Package ‘agop’

January 9, 2020

Version 0.2-3
Date 2020-01-06
Title Aggregation Operators and Preordered Sets
Description Tools supporting multi-criteria and group decision making,
including variable number of criteria, by means of
aggregation operators, spread measures,
fuzzy logic connectives, fusion functions,
and preordered sets. Possible applications include,
but are not limited to, quality management, scientometrics,
software engineering, etc.

URL http://www.gagolewski.com/software/

BugReports http://github.com/gagolews/agop/issues
ByteCompile TRUE
Suggests igraph
Type Package
Depends R (>= 3.0), stats, grDevices, graphics
License LGPL (>= 3)
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation yes
Author Marek Gagolewski [aut, cre] (<https://orcid.org/0000-0003-0637-6028>),
 Anna Cena [ctb] (<https://orcid.org/0000-0001-8697-5383>)
Maintainer Marek Gagolewski <marek@gagolewski.com>
Repository CRAN
Date/Publication 2020-01-08 23:02:07 UTC
R topics documented:

- agop-package .. 3
- check_comonotonicity .. 3
- d2owa_checkwts ... 4
- dpareto2_estimate_mle 5
- exp_test_ad .. 6
- fimplication_minimal ... 7
- fnegation_yager ... 8
- index_g .. 9
- index_h .. 10
- index_lp .. 12
- index_maxprod ... 13
- index_rp .. 14
- index_w .. 15
- owa ... 16
- owmax .. 17
- pareto2_estimate_mle 19
- pareto2_estimate_mmse 20
- pareto2_test_ad ... 20
- pareto2_test_f ... 21
- plot_producer ... 22
- pord_nd .. 24
- pord_spread .. 25
- pord_weakdom ... 26
- rdpareto2 .. 27
- rel_graph .. 28
- rel_is_antisymmetric 28
- rel_is_asymmetric .. 29
- rel_is_cyclic ... 30
- rel_is_irreflexive ... 31
- rel_is_reflexive ... 31
- rel_is_symmetric ... 32
- rel_is_total .. 33
- rel_is_transitive .. 34
- rel_reduction_hasse 35
- rpareto2 ... 36
- tconorm_minimum ... 37
- tnorm_minimum .. 39

Index 41
Description

Aggregation Operators and Preordered Sets Package for R

Author(s)

Marek Gagolewski <marek@gagolewski.com> [aut, cre],
Anna Cena <cena@rexamine.com> [ctb]

Keywords: aggregation, bibliometrics, scientometrics, scientific impact, webometrics, preorders, binary relations, means, OWA, OWMax, OWMin, Hirsch’s h-index, Egghe’s g-index, variance, spread, decision making, fuzzy logic.

Acknowledgments: The development of the package in March-June 2013 was partially supported by the European Union from the resources of the European Social Fund, Project PO KL “Information technologies: Research and their interdisciplinary applications”, agreement UDA-POKL.04.01.01-00-051/10-00.

check_comonotonicity Check If Two Vectors Are Comonotonic

Description

This functions determines if two vectors have a common ordering permutation.

Usage

check_comonotonicity(x, y, incompatible_lengths = NA)

Arguments

x numeric vector
y numeric vector
incompatible_lengths
 single logical value, value to return iff lengths of x and y differ

Details

Two vectors x, y of equal length n are comonotonic, if and only if there exists a permutation σ such that \(x_{\sigma(1)} \leq \ldots \leq x_{\sigma(n)} \) and \(y_{\sigma(1)} \leq \ldots \leq y_{\sigma(n)} \). Thus, σ orders x and y simultaneously. Equivalently, x and y are comonotonic, iff \((x_i - x_j)(y_i - y_j) \geq 0 \) for every \(i, j \).

If there are missing values in x or y, the function returns NA.

Currently, the implemented algorithm has \(O(n^2) \) time complexity.
d2owa_checkwts

Value

Returns a single logical value.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other binary_relations: pord Nd, pord spread, pord weakdom, rel_graph, rel is antisymmetric, rel is asymmetric, rel is cyclic, rel is irreflexive, rel is reflexive, rel is symmetric, rel is total, rel is transitive, rel reduction hasse

Description

Computes the D2OWA operator, i.e., the normalized L2 distance between a numeric vector and an OWA operator.

Usage

```r
d2owa_checkwts(w)
```

```r
d2owa(x, w = rep(1/length(x), length(x)))
```

Arguments

- `w` numeric vector of the same length as `x`, with elements in `[0, 1]`, and such that \(\sum w_i = 1 \); weights
- `x` numeric vector to be aggregated

Details

D2OWA is a symmetric spread measure. It is defined as \(d2owa(x) = \sqrt{\text{mean}((x-owa(x,w))^2)} \). Not all weights, however, generate a proper function of this kind; `d2owa_checkwts` may be used to check that. For `d2owa`, if `w` is not appropriate, an error is thrown.

`w` is automatically normalized so that its elements sum up to 1.

Value

For `d2owa`, a single numeric value is returned. On the other hand, `d2owa_checkwts` returns a single logical value.
References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

dpareto2_estimate_mle
Parameter Estimation in the Discretized Pareto-Type II Distribution Family (MLE)

Description

Finds the maximum likelihood estimator of the Discretized Pareto Type-II distribution’s shape parameter k and scale parameter s.

Usage

```r
dpareto2_estimate_mle(x, k0 = 1, s0 = 1, kmin = 1e-04, smin = 1e-04, kmax = 100, smax = 100)
```

Arguments

- `x`: a non-negative numeric vector
- `k0`, `s0`: initial points for the L-BFGS-B method
- `kmin`, `kmax`: lower and upper bound for the shape parameter
- `smin`, `smax`: lower and upper bound for the scale parameter

Details

Note that the maximum of the likelihood function might not exist for some input vectors. This estimator may have a large mean squared error.

Value

Returns a numeric vector with the following named components:

- `k`: estimated parameter of shape
- `s`: estimated parameter of scale

or `c(NA, NA)` if the maximum of the likelihood function could not be found.

See Also

Other DiscretizedPareto2: `rdpareto2`
Anderson-Darling Test for Exponentiality

Description

Performs an approximate Anderson-Darling goodness-of-fit test, which verifies the null hypothesis:
Data follow an exponential distribution.

Usage

exp_test_ad(x)

Arguments

x

a non-negative numeric vector of data values

Details

Sample size should be not less than 3. Missing values are removed from x before applying the procedure.

The p-value is approximate: its distribution has been estimated by taking 2500000 MC samples.
For performance and space reasons, the estimated distribution is recreated by a spline interpolation
on a fixed number of points. As a result, the resulting p-value distribution might not necessarily be
uniform for p>0.5.

Value

A list of the class htest is returned, just like in many other testing methods, see, e.g., ks.test.

References

Anderson T.W., Darling D.A., A Test of Goodness-of-Fit, Journal of the American Statistical Asso-

See Also

pexp

Other Tests: pareto2_test_ad, pareto2_test_f
Fuzzy Implications

Description

Various fuzzy implications Each of these is a fuzzy logic generalization of the classical implication operation.

Usage

- fimplication_minimal(x, y)
- fimplication_maximal(x, y)
- fimplication_kleene(x, y)
- fimplication_lukasiewicz(x, y)
- fimplication_reichenbach(x, y)
- fimplication_fodor(x, y)
- fimplication_goguen(x, y)
- fimplication_goedel(x, y)
- fimplication_rescher(x, y)
- fimplication_weber(x, y)
- fimplication_yager(x, y)

Arguments

- \(x\) numeric vector with elements in \([0,1]\)
- \(y\) numeric vector of the same length as \(x\), with elements in \([0,1]\)

Details

A function \(I: [0,1] \times [0,1] \rightarrow [0,1]\) is a fuzzy implication if for all \(x, y, x', y' \in [0,1]\) it holds:

(a) if \(x \leq x'\), then \(I(x, y) \geq I(x', y)\); (b) if \(y \leq y'\), then \(I(x, y) \leq I(x, y')\); (c) \(I(1,1) = 1\); (d) \(I(0,0) = 1\); (e) \(I(1,0) = 0\).

The minimal fuzzy implication is given by \(I_0(x, y) = 1\) iff \(x = 0\) or \(y = 1\), and 0 otherwise.

The maximal fuzzy implication is given by \(I_1(x, y) = 0\) iff \(x = 1\) and \(y = 0\), and 1 otherwise.

The Kleene-Dienes fuzzy implication is given by \(I_{KD}(x, y) = \max(1 - x, y)\).

The Lukasiewicz fuzzy implication is given by \(I_L(x, y) = \min(1 - x + y, 1)\).
The Reichenbach fuzzy implication is given by $I_{RB}(x, y) = 1 - x + xy$.
The Fodor fuzzy implication is given by $I_F(x, y) = 1$ iff $x \leq y$, and $\max(1 - x, y)$ otherwise.
The Goguen fuzzy implication is given by $I_{GG}(x, y) = 1$ iff $x \leq y$, and y/x otherwise.
The Goedel fuzzy implication is given by $I_{GD}(x, y) = 1$ iff $x \leq y$, and y otherwise.
The Rescher fuzzy implication is given by $I_{RS}(x, y) = 1$ iff $x \leq y$, and 0 otherwise.
The Weber fuzzy implication is given by $I_{W}(x, y) = 1$ iff $x < 1$, and y otherwise.
The Yager fuzzy implication is given by $I_{Y}(x, y) = 1$ iff $x = 0$ and $y = 0$, and y^x otherwise.

Value

Numeric vector of the same length as x and y. The ith element of the resulting vector gives the result of calculating $I(x[i], y[i])$.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other fuzzy_logic: *fnegation_yager*, *tconorm_minimum*, *tnorm_minimum*

fnegation_yager Fuzzy Negations

Description

Various fuzzy negations. Each of these is a fuzzy logic generalization of the classical negation operation.

Usage

- `fnegation_yager(x)`
- `fnegation_classic(x)`
- `fnegation_minimal(x)`
- `fnegation_maximal(x)`

Arguments

- `x` numeric vector with elements in $[0,1]$
Details

A function $N : [0, 1] \rightarrow [0, 1]$ is a fuzzy implication if for all $x, y \in [0, 1]$ it holds: (a) if $x \leq y$, then $N(x) \geq N(y)$; (b) $N(1) = 0$; (c) $N(0) = 1$.

The classic fuzzy negation is given by $N_C(x) = 1 - x$.

The Yager fuzzy negation is given by $N_Y(x) = \sqrt{1 - x^2}$.

The minimal fuzzy negation is given by $N_0(x, y) = 1$ iff $x = 0$, and 0 otherwise.

The maximal fuzzy negation is given by $N_1(x, y) = 1$ iff $x < 1$, and 0 otherwise.

Value

Numeric vector of the same length as x. The ith element of the resulting vector gives the result of calculating $N(x[i])$.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other fuzzy_logic: fimplication_minimal, tconorm_minimum, tnorm_minimum

<table>
<thead>
<tr>
<th>index_g</th>
<th>Egghe’s g-index</th>
</tr>
</thead>
</table>

Description

Given a sequence of n non-negative numbers $x = (x_1, \ldots, x_n)$, where $x_i \geq x_j \geq 0$ for $i \leq j$, the g-index (Egghe, 2006) for x is defined as

$$G(x) = \max\{i = 1, \ldots, n : \sum_{j=1}^{i} x_i \geq i^2\}$$

if $n \geq 1$ and $x_1 \geq 1$, or $G(x) = 0$ otherwise.

Usage

index_g(x)

index.g(x) # same as index_g(x), deprecated alias

index_g_zi(x)
Arguments

x a non-negative numeric vector

Details

index.g is a (deprecated) alias for index_g.

Note that index_g is not a zero-insensitive impact function, see Examples section. index_g_zi is its zero-sensitive variant: it assumes that the aggregated vector is padded with zeros.

If a non-increasingly sorted vector is given, the function has O(n) run-time.

For historical reasons, this function is also available via an alias, index.g [but its usage is deprecated].

Value

a single numeric value

References

Egghe L., Theory and practise of the g-index, Scientometrics 69(1), 2006, pp. 131-152.

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other impact_functions: index_h, index_lp, index_maxprod, index_rp, index_w, pord_weakdom

Examples

sapply(list(c(9), c(9,0), c(9,0,0), c(9,0,0,0)), index_g) # not a zero-sensitive agop
Usage

index_h(x)

index.h(x) # same as index_h(x), deprecated alias

Arguments

x a non-negative numeric vector

Details

If a non-increasingly sorted vector is given, the function has O(n) run-time.

For historical reasons, this function is also available via an alias, index.h [but its usage is deprecated].

See index_rp and owmax for natural generalizations.

The h-index is the same as the discrete Sugeno integral of x w.r.t. the counting measure (see Torra, Narukawa, 2008).

Value

a single numeric value

References

Hirsch J.E., An index to quantify individual’s scientific research output, Proceedings of the National Academy of Sciences 102(46), 2005, pp. 16569-16572.

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other impact_functions: index_g, index_lp, index_maxprod, index_rp, index_w, pord_weakdom

Examples

authors <- list(# a list of numeric sequences
 # (e.g. citation counts of the articles
 # written by some authors)
 "A" =c(23,21,4,2,1,0,0),
)
"B" = c(11, 5, 4, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0),
"C" = c(53, 43, 32, 23, 14, 13, 12, 8, 4, 3, 2, 1, 0)
}
index_h(authors$A)
sapply(authors, index_h)

The l_p-index

Description

Given a sequence of \(n \) non-negative numbers \(x = (x_1, \ldots, x_n) \), where \(x_i \geq x_j \) for \(i \leq j \), the \(l_p \)-index for \(p = \infty \) equals to

\[
l_p(x) = \arg \max_{(i, x_i)} \{ix_i\}, i = 1, \ldots, n
\]

if \(n \geq 1 \), or \(l_\infty(x) = 0 \) otherwise. Note that if \((i, x_i) = l_\infty(x) \), then

\[
\text{MAXPROD}(x) = \prod(l_\infty(x)) = ix_i,
\]

where \(\text{MAXPROD} \) is the index proposed in (Kosmulski, 2007), see \text{index_maxprod}. Moreover, this index corresponds to the Shilkret integral of \(x \) w.r.t. some monotone measure, cf. (Gagolewski, Debski, Nowakiewicz, 2013).

For the definition of the \(l_p \)-index for \(p < \infty \) we refer to (Gagolewski, Grzegorzewski, 2009a).

Usage

\[
\text{index}_\text{lp}(x, p = \infty, \text{projection} = \text{prod})
\]

\[
\text{index.lp}(x, p = \infty, \text{projection} = \text{prod}) \quad \# \text{deprecated alias}
\]

Arguments

- \(x \) a non-negative numeric vector
- \(p \) index order, \(p \in [1, \infty] \); defaults \(\infty \) (\(\text{Inf} \)).
- \(\text{projection} \) function

Details

The \(l_p \)-index, by definition, is not an impact function, as it produces 2 numeric values. Thus, it should be projected to one dimension. However, you may set the \(\text{projection} \) argument to \text{identity} so as to obtain the 2-dimensional index.

If a non-increasingly sorted vector is given, the function has \(O(n) \) run-time for any \(p \), see (Gagolewski, Debski, Nowakiewicz, 2013).

For historical reasons, this function is also available via an alias, \text{index.lp} [but its usage is deprecated].
index_maxprod

Value

result of \(projection(c(i, x_i)) \)

References

See Also

Other impact functions: `index_g`, `index_h`, `index_maxprod`, `index_rp`, `index_w`, `pord_weakdom`

Examples

```r
x <- runif(100, 0, 100)
index.lp(x, Inf, identity) # two-dimensional value, can not be used
index.lp(x, Inf, prod) # the MAXPROD-index (one-dimensional) [default]
```

index_maxprod

Kosmulski’s MAXPROD-index

Description

Given a sequence of \(n \) non-negative numbers \(x = (x_1, \ldots, x_n) \), where \(x_i \geq x_j \geq 0 \) for \(i \leq j \), the MAXPROD-index (Kosmulski, 2007) for \(x \) is defined as

\[
MAXPROD(x) = \max \{ ix_i : i = 1, \ldots, n \}
\]

Usage

`index_maxprod(x)`

Arguments

- \(x \) a non-negative numeric vector

Details

If a non-increasingly sorted vector is given, the function has \(O(n) \) run-time.

The MAXPROD index is the same as the discrete Shilkret integral of \(x \) w.r.t. the counting measure.

See `index_lp` for a natural generalization.
Value

a single numeric value

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other impact functions: index_g, index_h, index_lp, index_rp, index_w, pord_weakdom

index_rp
The r_p-index

Description

Given a sequence of \(n \) non-negative numbers \(x = (x_1, \ldots, x_n) \), where \(x_i \geq x_j \) for \(i \leq j \), the \(r_p \)-index for \(p = \infty \) equals to

\[
 r_p(x) = \max_{i=1,\ldots,n} \{\min\{i, x_i\}\}
\]

if \(n \geq 1 \), or \(r_\infty(x) = 0 \) otherwise. That is, it is equivalent to a particular OWMax operator, see \texttt{owmax}.

For the definition of the \(r_p \)-index for \(p < \infty \) we refer to (Gagolewski, Grzegorzewski, 2009).

Usage

```r
index_rp(x, p = Inf)
index.rp(x, p = Inf) # same as index_rp(x, p), deprecated alias
```

Arguments

- `x` a non-negative numeric vector
- `p` index order, \(p \in [1, \infty] \); defaults \(\infty \) (Inf).
Details

Note that if x_1, \ldots, x_n are integers, then

$$r_{\infty}(x) = H(x),$$

where H is the h-index (Hirsch, 2005) and

$$r_1(x) = W(x),$$

where W is the w-index (Woeginger, 2008), see index_h and index_w.

If a non-increasingly sorted vector is given, the function has $O(n)$ run-time.

For historical reasons, this function is also available via an alias, index_rp [but its usage is deprecated].

Value

a single numeric value

References

See Also

Other impact_functions: index_g, index_h, index_lp, index_maxprod, index_w, pord_weakdom

Examples

```r
x <- runif(100, 0, 100);
index_rp(x); # the r_oo-index
floor(index_rp(x)); # the h-index
index_rp(floor(x), 1); # the w-index
```

index_w \hspace{0.5cm} **Woeginger’s w-index**

Description

Given a sequence of n non-negative numbers $x = (x_1, \ldots, x_n)$, where $x_i \geq x_j \geq 0$ for $i \leq j$, the w-index (Woeginger, 2008) for x is defined as

$$W(x) = \max\{i = 1, \ldots, n : x_j \geq i - j + 1, \forall j = 1, \ldots, i\}$$
Usage

index_w(x)

Arguments

x a non-negative numeric vector

Details

If a non-increasingly sorted vector is given, the function has O(n) run-time.
See index_rp for a natural generalization.

Value

a single numeric value

References

See Also

Other impact_functions: index_g, index_h, index_lp, index_maxprod, index_rp, pord_weakdom

owa WAM and OWA Operators

Description

Computes the Weighted Arithmetic Mean or the Ordered Weighted Averaging aggregation operator.

Usage

owa(x, w = rep(1/length(x), length(x)))

wam(x, w = rep(1/length(x), length(x)))

Arguments

x numeric vector to be aggregated
w numeric vector of the same length as x, with elements in [0, 1], and such that ∑_i w_i = 1; weights
Details

The OWA operator is given by

\[\text{OWA}_w(x) = \sum_{i=1}^{n} w_i x_{(i)} \]

where \(x_{(i)} \) denotes the \(i \)-th smallest value in \(x \).

The WAM operator is given by

\[\text{WAM}_w(x) = \sum_{i=1}^{n} w_i x_i \]

If the elements in \(w \) do not sum up to 1, then they are normalized and a warning is generated. Both functions by default return the ordinary arithmetic mean. Special cases of OWA include the trimmed mean (see \texttt{mean}) and Winsorized mean.

There is a strong, well-known connection between the OWA operators and the Choquet integrals.

Value

These functions return a single numeric value.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other aggregation_operators: \texttt{owmax}

Description

Computes the (Ordered) Weighted Maximum/Minimum.

Usage

\begin{verbatim}
owmax(x, w = rep(Inf, length(x)))
owmin(x, w = rep(-Inf, length(x)))
wmax(x, w = rep(Inf, length(x)))
wmin(x, w = rep(-Inf, length(x)))
\end{verbatim}
Arguments

- **x**: numeric vector to be aggregated
- **w**: numeric vector of the same length as **x**; weights

Details

The OWMax operator is given by

$$\text{OWMax}_w(x) = \bigvee_{i=1}^{n} w_i \land x(i)$$

where $x(i)$ denotes the i-th smallest value in x.

The OWMin operator is given by

$$\text{OWMin}_w(x) = \bigwedge_{i=1}^{n} w_i \lor x(i)$$

The WMax operator is given by

$$\text{WMax}_w(x) = \bigvee_{i=1}^{n} w_i \land x_i$$

The WMin operator is given by

$$\text{WMin}_w(x) = \bigwedge_{i=1}^{n} w_i \lor x_i$$

OWMax and WMax by default return the greatest value in x and OWMin and WMin - the smallest value in x.

Classically, it is assumed that if we aggregate vectors with elements in $[a, b]$, then the largest weight for OWMax should be equal to b and the smallest for OWMin should be equal to a.

There is a strong connection between the $\text{OWMax}/\text{OWMin}$ operators and the Sugeno integrals w.r.t. some monotone measures. Additionally, it may be shown that the OWMax and OWMin classes are equivalent.

Moreover, index_h for integer data is a particular OWMax operator.

Value

These functions return a single numeric value.

References

pareto2_estimate_mle

See Also

Other aggregation_operators: owa

pareto2_estimate_mle Parameter Estimation in the Pareto Type-II Distribution Family (MLE)

Description

Finds the maximum likelihood estimator of the Pareto Type-II distribution’s shape parameter \(k \) and, if not given explicitly, scale parameter \(s \).

Usage

pareto2_estimate_mle(x, s = NA_real_, smin = 1e-04, smax = 20, tol = .Machine$double.eps^0.25)

Arguments

- **x**: a non-negative numeric vector
- **s**: a-priori known scale parameter, \(s > 0 \) or NA if unknown (default)
- **smin**: lower bound for the scale parameter
- **smax**: upper bound for the scale parameter
- **tol**: the desired accuracy (convergence tolerance)

Details

Note that if \(s \) is not given, then the maximum of the likelihood function might not exist for some input vectors. This estimator may have a large mean squared error. Consider using `pareto2_estimate_mmse`.

For known \(s \), the estimator is unbiased.

Value

Returns a numeric vector with the following named components:

- **k**: estimated parameter of shape
- **s**: estimated (or known, see the **s** argument) parameter of scale

or `c(NA, NA)` if the maximum of the likelihood function could not be found.

See Also

Other Pareto2: `pareto2_estimate_mmse`, `pareto2_test_ad`, `pareto2_test_f`, `rpareto2`
pareto2_estimate_mmse \(\text{Parameter Estimation in the Pareto Type-II Distribution Family (MMSE)} \)

Description

Finds the MMS estimator of the Pareto Type-II distribution parameters using the Bayesian method (and the R code) developed by Zhang and Stevens (2009).

Usage

```r
pareto2_estimate_mmse(x)
```

Arguments

- `x`
 a non-negative numeric vector

Value

Returns a numeric vector with the following named components:

- `k` - estimated parameter of shape,
- `s` - estimated parameter of scale.

References

See Also

Other Pareto2: `pareto2_estimate_mle`, `pareto2_test_ad`, `pareto2_test_f`, `rpareto2`

pareto2_test_ad \(\text{Anderson-Darling Test for the Pareto Type-II Distribution} \)

Description

Performs an approximate Anderson-Darling goodness-of-fit test, which verifies the null hypothesis: Data follow a Pareto-Type II distribution.

Usage

```r
pareto2_test_ad(x, s = 1)
```
pareto2_test_f

Arguments

x a non-negative numeric vector of data values
s the known scale parameter, s > 0

Details

We know that if X follows a Pareto-Type II distribution with shape parameter k, then log(1 + X/s) follows an exponential distribution with parameter k. Thus, this function transforms the input vector, and performs the same steps as exp_test_ad.

Value

A list of the class htest is returned, see exp_test_ad.

See Also

Other Pareto2: pareto2_estimate_mle, pareto2_estimate_mmse, pareto2_test_f, rpareto2
Other Tests: exp_test_ad, pareto2_test_f

Description

Performs the F-test for the equality of shape parameters of two samples from Pareto type-II distributions with known and equal scale parameters, s > 0.

Usage

pareto2_test_f(x, y, s, alternative = c("two.sided", "less", "greater"), significance = NULL)

Arguments

x a non-negative numeric vector
y a non-negative numeric vector
s the known scale parameter, s > 0
alternative indicates the alternative hypothesis and must be one of "two.sided" (default), "less". or "greater"
significance significance level, 0 < significance < 1 or NULL. See the Value section for details
Details

Given two samples \((X_1, ..., X_n)\) i.i.d. \(P^2(k_x, s)\) and \((Y_1, ..., Y_m)\) i.i.d. \(P^2(k_y, s)\) this test verifies the null hypothesis \(H_0 : k_x = k_y\) against two-sided or one-sided alternatives, depending on the value of alternative. It is based on the test statistic \(T(X, Y) = \frac{n \sum_{i=1}^{m} \log(1 + Y_i/m)}{m \sum_{i=1}^{n} \log(1 + X_i/n)}\) which, under \(H_0\), follows the Snedecor’s F distribution with \((2m, 2n)\) degrees of freedom. Note that for \(k_x < k_y\), then \(X\) dominates \(Y\) stochastically.

Value

If significance is not NULL, then the list of class power.htest with the following components is yield in result:

- statistic - the value of the test statistic.
- result - either FALSE (accept null hypothesis) or TRUE (reject).
- alternative - a character string describing the alternative hypothesis.
- method - a character string indicating what type of test was performed.
- data.name - a character string giving the name(s) of the data.

Otherwise, the list of class htest with the following components is yield in result:

- statistic the value of the test statistic.
- p.value the p-value of the test.
- alternative a character string describing the alternative hypothesis.
- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.

See Also

Other Pareto2: pareto2_estimate_mle, pareto2_estimate_mmse, pareto2_test_ad, rpareto2
Other Tests: exp_test_ad, pareto2_test_ad

Description

Draws a step function that represents a numeric vector with elements in \([a, \infty]\).

Usage

```r
plot_producer(x, type = c("left.continuous", "right.continuous", "curve"), extend = FALSE, add = FALSE, pch = 1, col = 1, lty = 1, lwd = 1, cex = 1, col.steps = col, lty.steps = 2, lwd.steps = 1, xlab = "", ylab = "", main = "", xmargin = 0, xlim = c(0, length(x) * 1.2), ylim = c(a, max(x)), a = 0, ...)
```
Arguments

- **x**: non-negative numeric vector
- **type**: character; 'left.continuous' (the default) or 'right.continuous' for step functions and 'curve' for a continuous step curve
- **extend**: logical; should the plot be extended infinitely to the right? Defaults to FALSE
- **add**: logical; indicates whether to start a new plot, FALSE by default
- **pch, col, lty, lwd, cex, xmar**: graphical parameters
- **col.steps, lty.steps, lwd.steps**: graphical parameters, used only for type of 'left.continuous' and 'right.continuous' only
- **ylim, xlim, xlab, ylab, main, ...**: additional graphical parameters, see `plot.default`
- **a**: a single numeric value

Details

In `agop`, a vector \(x = (x_1, \ldots, x_n) \) can be represented by a step function defined for \(0 \leq y < n \) and given by:

\[
\pi(y) = x_{(n-[y+1]+1)}
\]

(for type == 'right.continuous') or for \(0 < y \leq n \)

\[
\pi(y) = x_{(n-[y]+1)}
\]

(for type == 'left.continuous', the default) or by a curve interpolating the points \((0, x_{(n)}), (1, x_{(n)}), (1, x_{(n-1)}), (2, x_{(n-1)}), \ldots, (n, x_{(1)})\). Here, \(x_{(i)}\) denotes the \(i\)-th smallest value in \(x\).

In bibliometrics, a step function of one of the two above-presented types is called a citation function.

For historical reasons, this function is also available via its alias, `plot.citfun` [but its usage is deprecated].

Value

nothing interesting

Examples

```r
john_s <- c(11, 5, 4, 4, 3, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0)
plot_producer(john_s, main="Smith, John", col="red")
```
Description
Checks whether a numeric vector of arbitrary length is (weakly) dominated (elementwise) by another vector of the same length.

Usage
pord_nd(x, y, incompatible_lengths = NA)

Arguments
x numeric vector with nonnegative elements
y numeric vector with nonnegative elements
incompatible_lengths
 single logical value, value to return iff lengths of x and y differ

Details
We say that a numeric vector x of length \(n_x \) is weakly dominated by y of length \(n_y \) iff

1. \(n_x = n_y \) and
2. for all \(i = 1, \ldots, n_x \) it holds \(x_i \leq y_i \).

This relation is a preorder: it is reflexive (see rel_is_reflexive) and transitive (see rel_is_transitive), but not necessarily total (see rel_is_total). See rel_graph for a convenient function to calculate the relationship between all pairs of elements of a given set.

Such a preorder is tightly related to classical aggregation functions: each aggregation function is a morphism between weak-dominance-preordered set of vectors and the set of reals equipped with standard linear ordering.

Value
Returns a single logical value indicating whether x is weakly dominated by y.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7
See Also

Other binary_relations: check_commonotonicity, pord_spread, pord_weakdom, rel_graph, rel_is_antisymmetric, rel_is_asymmetric, rel_is_cyclic, rel_is_irreflexive, rel_is_reflexive, rel_is_symmetric, rel_is_total, rel_is_transitive, rel_reduction_hasse

\[\text{pord_spread} \]

\section*{Description}

This function determines whether one numeric vector has not greater spread than the other

\section*{Usage}

\[\text{pord_spread}(x, y, \text{incompatible_lengths} = \text{NA}) \]

\section*{Arguments}

\begin{itemize}
 \item \texttt{x} numeric vector
 \item \texttt{y} numeric vector of the same length as \texttt{x}
 \item \texttt{incompatible_lengths} single logical value, value to return iff lengths of \texttt{x} and \texttt{y} differ
\end{itemize}

\section*{Details}

We say that \(x \) of size \(n \) is of no greater spread than \(y \) iff for all \(i, j = 1, \ldots, n \) such that \(x_i > x_j \) it holds \(x_i - x_j \leq y_i - y_j \). Such a preorder is used in the definition of a spread measure (see Gagolewski, 2015).

Note that the class of dispersion functions includes e.g. the sample variance (see \texttt{var}), standard variation (see \texttt{sd}), range (see \texttt{range} and then \texttt{diff}), interquartile range (see \texttt{IQR}), median absolute deviation (see \texttt{mad}).

\section*{Value}

The function returns a single logical value, which states whether \(x \) has no greater spread than \(y \)

\section*{References}

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other binary_relations: check_commonotonicity, pord_nd, pord_weakdom, rel_graph, rel_is_antisymmetric, rel_is_asymmetric, rel_is_cyclic, rel_is_irreflexive, rel_is_reflexive, rel_is_symmetric, rel_is_total, rel_is_transitive, rel_reduction_hasse
Description

Checks whether a given numeric vector of arbitrary length is (weakly) dominated by another vector, possibly of different length, in terms of (sorted) elements’ values and their number.

Usage

```
pora_weakdom(x, y)
```

Arguments

- `x`: numeric vector with nonnegative elements
- `y`: numeric vector with nonnegative elements

Details

We say that a numeric vector `x` of length `n_x` is *weakly dominated* by `y` of length `n_y` iff

1. `n_x ≤ n_y` and
2. for all `i = 1, . . . , n` it holds `x_{(n_x−i+1)} ≤ y_{(n_y−i+1)}`.

This relation is a preorder: it is reflexive (see `rel_is_reflexive`) and transitive (see `rel_is_transitive`), but not necessarily total (see `rel_is_total`). See `rel_graph` for a convenient function to calculate the relationship between all pairs of elements of a given set.

Note that this dominance relation gives the same value for all permutations of input vectors’ elements. Such a preorder is tightly related to symmetric impact functions: each impact function is a morphism between weak-dominance-preordered set of vectors and the set of reals equipped with standard linear ordering (see Gagolewski, Grzegorzewski, 2011 and Gagolewski, 2013).

Value

Returns a single logical value indicating whether `x` is weakly dominated by `y`.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7
Description

Probability mass function, cumulative distribution function, quantile function, and random generation for the Discretized Pareto Type-II distribution with shape parameter \(k > 0 \) and scale parameter \(s > 0 \).

[TO DO: rewrite in C, add NA handling, add working qdpareto2()]

Usage

```r
dpareto2(n, k = 1, s = 1)
pdpareto2(q, k = 1, s = 1, lower.tail = TRUE)
qdpareto2(p, k = 1, s = 1, lower.tail = TRUE)
ddpareto2(x, k = 1, s = 1)
```

Arguments

- `n`: integer; number of observations
- `k`: vector of shape parameters, \(k > 0 \)
- `s`: vector of scale parameters, \(s > 0 \)
- `lower.tail`: logical; if TRUE (default), probabilities are \(P(X \leq x) \), and \(P(X > x) \) otherwise
- `p`: vector of probabilities
- `x`, `q`: vector of quantiles

Details

If \(X \sim DP2(k, s) \), then \([Y] = X\), where \(Y \) has ordinary Pareto Type-II distribution, see `ppareto2`.

Value

numeric vector; `ddpareto2` gives the probability mass function, `pdpareto2` gives the cumulative distribution function, `qdpareto2` calculates the quantile function, and `rdpareto2` generates random deviates.
See Also

Other distributions: rpareto2
Other DiscretizedPareto2: dpareto2_estimate_mle

rel_graph

Create an Adjacency Matrix Representing a Binary Relation

Description

Returns a binary relation that represents results of comparisons with pord of all pairs of elements in x. We have ret[i,j] == pord(x[[i]],x[[j]],...).

Usage

rel_graph(x, pord, ...)

Arguments

- x: list with elements to compare, preferably named
- pord: a function with two arguments, returning a single Boolean value, e.g., `pord_spread`, `pord_nd`, or `pord_weakdom`
- ...: additional arguments passed to pord

Value

Returns a square logical matrix. dimnames of the matrix correspond to names of x.

See Also

Other binary_relations: check_comonotonicity, pord_nd, pord_spread, pord_weakdom, rel_is_antisymmetric, rel_is_asymmetric, rel_is_cyclic, rel_is_irreflexive, rel_is_reflexive, rel_is_symmetric, rel_is_total, rel_is_transitive, rel_reduction_hasse

rel_is_antisymmetric

Antisymmetric Binary Relations

Description

A binary relation R is antisymmetric, iff for all x, y we have xRy and $yRx \Rightarrow x = y$.

Usage

rel_is_antisymmetric(R)
rel_is_asymmetric

Arguments

- **R**

an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

rel_is_asymmetric finds out if a given binary relation is asymmetric. Missing values in R may result in NA.

Also, check out rel_closure_symmetric for the symmetric closure of R.

Value

rel_is_asymmetric returns a single logical value.

See Also

Other binary_relations: check_comonotonicity, pord_nd, pord_spread, pord_weakdom, rel_graph, rel_is_asymmetric, rel_is_cyclic, rel_is_irreflexive, rel_is_reflexive, rel_is_symmetric, rel_is_total, rel_is_transitive, rel_reduction_hasse

rel_is_asymmetric
Asymmetric Binary Relations

Description

A binary relation *R* is asymmetric, iff for all *x, y* we have *xRy* ⇒ ¬*yRx*.

Usage

rel_is_asymmetric(R)

Arguments

- **R**

an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

Note that an asymmetric relation is necessarily irreflexive, compare rel_is_irreflexive.

rel_is_asymmetric finds out if a given binary relation is asymmetric. Missing values in R may result in NA.

Also, check out rel_closure_symmetric for the symmetric closure of R.

Value

rel_is_asymmetric returns a single logical value.
See Also

Other binary_relations: check_comonotonicity, pord_nd, pord_spread, pord_weakdom, rel_graph,
rel_is antisymmetric, rel_is cyclic, rel_is irreflexive, rel_is reflexive, rel_is symmetric,
rel_is total, rel_is transitive, rel_reduction_hasse

rel_is_cyclic
Cyclic Binary Relations

Description

A binary relation \(R \) is cyclic, iff its transitive closure is not antisymmetric. Note that \(R \) may be reflexive and still acyclic, i.e., loops in \(R \) are not taken into account.

Usage

\[
\text{rel_is_cyclic}(R)
\]

Arguments

\(R \)
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

rel_is_cyclic has \(O(n^3) \) time complexity, where \(n \) is the number of rows in \(R \) (the implemented algorithm currently verifies whether a depth-first search-based topological sorting is possible). Missing values in \(R \) always result in `NA`.

Value

rel_is_cyclic returns a single logical value.

See Also

Other binary_relations: check_comonotonicity, pord_nd, pord_spread, pord_weakdom, rel_graph,
rel_is antisymmetric, rel_is asymmetric, rel_is irreflexive, rel_is reflexive, rel_is symmetric,
rel_is total, rel_is transitive, rel_reduction_hasse
rel_is_irreflexive Irreflexive Binary Relations

Description

A binary relation R is irreflexive (or antireflexive), iff for all x we have $\neg xRx$.

Usage

rel_is_irreflexive(R)

Arguments

R
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

rel_is_irreflexive finds out if a given binary relation is irreflexive. The function just checks whether all elements on the diagonal of R are zeros, i.e., it has $O(n)$ time complexity, where n is the number of rows in R. Missing values on the diagonal may result in NA.

When dealing with a graph’s loops, i.e., elements related to themselves, you may be interested in finding a reflexive closure, see rel_closure_reflexive, or a reflexive reduction, see rel_reduction_reflexive.

Value

rel_is_irreflexive returns a single logical value.

See Also

Other binary_relations: check_comonotonicity, pord_nd, pord_spread, pord_weakdom, rel_graph, rel_is_antisymmetric, rel_is_asymmetric, rel_is_cyclic, rel_is_reflexive, rel_is_symmetric, rel_is_total, rel_is_transitive, rel_reduction_hasse

rel_is_reflexive Reflexive Binary Relations

Description

A binary relation R is reflexive, iff for all x we have xRx.

Usage

rel_is_symmetric(R)

rel_closure_symmetric(R)

Arguments

R an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

rel_is_symmetric finds out if a given binary relation is reflexive. The function just checks whether all elements on the diagonal of R are non-zeros, i.e., it has $O(n)$ time complexity, where n is the number of rows in R. Missing values on the diagonal may result in NA.

A reflexive closure of a binary relation R, determined by rel_closure_symmetric, is the minimal reflexive superset R' of R.

A reflexive reduction of a binary relation R, determined by rel_reduction_symmetric, is the minimal subset R' of R, such that the reflexive closures of R and R' are equal i.e., the largest irreflexive relation contained in R.

Value

The rel_closure_symmetric and rel_reduction_symmetric functions return a logical square matrix. dimnames of R are preserved.

On the other hand, rel_is_symmetric returns a single logical value.

See Also

Other binary_relations: check_comonotonicity, pord_nd, pord_spread, pord_weakdom, rel_graph, rel_is_antisymmetric, rel_is_asymmetric, rel_is_cyclic, rel_is_irreflexive, rel_is_symmetric, rel_is_total, rel_is_transitive, rel_reduction_hasse

Symmetric Binary Relations

Description

A binary relation R is symmetric, iff for all x, y we have $xRy \Rightarrow yRx$.

Usage

rel_is_symmetric(R)

rel_closure_symmetric(R)
Arguments

\(R \)
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

\(\text{rel_is_symmetric} \) finds out if a given binary relation is symmetric. Any missing value behind the diagonal results in \(\text{NA} \).

The symmetric closure of a binary relation \(R \), determined by \(\text{rel_closure_symmetric} \), is the smallest symmetric binary relation that contains \(R \). Here, any missing values in \(R \) result in an error.

Value

The \(\text{rel_closure_symmetric} \) function returns a logical square matrix. \text{dimnames} of \(R \) are preserved.

On the other hand, \(\text{rel_is_symmetric} \) returns a single logical value.

See Also

Other binary_relations: \text{check_comonotonicity}, \text{pord_nd}, \text{pord_spread}, \text{pord_weakdom}, \text{rel_graph}, \text{rel_is_antisymmetric}, \text{rel_is_asymmetric}, \text{rel_is_cyclic}, \text{rel_is_irreflexive}, \text{rel_is_reflexive}, \text{rel_is_total}, \text{rel_is_transitive}, \text{rel_reduction_hasse}
Details

Note that each total relation is also reflexive, see `rel_is_reflexive`.

`rel_is_total` determines if a given binary relation `R` is total. The algorithm has \(O(n^2) \) time complexity, where \(n \) is the number of rows in `R`. If \(R[i,j] \) and \(R[j,i] \) is NA for some \((i,j) \), then the function outputs NA.

The problem of finding a total closure or reduction is not well-defined in general.

When dealing with preorders, however, the following closure may be useful, see (Gagolewski, 2013). Fair totalization of `R`, performed by `rel_closure_total_fair`, is the minimal superset \(R' \) of `R` such that if not \(xRy \) and not \(yRx \) then \(xR'y \) and \(yR'x \).

Even if `R` is transitive, the resulting relation might not necessarily fulfill this property. If you want a total preorder, call `rel_closure_transitive` afterwards. Missing values in `R` are not allowed and result in an error.

Value

`rel_is_total` returns a single logical value.

`rel_closure_reflexive` returns a logical square matrix. `dimnames` of `R` are preserved.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other binary_relations: `check_comonotonicity`, `pord_nd`, `pord_spread`, `pord_weakdom`, `rel_graph`, `rel_is_antisymmetric`, `rel_is_asymmetric`, `rel_is_cyclic`, `rel_is_irreflexive`, `rel_is_reflexive`, `rel_is_symmetric`, `rel_is_transitive`, `rel_reduction_hasse`

transitive

Transitive Binary Relations

Description

A binary relation `R` is transitive, iff for all `x`, `y`, `z` we have \(xRy \) and \(yRz \implies xRz \).

Usage

`rel_is_transitive(R)`

`rel_closure_transitive(R)`

`rel_reduction_transitive(R)`
Arguments

- `R`: an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

rel_is_transitive finds out if a given binary relation is transitive. The algorithm has $O(n^3)$ time complexity, pessimistically, where n is the number of rows in R. If R contains missing values behind the diagonal, the result will be `NA`.

The *transitive closure* of a binary relation R, determined by *rel_closure_transitive*, is the minimal superset of R such that it is transitive. Here we use the well-known Warshall algorithm (1962), which runs in $O(n^3)$ time.

The *transitive reduction*, see (Aho et al. 1972), of an acyclic binary relation R, determined by *rel_reduction_transitive*, is a minimal unique subset R' of R, such that the transitive closures of R and R' are equal. The implemented algorithm runs in $O(n^3)$ time. Note that a transitive reduction of a reflexive relation is also reflexive. Moreover, some kind of transitive reduction (not necessarily minimal) is also determined in *rel_reduction_hasse* – it is useful for drawing Hasse diagrams.

Value

The *rel_closure_transitive* and *rel_reduction_transitive* functions return a logical square matrix. `dimnames` of R are preserved.

On the other hand, `rel_is_transitive` returns a single logical value.

References

See Also

Other binary_relations: *check_comonotonicity, pord_nd, pord_spread, pord_weakdom, rel_graph, rel_is_antisymmetric, rel_is_asymmetric, rel_is_cyclic, rel_is_irreflexive, rel_is_reflexive, rel_is_symmetric, rel_is_total, rel_reduction_hasse*

Description

This function computes the reflexive reduction and a kind of transitive reduction which is useful for drawing Hasse diagrams.
Usage

rel_reduction_hasse(R)

Arguments

R an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.

Details

The input matrix R might not necessarily be acyclic/asymmetric, i.e., it may represent any totally preordered set (which induces an equivalence relation on the underlying preordered set). The implemented algorithm runs in $O(n^3)$ time and first determines the transitive closure of R. If an irreflexive R is given, then the transitive closures of R and of the resulting matrix are identical. Moreover, if R is additionally acyclic, then this function is equivalent to `rel_reduction_transitive`.

Value

The `rel_reduction_hasse` function returns a logical square matrix. `dimnames` of R are preserved.

See Also

Other binary_relations: `check_comonotonicity`, `pord_nd`, `pord_spread`, `pord_weakdom`, `rel_graph`, `rel_is_antisymmetric`, `rel_is_asymmetric`, `rel_is_cyclic`, `rel_is_irreflexive`, `rel_is_reflexive`, `rel_is_symmetric`, `rel_is_total`, `rel_is_transitive`

Examples

```r
## Not run:
# Let ord be a total preorder (a total and transitive binary relation)
# === Plot the Hasse diagram of ord ===
# === requires the igraph package ===
library("igraph")
hasse <- graph.adjacency(rel_reduction_transitive(ord))
plot(hasse, layout=layout.fruchterman.reingold(hasse, dim=2))
```

rpareto2
Pareto Type-II (Lomax) Distribution

Description

Density, cumulative distribution function, quantile function, and random generation for the Pareto Type-II (Lomax) distribution with shape parameter $k > 0$ and scale parameter $s > 0$.

[TO DO: rewrite in C, add NA handling]
Usage

rpareto2(n, k = 1, s = 1)
ppareto2(q, k = 1, s = 1, lower.tail = TRUE)
qpareto2(p, k = 1, s = 1, lower.tail = TRUE)
dpareto2(x, k = 1, s = 1)

Arguments

n integer; number of observations
k vector of shape parameters, $k > 0$
s vector of scale parameters, $s > 0$
lower.tail logical; if TRUE (default), probabilities are $P(X \leq x)$, and $P(X > x)$ otherwise
p vector of probabilities
x, q vector of quantiles

Details

If $X \sim P2(k, s)$, then $\text{supp } X = [0, \infty)$. The c.d.f. for $x \geq 0$ is given by

$$F(x) = 1 - s^k/(s + x)^k$$

and the density by

$$f(x) = ks^k/(s + x)^{k+1}.$$

Value

numeric vector; dpareto2 gives the density, ppareto2 gives the cumulative distribution function, qpareto2 calculates the quantile function, and rpareto2 generates random deviates.

See Also

Other distributions: rdpareto2
Other Pareto2: pareto2_estimate_mle, pareto2_estimate_mmse, pareto2_test_ad, pareto2_test_f

Description

Various t-conorms. Each of these is a fuzzy logic generalization of the classical alternative operation.
Usage

tconorm_minimum(x, y)
tconorm_product(x, y)
tconorm_lukasiewicz(x, y)
tconorm_drastic(x, y)
tconorm_fodor(x, y)

Arguments

x numeric vector with elements in [0, 1]
y numeric vector of the same length as x, with elements in [0, 1]

Details

A function $S : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a t-conorm if for all $x, y, z \in [0, 1]$ it holds: (a) $S(x, y) = S(y, x)$; (b) if $y \leq z$, then $S(x, y) \leq S(x, z)$; (c) $S(x, S(y, z)) = S(S(x, y), z)$; (d) $S(x, 0) = x$.

The minimum t-conorm is given by $S_M(x, y) = \max(x, y)$.
The product t-conorm is given by $S_P(x, y) = x + y - xy$.
The Lukasiewicz t-conorm is given by $S_L(x, y) = \min(x + y, 1)$.
The drastic t-conorm is given by $S_D(x, y) = 1$ iff $x, y \in (0, 1]$, and $\max(x, y)$ otherwise.
The Fodor t-conorm is given by $S_F(x, y) = 1$ iff $x + y \geq 1$, and $\max(x, y)$ otherwise.

Value

Numeric vector of the same length as x and y. The i-th element of the resulting vector gives the result of calculating $S(x[i], y[i])$.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

See Also

Other fuzzy_logic: fimplication_minimal, fnegation_yager, tnorm_minimum
Description

Various t-norms. Each of these is a fuzzy logic generalization of the classical conjunction operation.

Usage

tnorm_minimum(x, y)
tnorm_product(x, y)
tnorm_lukasiewicz(x, y)
tnorm_drastic(x, y)
tnorm_fodor(x, y)

Arguments

x numeric vector with elements in [0, 1]
y numeric vector of the same length as x, with elements in [0, 1]

Details

A function $T : [0, 1] \times [0, 1] \to [0, 1]$ is a t-norm if for all $x, y, z \in [0, 1]$ it holds: (a) $T(x, y) = T(y, x)$; (b) if $y \leq z$, then $T(x, y) \leq T(x, z)$; (c) $T(x, T(y, z)) = T(T(x, y), z)$; (d) $T(x, 1) = x$.

The minimum t-norm is given by $T_M(x, y) = \min(x, y)$.
The product t-norm is given by $T_P(x, y) = xy$.
The Lukasiewicz t-norm is given by $T_L(x, y) = \max(x + y - 1, 0)$.
The drastic t-norm is given by $T_D(x, y) = 0$ iff $x, y \in [0, 1]$, and $\min(x, y)$ otherwise.
The Fodor t-norm is given by $T_F(x, y) = 0$ iff $x + y \leq 1$, and $\min(x, y)$ otherwise.

Value

Numeric vector of the same length as x and y. The i'th element of the resulting vector gives the result of calculating $T(x[i], y[i])$.

References

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7
See Also

Other fuzzy logic: `fimplication_minimal, fnegation_yager, tconorm_minimum`
Index

agop-package, 3
check_comonotonicity, 3, 25, 27–36
d2owa (d2owa_checkwts), 4
d2owa_checkwts, 4
ddpareto2 (rdpareto2), 27
dimnames, 28, 32–36
dpareto2 (rpareto2), 36
dpareto2_estimate_mle, 5, 28
exp_test_ad, 6, 21, 22
fimplication_fodor
 (fimplication_minimal), 7
fimplication_goedel
 (fimplication_minimal), 7
fimplication_goguen
 (fimplication_minimal), 7
fimplication_kleene
 (fimplication_minimal), 7
fimplication_lukasiewicz
 (fimplication_minimal), 7
fimplication_maximal
 (fimplication_minimal), 7
fimplication_minimal, 7, 9, 38, 40
fimplication_reichenbach
 (fimplication_minimal), 7
fimplication_rescher
 (fimplication_minimal), 7
fimplication_weber
 (fimplication_minimal), 7
fimplication_yager
 (fimplication_minimal), 7
fnegation_classic (fnegation_yager), 8
fnegation_maximal (fnegation_yager), 8
fnegation_minimal (fnegation_yager), 8
fnegation_yager, 8, 8, 38, 40
identity, 12

index.g (index_g), 9
index.h (index_h), 10
index.lp (index_lp), 12
index_rp (index_rp), 14
index_g, 9, 11, 13–16, 27
index_g_zi (index_g), 9
index_h, 10, 10, 13–16, 18, 27
index_lp, 10, 11, 12, 13–16, 27
index_maxprod, 10–13, 13, 15, 16, 27
index_rp, 10, 11, 13, 14, 14, 16, 27
index_w, 10, 11, 13–15, 15, 27
IQR, 25
ks.test, 6
mad, 25
mean, 17
names, 28
owa, 16, 19
owmax, 11, 14, 17, 17
owmin (owmax), 17
pareto2_estimate_mle, 19, 20–22, 37
pareto2_estimate_mmse, 19, 20, 21, 22, 37
pareto2_test_ad, 6, 19, 20, 20, 22, 37
pareto2_test_f, 6, 19–21, 21, 37
pppareto2 (rpareto2), 27
pexp, 6
plot.citfun (plot_producer), 22
plot.default, 23
plot_producer, 22
pord_nd, 4, 24, 25, 27–36
pord_spread, 4, 25, 25, 27–36
pord_weakdom, 4, 10, 11, 13–16, 25, 26, 28–36
pppareto2, 27
pppareto2 (rpareto2), 36
qdpareto2 (rdpareto2), 27
qpareto2 (rpareto2), 36

41
range, 25
rdpareto2, 5, 27, 37
rel_closure_reflexive, 31
rel_closure_reflexive
 (rel_is_reflexive), 31
rel_closure_symmetric, 29
rel_closure_symmetric
 (rel_is_symmetric), 32
rel_closure_total_fair (rel_is_total), 33
rel_closure_transitive, 34
rel_closure_transitive
 (rel_is_transitive), 34
rel_graph, 4, 24–27, 28, 29–36
rel_is_antisymmetric, 4, 25, 27, 28, 28,
 30–36
rel_is_asymmetric, 4, 25, 27–29, 29, 30–36
rel_is_cyclic, 4, 25, 27–30, 30, 31–36
rel_is_irreflexive, 4, 25, 27–30, 31,
 32–36
rel_is_reflexive, 4, 24–31, 31, 33–36
rel_is_symmetric, 4, 25, 27–32, 32, 34–36
rel_is_total, 4, 24–33, 33, 33, 35, 36
rel_is_transitive, 4, 24–34, 34, 36
rel_reduction_hasse, 4, 25, 27–35, 35
rel_reduction_reflexive
 (rel_is_reflexive), 31
rel_reduction_transitive, 36
rel_reduction_transitive
 (rel_is_transitive), 34
rpareto2, 19–22, 28, 36

sd, 25

tconorm_drastic (tconorm_minimum), 37
tconorm_fodor (tconorm_minimum), 37
tconorm_lukasiewicz (tconorm_minimum), 37
tconorm_minimum, 8, 9, 37, 40
tconorm_product (tconorm_minimum), 37
tnorm_drastic (tnorm_minimum), 39
tnorm_fodor (tnorm_minimum), 39
tnorm_lukasiewicz (tnorm_minimum), 39
tnorm_minimum, 8, 9, 38, 39
tnorm_product (tnorm_minimum), 39

var, 25

wam (owa), 16