb, 12
  gcdata, 13
  gcdatalist, 13
  interpolate_marginal_posterior, 5, 7, 9, 14, 21
  laplace_approximation, 4, 14, 18, 20, 23–25, 27–30, 34, 36
  marginal_laplace, 4, 15, 16, 20, 23–25, 27–30, 34, 36
  marginal_laplace_tmb, 4, 15, 18, 19, 23–25, 27–30, 34, 36
  marginal_posterior, 5, 7, 9, 14, 20
  normalize_logpost, 4, 15, 18, 20, 22, 24, 25, 27–30, 34, 36
  optimize_theta, 4, 15, 18, 20, 23, 23, 25, 27–30, 34, 36
  plot.aghq, 4, 15, 18, 20, 23, 24, 25, 27–30, 34, 36
  print.aghq, 4, 15, 18, 20, 23–25, 26, 28–30, 34, 36
  print.aghqsummary, 4, 15, 18, 20, 23–25, 27, 29, 30, 34, 36
  print.laplace, 4, 15, 18, 20, 23–25, 27, 29, 30, 34, 36
  print.laplacesummary, 4, 15, 18, 20, 23–25, 27–29, 30, 34, 36
  sample_marginal, 31
  summary.aghq, 4, 15, 18, 20, 23–25, 27–30, 33, 36
  summary.laplace, 4, 15, 18, 20, 23–25, 27–30, 34, 35