Package ‘allestimates’

March 26, 2023

Type Package
Title Effect Estimates from All Models
Version 0.2.3
Description Estimates and plots effect estimates from models with all possible combinations of a list of variables. It can be used for assessing treatment effects in clinical trials or risk factors in bio-medical and epidemiological research. Like Stata command 'confall' (Wang Z (2007) <doi:10.1177/1536867X0700700203>), 'allestimates' calculates and stores all effect estimates, and plots them against p values or Akaike information criterion (AIC) values. It currently has functions for linear regression: all_lm(), logistic and Poisson regression: all_glm(), and Cox proportional hazards regression: all_cox().
License GPL-2
Encoding UTF-8
LazyData true
Imports broom, ggplot2, survival, tidyr, utils, stringr, dplyr
Depends R (>= 2.10)
RoxygenNote 7.2.3
Suggests spelling, knitr, rmarkdown
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Zhiqiang Wang [aut, cre]
Maintainer Zhiqiang Wang <menzies.uq@gmail.com>
Repository CRAN
Date/Publication 2023-03-26 07:20:02 UTC

R topics documented:

allestimates ... 2
all_cox ... 3
Description

To assess treatment effects in clinical trials and risk factors in bio-medical and epidemiological research, we use regression coefficients, odds ratios or hazard ratios as effect estimates. allestimates allows users to quickly obtain effect estimates from models with all possible combinations of a list of variables specified by users. all_lm for linear regression, all_glm for logistic regression, all_speedglm using speedlm as a faster alternative of all_glm, and all_cox for Cox Proportional Hazards Models. Users can further use those values in a returned list of results. all_plot draws scatter plots with all effect estimate values against p values, as Stata confall command (Wang Z (2007) <doi:10.1177/1536867X0700700203>). Those plots divide estimates into four categories:

Details

- positive and significant: left-top quarter
- negative and significant: left-bottom quarter
- positive and non-significant: right-top quarter
- negative and non-significant: right-bottom quarter

all_plot2 draws multiple plots. Each of those plots indicates whether a specific variable is included or not included in models. Those effect estimates help users better understand confounding effects, uncertainty of their estimates, as well as inappropriately including variables in the models. This is a tool for calculating and exploring effect estimates from all possible models. Interpretation of the results should be in the context of other analyses and biological knowledge.

Examples

? all_speedglm
? all_glm
? all_cox
? all_lm
? all_plot
? all_plot2
all_cox

Estimates all possible effect estimates using Cox Proportional Hazards regression models

Description

Estimates hazard ratios using Proportional Hazards Regression models ("coxph" from survival package) from models with all possible combinations of a list of variables.

Usage

all_cox(crude, xlist, data, na_omit = TRUE, ...)

Arguments

crude An object of formula for initial model, generally crude model. However, any other variables can also be included here as the initial model. The left-hand side of ~ is the outcome of interest, and the variable on the right-hand side of ~ is the exposure of the interest (either a treatment or a risk factor)

xlist A vector of a list of variable names.

data Data frame.

na_omit Remove all missing values. Default is "na_omit = TRUE".

... Further optional arguments.

Value

A list of all effect estimates.

See Also

survival

Examples

vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
results
all_glm

Estimates all possible effect estimates using glm

Description

all_glm estimates odds ratios or rate ratios using generalized linear models (glm) with all possible combinations of a list of variables (potential confounding factors).

Usage

all_glm(crude, xlist, data, family = "binomial", na_omit = TRUE, ...)

Arguments

- **crude**: An object of *formula* for initial model, generally crude model. However, any other variables can also be included here as the initial model.
- **xlist**: A *vector* of a list of variable names (potential confounding factors).
- **data**: *Data frame*.
- **family**: *family* Description of the error distribution. Default is "binomial".
- **na_omit**: Remove all missing values. Default is "na_omit = TRUE".
- **...**: Further optional arguments.

Value

A list of all effect estimates.

See Also

stats

Examples

diab_df$Overweight <- as.numeric(diab_df$BMI >= 25)
vlist <- c("Age", "Sex", "Income")
all_glm(crude = "Diabetes ~ Overweight", xlist = vlist, data = diab_df)
all_lm

Estimates all possible effect estimates using `lm`

Description

`all_lm` estimates coefficients of a specific variable using linear models (`lm`) with all possible combinations of other variables (potential confounding factors).

Usage

```r
all_lm(crude, xlist, data, na_omit = TRUE, ...)
```

Arguments

- **crude** An object of `formula` for initial model, generally crude model. However, additional variables can also be included here as the initial model.
- **xlist** A `vector` of a list of variable names (potential confounding factors).
- **data** `Data frame`.
- **na_omit** Remove all missing values. Default is "na_omit = TRUE".
- **...** Further optional arguments.

Value

A list of all effect estimates.

See Also

`lm`

Examples

```r
vlist <- c("Age", "Sex", "Cancer", "CVD", "Education", "Income")
all_lm(crude = "BMI ~ Married", xlist = vlist, data = diab_df)
```

all_plot

Plot all effect estimates against p values

Description

`all_plot()` generates a scatter plot with effect estimates of all possible models against p values.
Usage

```r
all_plot(
  data,
  xlabels = c(0, 0.001, 0.01, 0.05, 0.2, 0.5, 1),
  xlim = c(0, 1),
  xlab = "P value",
  ylim = NULL,
  ylab = NULL,
  yscale_log = FALSE,
  title = NULL
)
```

Arguments

- **data** (Object) from `all_cox`, `all_glm`, `all_speedglm`, or `all_glm`, including all effect estimate values.
- **xlabels** (Numeric vector) x-axis tick labels. Default is "c(0, 0.001, 0.01, 0.05, 0.2, 0.5, 1)".
- **xlim** (Vector of 2 numeric values) for x-axis limits. Default is "c(0, 1)".
- **xlab** (Character string) for x-axis name. Default is "P value".
- **ylim** (Vector of 2 numeric values) for y-axis limits.
- **ylab** (Character string) for y-axis name. Default depends on original model types.
- **yscale_log** (TRUE or FALSE) to re-scale y-axis to "log10". Default is "FALSE".
- **title** (Character) for plot title. Default is "NULL".

Value

A ggplot2 object: scatter plot

Examples

```r
vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
all_plot(results)
```

Description

`all_plot2()` generates a panel of scatter plots with effect estimates of all possible models against p values. Each plot includes effect estimates from all models including a specific variable.
all_plot_aic

Usage

```r
all_plot2(
data,  
xlabels = c(0, 0.001, 0.01, 0.05, 0.2, 0.5, 1),  
xlim = c(0, 1),  
xlab = "P value",  
ylim = NULL,  
ylab = NULL,  
yscale_log = FALSE,  
title = NULL  
)
```

Arguments

- `data` *Object from all_cox, all_glm, all_speedglm, or all_glm, including all effect estimate values.*
- `xlabels` *numeric vector x-axis tick labels. Default is "c(0, 0.001, 0.01, 0.05, 0.2, 0.5, 1)"*
- `xlim` *vector of 2 numeric values for x-axis limits. Default is "c(0, 1)".*
- `xlab` *Character string for x-axis name. Default is "P value".*
- `ylim` *vector of 2 numeric values for y-axis limits.*
- `ylab` *Character string for y-axis name. Default depends on original model types.*
- `yscale_log` *TRUE or FALSE re-scale y-axis to "log10". Default is "FALSE".*
- `title` *Character title. Default is "NULL".*

Value

A ggplot2 object: scatter plot

Examples

```r
vlist <- c("Age", "Sex", "Married", "BMI", "Income")  
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)  
all_plot2(results)
```

Description

all_plot_aic() generates a scatter plot with all effect estimates against AIC.

Usage

```r
all_plot_aic(data, xlab = "AIC", ylab = NULL, title = NULL)
```
Arguments

data
Object from `all_cox`, `all_glm`, `all_speedglm`, or `all_glm`, including all effect estimate values.

xlab
Character string for x-axis name. Default is "AIC".

ylab
Character string for y-axis name. Default depends on original model types.

title
Character for plot title. Default is "NULL".

Value

A `ggplot2` object: scatter plot.

Examples

vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- `all_cox` (crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
all_plot_aic(results)

\[all_plot_aic2 \]

| Draws multiple scatter plots of all effect estimates against AIC |

Description

`all_plot_aic2`() draws multiple scatter plots of all effect estimates against AIC. Each plot indicates if a specific variable is included in the models.

Usage

\[all_plot_aic2(data, xlab = "AIC", ylab = NULL, title = NULL) \]

Arguments

data
Object from `all_cox`, `all_glm`, `all_speedglm`, or `all_glm`, including all effect estimate values.

xlab
Character string for x-axis name. Default is "AIC".

ylab
Character string for y-axis name. Default depends on original model types.

title
Character for plot title. Default is "NULL".

Value

A `ggplot2` object: scatter plot.

Examples

vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- `all_cox` (crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
all_plot_aic(data = results)
Example data: Health outcomes of 2372 adults with and without diabetes

Description
A data frame with 2372 rows and 14 variables with diabetes status diabetes and mortality status endpoint. For the purpose of demonstration, assume that we are interested in the association between diabetes and endpoint. Other variables are considered as possible confounding factors. The purposes of this dataset is to illustrate those functions in chest and allestimates packages only. Therefore, we assume it is a cohort design for Cox Proportional Hazard regression, and a case-control design for logistic regression.

Usage
diab_df

Format
A data frame with 2372 rows and 14 variables:

- **Diabetes** diabetes status 1: with diabetes 0: without diabetes
- **Endpoint** mortality status 1: reached end point, and 0: survived
- **Age** Age, in years
- **Sex** sex, 1: male, 2: Female
- **BMI** Body mass index
- **Married** marital status 1: married, 0: not
- **Smoke** smoking status 1: smoker, 0: non-smoker
- **CVD** cardiovascular disease 1: yes 0: no
- **Cancer** cancer 1: yes, 0: no
- **Education** education 1: high, 0: low
- **Income** income 1: high, 0: low
- **t0** time (age) at the start of the follow-up
- **t1** time (age) at the end of the follow-up
- **mid** matched set id, for conditional logistic regression
Index

* datasets
 diab_df, 9

all_cox, 3
all_glm, 4
all_lm, 5
all_plot, 5
all_plot2, 6
all_plot_aic, 7
all_plot_aic2, 8
allestimates, 2

diab_df, 9