Index of /web/packages/algaeClassify/readme

[ICO]NameLast modifiedSizeDescription

[PARENTDIR]Parent Directory  -  
[TXT]README.html2019-09-14 23:00 8.6K 

README

algaeClassify

The goal of algaeClassify is to facilitate the analysis of taxonomic and functional trait data for phytoplankton.

Installation

You can install the released version of algaeClassify from CRAN with:

install.packages("algaeClassify")

The development version can be installed from github with:

library(devtools)
install_github("vppatil/GEISHA_phytoplankton/package builds/algaeClassify",ref="working")

Example

This is a basic example which shows you how to use algaeClassify to 1) identify anomalies in a time-series of phytoplankton species 2) verify/correct species names using algaebase 3) calculate aggregate abundance at a higher taxonomic level (genus) 4) re-plot species accumulation curves to see if the taxonomic standardization and aggregation to higher taxonomy have resolved the anomalies.

library(algaeClassify)

data(lakegeneva) #load a demonstration dataset

#view species accumulation curve over duration of dataset to check for anomalies
accum(lakegeneva,phyto_name='genus',column='biovol_um3_ml',n=100,datename='date_dd_mm_yy',dateformat='%d-%m-%y')

#clean up binomial names and extract genus and species to new columns
lakegeneva<-genus_species_extract(lakegeneva,phyto.name='phyto_name')

#compare names against accepted taxonomy in algaebase, and extract higher taxonomy
lakegeneva.algaebase<-spp_list_algaebase(lakegeneva,long=TRUE,write=FALSE)

#merge taxonomic information into the original database
lakegeneva<-merge(lakegeneva,lakegeneva.algaebase)

#aggregate abundance data to genus level
lakegeneva.genus<-phyto_ts_aggregate(lakegeneva,SummaryType='abundance',AbundanceVar='biovol_um3_ml',
                    GroupingVar1='genus')

#plot accumulation curve again, but at genus level
accum(lakegeneva.genus,phyto_name='genus',column='biovol_um3_ml',n=100,datename='date_dd_mm_yy',dateformat='%Y-%m-%d')