Package ‘ahpsurvey’

October 12, 2022

Type Package

Title Analytic Hierarchy Process for Survey Data

Version 0.4.1

Description The Analytic Hierarchy Process is a versatile multi-criteria decision-making tool introduced by Saaty (1987) <doi:10.1016/0270-0255(87)90473-8> that allows decision-makers to weigh attributes and evaluate alternatives presented to them. This package provides a consistent methodology for researchers to reformat data and run analytic hierarchy process in R on data that are formatted using the survey data entry mode. It is optimized for performing the analytic hierarchy process with many decision-makers, and provides tools and options for researchers to aggregate individual preferences and test multiple options. It also allows researchers to quantify, visualize and correct for inconsistency in the decision-maker's comparisons.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.0.1

Imports Rdpack, stats, magrittr, knitr, tidyr, dplyr, randomNames

Suggests ggplot2, scales

RdMacros Rdpack

Collate 'ahp_mat.R' 'ahp_indpref.R' 'ahp_pwerror.R' 'ahp_cr.R' 'ahp.R' 'ahp_RI.R' 'ahp_aggjudge.R' 'ahp_aggpref.R' 'ahp_bweight.R' 'ahp_error.R' 'ahp_harker.R' 'ahp_missing.R' 'ahpsurvey.R' 'data.R'

VignetteBuilder knitr

NeedsCompilation no

Author Frankie Cho [aut, cre]

Maintainer Frankie Cho <htcho@connect.hku.hk>

Repository CRAN

Date/Publication 2019-11-24 16:10:02 UTC
Description

ahp is a canned routine that returns a data frame of individuals' priorities (based on ahp.indpref), number of missing values, consistency ratios, and top three pairs of inconsistent pairwise comparisons. An optional argument agg allows the user to generate a data frame of aggregated priorities alongside individual priorities.

Usage

```r
ahp(
  df,
  atts,
  negconvert = FALSE,
  reciprocal = TRUE,
  method = "eigen",
  aggmeth = "geometric",
  qt = 0,
  censorcr = Inf,
  agg = FALSE,
  ID = NULL,
  col = NULL,
  suppress = "none"
)
```
Arguments

- **df**: a dataframe, each row corresponding to one decision-maker, with columns ordered according to atts.
- **atts**: a list of attributes in the correct order
- **negconvert**: logical, whether to convert all positive values to negative. In the pairwise comparison A_B, if -6 denotes A is more important than B by 6 units, set negconvert = TRUE.
- **reciprocal**: logical, whether to convert negative values (after negconvert) to its reciprocal. If the comparison A_B where B is more important than A was already entered in its reciprocal (e.g. 1/6), choose reciprocal = FALSE. When reciprocal = FALSE, do not set negconvert = TRUE.
- **method**: if method = "eigen", the individual priority weights are computed using the Dominant Eigenvalues method described in Saaty (2003). Otherwise, then the priorities are computed based on the averages of normalized values. Basically it normalizes the matrices so that all of the columns add up to 1, and then computes the averages of the row as the priority weights of each attribute. Three modes of finding the averages are available: arithmetic: the arithmetic mean; geometric: the geometric mean (the default); rootmean: the square root of the sum of the squared value.
- **aggmethod**: how to aggregate the individual priorities. By default aggmethod = method. Apart from the methods offered in method, aggmethod also permits three other options: tmean computes the trimmed arithmetic mean, tmean computes the trimmed geometric mean (both with quantiles trimmed based on qt), and sd computes the standard deviation from the arithmetic mean. If method = "eigen" and aggmethod is not specified, aggmethod defaults to "geometric".
- **qt**: specifies the quantile which the top and bottom priority weights are trimmed. Used only if aggmethod = 'tmean' or aggmethod = 'tgeom'. For example, qt = 0.25 specifies that the aggregation is the arithmetic mean of the values from the 25 to 75 percentile. By default qt = 0.
- **censorcr**: the threshold of censoring observations. All observations with a consistency ratio higher than the specified CR will be dropped from the routine. By default, censorcr = Inf, i.e. drops no observations.
- **agg**: by default, agg = FALSE, which suppresses the output of Aggregated priorities. If agg = TRUE, the output will be a list where $AggPref contains the Aggregated priorities and Standard Deviations.
- **ID**: the column name, or a vector of column names, of variables in df, which are used to indicate specific observations. For example, if a survey dataset comes with an identifier/ multiple identified for each observation, use this so that the output dataframe would contain this identifier.
- **col**: a list of column names which contains the columns for the pairwise comparison matrix in chronological order, as specified in atts. For example, if atts is c("A", "B", "C"), then col would be c("A_B", "A_C", "B_C"), with "A_B" being a pairwise comparison of attribute A and B. col = NULL by default, indicating that the dataframe specified already contained the pairwise comparisons in correct order and nothing else except of what is inside ID.
suppress

Suppresses the supplementary indices. Can take the values of "all" (suppresses all indices), "perror" (suppresses perror), or "cr" (suppresses consistency ratio).

Value

If `agg = TRUE`, returns a list of the results with two elements, `indpref` and `aggpref`. `$indpref` contains individual preference weight (same as `ahp.indpref`), consistency ratios, and the top three most inconsistent pairwise comparisons (same as `ahp.pwerror`). `$aggpref` contains the Aggregated Priorities and Standard Deviations. Otherwise (i.e. default setting), outputs a `data.frame` with only `$indpref`.

Author(s)

Frankie Cho

References

Examples

```r
data(city200)
ahp(df = city200, atts = c('cult', 'fam', 'house', 'jobs', 'trans'), negconvert = TRUE)
```

ahp.aggjudge
Aggregate individual judgments

Description

Aggregate individual judgments from pairwise comparison matrices

Usage

```r
ahp.aggjudge(ahpmat, atts, aggmethod = "geometric", qt = 0)
```

Arguments

- **ahpmat**: A list of pairwise comparison matrices of each decision maker generated by `ahp.mat`.
- **atts**: a list of attributes in the correct order
The method of aggregating the judgments by all decision-makers. Five modes aggregation are available: arithmetic: the arithmetic mean; geometric: the geometric mean (the default); rootmean: the square root of the sum of the squared value, tmean: the trimmed mean, tgmean: trimmed geometric mean. The quantiles trimmed are based on qt. It can also be set to sd, where it reports the standard deviation from the arithmetic mean.

qt specifies the quantile which the top and bottom priority weights are trimmed. Used only if aggmethod = 'tmean' or aggmethod = 'tgmean'. For example, qt = 0.25 specifies that the aggregation is the arithmetic mean of the values from the 25 to 75 percentile. By default qt = 0.

Value

A data.frame of the aggregated pairwise judgments of all the decision-makers.

Author(s)

Frankie Cho

Examples

```r
## Computes individual judgments with geometric mean and aggregates them
## with a trimmed arithmetic mean

data(city200)
atts <- c('cult', 'fam', 'house', 'jobs', 'trans')

cityahp <- ahp.mat(df = city200, atts = atts, negconvert = TRUE)
ahp.aggjudge(cityahp, atts, aggmethod = 'tmean', qt = 0.1)
```

ahp.aggpref
Aggregate priority weights

Description

Compute and aggregate individual priority weights from pairwise comparison matrices

Usage

```r
ahp.aggpref(ahpmat, atts, method = "geometric", aggmethod = method, qt = 0)
```
Arguments

ahpmat A list of pairwise comparison matrices of each decision maker generated by ahp.mat.

atts a list of attributes in the correct order

method if method = "eigen", the individual priority weights are computed using the Dominant Eigenvalues method described in Saaty (2003). Otherwise, then the priorities are computed based on the averages of normalized values. Basically it normalizes the matrices so that all of the columns add up to 1, and then computes the averages of the row as the priority weights of each attribute. Three modes of finding the averages are available: arithmetic: the arithmetic mean; geometric: the geometric mean (the default); rootmean: the square root of the sum of the squared value.

aggmethod how to aggregate the individual priorities. By default aggmethod = method. Apart from the methods offered in method, aggmethod also permits three other options: tmean computes the trimmed arithmetic mean, tgmean computes the trimmed geometric mean (both with quantiles trimmed based on qt), and sd computes the standard deviation from the arithmetic mean. If method = "eigen" and aggmethod is not specified, aggmethod defaults to "geometric".

qt specifies the quantile which the top and bottom priority weights are trimmed. Used only if aggmethod = 'tmean' or aggmethod = 'tgmean'. For example, qt = 0.25 specifies that the aggregation is the arithmetic mean of the values from the 25 to 75 percentile. By default qt = 0.

Value

A data.frame of the aggregated priorities of all the decision-makers.

Author(s)

Frankie Cho

References

Examples

```r
## Computes individual priorities with geometric mean and aggregates them
## with a trimmed arithmetic mean

library(magrittr)

data(city200)

atts <- c('cult', 'fam', 'house', 'jobs', 'trans')
```
ahp.cr

Calculates the consistency ratio of each decision-maker

Description

The ahp.cr function calculates the consistency ratio of each decision-maker, defined by the following equation:

\[
CR = \frac{\lambda - n}{(n - 1)(RI)}
\]

Where \(\lambda \) is the maximum eigenvalue of the pairwise comparison matrix, \(n \) is the number of attributes, and RI is the random index. Following Saaty and Tran (2007), the RI is a function of \(n \) and is the consistency ratio of randomly generated pairwise comparison matrices.

Usage

aha.p.cr(ahpmat, atts, ri = NULL)

Arguments

- **ahpmat**: A list of pairwise comparison matrices of each decision maker generated by ahp.mat.
- **atts**: a list of attributes in the correct order. The RI is asymptotic as it approaches \(n=15 \), thus it is set to be equal to 1.6 if the number of attributes exceeds 16.
- **ri**: A user-supplied random index value, probably user generated using ahp.ri.

Value

A list of consistency ratios of each decision-maker.

Author(s)

Frankie Cho

References

Examples

data(city200)
atts <- c('cult', 'fam', 'house', 'jobs', 'trans')

cityahp <- ahp.mat(df = city200, atts = atts, negconvert = TRUE)
ahp.cr(cityahp, atts)

ahp.error

Matrix of the product between the pairwise comparison value and pj/pi

Description

Consider the comparison matrix where element \(a_{ij} \) contains the pairwise comparison between the attributes \(i \) and \(j \). The weights of the matrix was constructed as in \texttt{agg.indpref} using the Perron eigenvector where \(p_i \) and \(p_j \) are the weights of the \(i^{th} \) and the \(j^{th} \) element respectively. \texttt{ahp.error} constructs a matrix \(\epsilon_{ij} = a_{ij}p_j/p_i \).

Usage

\texttt{ahp.error(ahpmat, atts, reciprocal = FALSE)}

Arguments

\begin{itemize}
 \item \texttt{ahpmat} A list of pairwise comparison matrices of each decision maker generated by \texttt{ahp.mat}.
 \item \texttt{atts} a list of attributes in the correct order
 \item \texttt{reciprocal} whether to remove all numbers lower than 1 and put all numbers above 1 in the upper triangular matrix. Useful for visualizing the inconsistency rapidly.
\end{itemize}

Value

A list of matrices containing \(\epsilon_{ij} = a_{ij}p_j/p_i \) for each decision-maker, with elements from the lower triangle set as NA automatically (since it is essentially equal to the element in the upper triangle).

Author(s)

Frankie Cho

References

Examples

```r
cult <- c('cult', 'fam', 'house', 'jobs', 'trans')
data(city200)
cityahp <- ahp.mat(city200, atts, negconvert = TRUE)
ahp.error(cityahp, atts)
```

ahp.harker Replace inconsistent pairwise comparisons

Description

Based on the matrix derived from ahp.error, replaces the top \(n \) number of inconsistent pairwise comparisons with a value calculated by from the method in Harker (1987). While there are strong arguments against replacing inconsistent values without the decision-maker’s consent for the sake of satisfying the consistency ratio criterion of consistency ratio < 0.1 (see Saaty and Tran (2007)), it is often not possible for enumerators to ask respondents to change their answers based on consistency, whereas truncating inconsistent decisions may make the dataset unrepresentative of the population. Researchers should think carefully and explain fully the methods used to process AHP data, and whenever possible, use a lower number of iterations.

Usage

```r
ahp.harker(
  ahpmat,
  atts,
  round = FALSE,
  limit = FALSE,
  iterations = 1,
  stopcr = 0,
  printiter = TRUE
)
```

Arguments

- `ahpmat` A list of pairwise comparison matrices of each decision maker generated by `ahp.mat`
- `atts` A list of attributes in the correct order
- `round` Rounds the imputation values of the matrix to the nearest integer if TRUE. Defaults to FALSE.
- `limit` If set to TRUE, if the imputation value is larger than 9 or smaller than 1/9, the value is converted to 9 and 1/9 respectively. Defaults to FALSE.
iterations The number of comparisons with the highest inconsistency to be changed. For example, if iterations = 3, ahp.harker changes the first, second, and third most inconsistent pairwise comparisons using that method. Defaults to 1.

stopcr The stopping Consistency Ratio, which was calculated by ahp.cr. Complements iter by giving iterations a criteria to stop when a matrix is sufficiently consistent. The function will continue looping and replacing more elements of the pairwise comparison matrices until the consistency ratio of the new matrix is lower than stopcr, or the maximum number of iterations is reached, and will stop and move onto the next individual. When stopcr is set, the number of replaced elements will differ among each decision-maker. Defaults to 0 (i.e. the loop will not be stopped unless iterations is reached).

printiter Whether the number of iterations taken for each pairwise matrix is reported or not. If printiter = TRUE, it prints out the final number of iterations that each individual decision-maker took to reach a value lower than stopcr. Generally it is not needed if stopcr is not specified. When stopcr is specified, this is a good way of identifying how many pairwise comparisons are actually replaced by the algorithm for each decision maker. Defaults to TRUE.

Value
A list of matrices with values replaced with consistent values.

Author(s)
Frankie Cho

References

See Also
ahp.error ahp.cr

Examples

atts <- c('cult', 'fam', 'house', 'jobs', 'trans')
data(city200)
cityahp <- ahp.mat(city200, atts, negconvert = TRUE)
ahp.harker(cityahp, atts)
Computes priority weights of individual decision-makers

Description

ahp.indpref computes the individual priorities of the decision-makers, and returns a data.frame containing the priority weights of the decision-makers.

Usage

ahp.indpref(ahpmat, atts, method = "geometric")

Arguments

ahpmat A list of pairwise comparison matrices of each decision maker generated by ahp.mat.
atts a list of attributes in the correct order
method if method = "eigen", the individual priority weights are computed using the Dominant Eigenvalues method described in Saaty (2003). Otherwise, then the priorities are computed based on the averages of normalized values. Basically it normalizes the matrices so that all of the columns add up to 1, and then computes the averages of the row as the priority weights of each attribute. Three other modes of finding the averages are available: arithmetic: the arithmetic mean; geometric: the geometric mean (the default); rootmean: the square root of the sum of the squared value.

Value

A data.frame of the individual priorities of all the decision-makers.

Author(s)

Frankie Cho

References

Examples

```r
data(city200)
atts <- c('cult', 'fam', 'house', 'jobs', 'trans')

cityahp <- ahp.mat(df = city200, atts = atts, negconvert = TRUE)
ahp.indpref(cityahp, atts, method = "eigen")
```

ahp.mat
Generate AHP pairwise matrices from survey data

Description

ahp.mat takes in paired comparisons from survey data with questions using the analytic hierarchy process and converts it into pairwise comparison matrices for each individual decision-maker. Examples based on Saaty (2004).

Usage

```r
ahp.mat(df, atts, negconvert = FALSE, reciprocal = TRUE)
```

Arguments

- `df` a dataframe, each row corresponding to one decision-maker, with columns ordered according to `atts`.
- `atts` a list of attributes in the correct order
- `negconvert` logical, whether to convert all positive values to negative. In the pairwise comparison A_B, if -6 denotes A is more important than B by 6 units, set `negconvert = TRUE`.
- `reciprocal` logical, whether to convert negative values (after `negconvert`) to its reciprocal. If the comparison A_B where B is more important than A was already entered in its reciprocal (e.g. 1/6), choose `reciprocal = FALSE`. When `reciprocal = FALSE`, do not set `negconvert = TRUE`.

Value

A list of pairwise comparison matrices of each decision-maker.

Author(s)

Frankie Cho

References

Examples

```r
data(city200)
atts <- c('cult', 'fam', 'house', 'jobs', 'trans')
ahp.m.mat(df = city200, atts = atts, negconvert = TRUE)
```

Description

Imputes the missing values of a list of matrices produced by `ahp.mat` using the methods and assumptions made in Harker (1987). Missing values must be coded as `NA`. As suggested in Harker (1987), a minimum of n-1 comparisons must be made, where n is the number of attributes (assuming that the decision-maker is perfectly consistent). Note that the algorithm assumes that the `NA` values will be imputed under perfect consistency with the other pairwise comparisons made.

Usage

```r
ahp.missing(ahpmat, atts, round = FALSE, limit = FALSE)
```

Arguments

- `ahpmat`: A list of pairwise comparison matrices of each decision maker generated by `ahp.mat`.
- `atts`: A list of attributes in the correct order.
- `round`: Rounds the imputation values of the matrix to the nearest integer if `TRUE`. Defaults to `FALSE`.
- `limit`: If set to `TRUE`, if the imputation value is larger than 9 or smaller than 1/9, the value is converted to 9 and 1/9 respectively. Defaults to `FALSE`.

Value

A list of matrices with all `NA` values imputed.

Author(s)

Frankie Cho

References

Examples

```r
library(magrittr)

atts <- c('cult', 'fam', 'house', 'jobs', 'trans')

data(city200)

set.seed(42)
## Make a dataframe that is missing at random
missing.df <- city200[1:10,]
for (i in 1:10){
  missing.df[i, round(stats::runif(1,1,10))] <- NA
}
missingahp <- ahp.mat(missing.df, atts, negconvert = TRUE)
ahp.missing(missingahp, atts)
```

ahp.pwerror

Finds the pairwise comparisons with the maximum amount of inconsistency

Description

After constructing a list of matrices with $\epsilon_{ij} = a_{ij} w_j / w_i$ (following `ahp.error`), this algorithm extracts the top n numbers of pairwise comparison matrices with the highest ϵ_{ij} for each decision-maker.

Usage

```r
ahp.pwerror(ahpmat, atts, npw = 3)
```

Arguments

- **ahpmat**: A list of pairwise comparison matrices of each decision maker generated by `ahp.mat`.
- **atts**: a list of attributes in the correct order
- **npw**: Number of pairwise comparisons

Value

A list of matrices containing $\epsilon_{ij} = a_{ij} w_j / w_i$ for each decision-maker, with elements from the lower triangle set as NA automatically (since it is essentially equal to the element in the upper triangle).

Author(s)

Frankie Cho
ahp.ri

References

Examples

library(magrittr)

atts <- c('cult', 'fam', 'house', 'jobs', 'trans')
data(city200)
cityahp <- ahp.mat(city200, atts, negconvert = TRUE)
ahp.error(cityahp, atts)

ahp.ri

Generate random indices

Description

The ahp.ri function calculates the mean consistency indices of a specific numbers of random number pairwise comparison matrices.

The random index of one pairwise comparison matrix is given as below, where \(\lambda \) is the maximum eigenvalue and \(n \) is the number of attributes.

\[
RI = (\lambda - n)/(n - 1)
\]

ahp.ri creates \(nsims \) number of pairwise comparison matrices with number of dimensions=\(\text{dim} \), and returns its average.

Usage

ahp.ri(nsims, dim, seed = 42)

Arguments

- \(nsims \): Number of random pairwise comparison matrices to be generated. Processing time increases substantially with higher \(nsims \).
- \(dim \): Number of dimensions of the matrix.
- \(seed \): The random number generator seed for reproducibility, which is same as set.seed. By default, \(seed = 42 \).
Value

The generated random index, which is numeric.

Author(s)

Frankie Cho

Examples

```r
ahp.ri(nsims = 10000, dim = 5, seed = 42)
```

<table>
<thead>
<tr>
<th>ahpsurvey</th>
<th>AHP Survey package</th>
</tr>
</thead>
</table>

Description

The ahpsurvey package provides a workflow for researchers to reformat data and run analytic hierarchy process on data that are originally formatted using the survey data entry mode. A diversified toolbox is available for researchers to explore ways to impute missing pairwise comparisons or to adjust comparisons based on consistency, and to conveniently customize the methods which weights derived from surveys are extracted and aggregated.

Author(s)

Frankie Cho <htcho@connnect.hku.hk>

<table>
<thead>
<tr>
<th>city1</th>
<th>Dataframe of one decision-maker based on Saaty (2004)</th>
</tr>
</thead>
</table>

Description

A data.frame of one decision-maker with weights the same as Saaty (2004), with the pairwise comparisons of `atts`: `c('cult', 'fam', 'house', 'jobs', 'trans')`, about choosing the best city to live in based on five attributes: Culture, Family, House, Jobs, and Transportation. Negative values in the data denote that the attribute on the left is more important than the right, thus if used with `ahp.mat`, `negconvert` must be set to `TRUE`.

Usage

```r
data(city1)
```
A data frame with 1 row and 10 variables, which are pairwise comparisons of atts.

Source
Saaty (2004)

Description
A dataframe of 200 simulated decision-makers based on Saaty (2004), with the pairwise comparisons of atts: c('cult', 'fam', 'house', 'jobs', 'trans'), about choosing the best city to live in based on five attributes: Culture, Family, House, Jobs, and Transportation. The choices of 200 decision-makers are simulated based on the underlying weights and randomness generated by a normal random distribution. The true weights are stored in data(city1). The normal random distribution was set with a mean at the true weight value and a standard deviation of 2, 1, 2, 1.5, 2, 1.5, 2.5, 0.5, 0.5, 1 in chronological order of the columns in city200.

Usage
data(city200)

Format
A dataframe with 200 row and 10 variables, which are pairwise comparisons of atts.

Source
Index

* Analytic
 ahpsurvey, 16

* Hierarchy
 ahpsurvey, 16

* Process
 ahpsurvey, 16

* datasets
 city1, 16
 city200, 17

 ahp, 2
 ahp.aggjudger, 4
 ahp.aggpref, 5
 ahp.cr, 7
 ahp.error, 8
 ahp.harker, 9
 ahp.indpref, 11
 ahp.mat, 12
 ahp.missing, 13
 ahp.pwerror, 14
 ahp.ri, 15
 ahpsurvey, 16

 city1, 16
 city200, 17