Package ‘alluvial’

October 12, 2022

Type Package
Title Alluvial Diagrams
Version 0.1-2
Date 2016-09-09
Description Creating alluvial diagrams (also known as parallel sets plots) for multivariate and time series-like data.

URL https://github.com/mbojan/alluvial
BugReports https://github.com/mbojan/alluvial/issues
Suggests devtools, testthat, reshape2, knitr, rmarkdown, dplyr
License MIT + file LICENSE
LazyLoad yes
LazyData yes
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Author Michal Bojanowski [aut, cre], Robin Edwards [aut]
Maintainer Michal Bojanowski <michal2992@gmail.com>
Repository CRAN
Date/Publication 2016-09-09 13:08:51

R topics documented:

alluvial ... 2
alluvial_ts ... 4
Refugees .. 6

Index 7
Alluvial diagram

Description

Drawing alluvial diagrams, also known as parallel set plots.

Usage

alluvial(..., freq, col = "gray", border = 0, layer, hide = FALSE, alpha = 0.5, gap.width = 0.05, xw = 0.1, cw = 0.1, blocks = TRUE, ordering = NULL, axis_labels = NULL, cex = par("cex"), cex.axis = par("cex.axis"))

Arguments

... vectors or data frames, all for the same number of observations
freq numeric, vector of frequencies of the same length as the number of observations
col vector of colors of the stripes
border vector of border colors for the stripes
layer numeric, order of drawing of the stripes
hide logical, should particular stripe be plotted
alpha numeric, vector of transparency of the stripes
gap.width numeric, relative width of inter-category gaps
xw numeric, the distance from the set axis to the control points of the xspline
cw numeric, width of the category axis
blocks logical, whether to use blocks to tie the flows together at each category, versus contiguous ribbons (also admits character value "bookends")
ordering list of numeric vectors allowing to reorder the alluvia on each axis separately, see Examples
axis_labels character, labels of the axes, defaults to variable names in the data
cex, cex.axis numeric, scaling of fonts of category labels and axis labels respectively. See par.

Value

Invisibly a list with elements:

endpoints A list of matrices of y-coordinates of endpoints of the alluvia. x-coordinates are consecutive natural numbers.

Note

Please mind that the API is planned to change to be more compatible with dplyr verbs.
Examples

Titanic data
tit <- as.data.frame(Titanic)

2d
tit2d <- aggregate(Freq ~ Class + Survived, data=tit, sum)
alluvial(tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
gap.width=0.1, col= "steelblue", border="white",
layer = tit2d$Survived != "Yes")

alluvial(tit2d[,1:2], freq=tit2d$Freq,
hide=tit2d$Freq < 150,
xw=0.0, alpha=0.8,
gap.width=0.1, col= "steelblue", border="white",
layer = tit2d$Survived != "Yes")

3d
tit3d <- aggregate(Freq ~ Class + Sex + Survived, data=tit, sum)
alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
col=ifelse(tit3d$Survived == "No", "red", "gray"),
layer = tit3d$Sex != "Female",
border="white")

4d
alluvial(tit[,1:4], freq=tit$Freq, border=NA,
hide = tit$Freq < quantile(tit$Freq, .50),
col=ifelse(tit$Class == "3rd" & tit$Sex == "Male", "red", "gray"))

3d example with custom ordering
Reorder "Sex" axis according to survival status
ord <- list(NULL, with(tit3d, order(Sex, Survived)), NULL)
alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
col=ifelse(tit3d$Survived == "No", "red", "gray"),
layer = tit3d$Sex != "Female",
border="white", ordering=ord)

Possible blocks options
for (blocks in c(TRUE, FALSE, "bookends")) {
 # Elaborate alluvial diagram from main examples file
 alluvial(tit[,1:4], freq = tit$Freq, border = NA,
 hide = tit$Freq < quantile(tit$Freq, .50),
 col = ifelse(tit$Class == "3rd" & tit$Sex == "Male", "red", "gray"),
 blocks = blocks)
}

Data returned
x <- alluvial(tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
alluvial_ts

Alluvial diagram for multiple time series data

Description

This is a variant of alluvial diagram suitable for multiple (cross-sectional) time series. It also works with continuous variables equivalent to time.

Usage

alluvial_ts(dat, wave = NA, ygap = 1, col = NA, alpha = NA, plotdir = "up", rankup = FALSE, lab.cex = 1, lab.col = "black", xmargin = 0.1, axis.col = "black", title = NA, title.cex = 1, axis.cex = 1, grid = FALSE, grid.col = "grey80", grid.lwd = 1, leg.mode = TRUE, leg.x = 0.1, leg.y = 0.9, leg.cex = 1, leg.col = "black", leg.lty = NA, leg.lwd = NA, leg.max = NA, xlab = NA, ylab = NA, xlab.pos = 2, ylab.pos = 1, lwd = 1, ...)

Arguments

dat data.frame of time-series (or suitable equivalent continuously disaggregated data), with 3 columns (in order: category, time-variable, value) with <= 1 row for each category-time combination

wave numeric, curve wavyness defined in terms of x axis data range - i.e. bezier point offset. Experiment to get this right

ygap numeric, vertical distance between polygons - a multiple of 10% of the mean data value

col colour, value or vector of length matching the number of unique categories. Individual colours of vector are mapped to categories in alpha-numeric order

alpha numeric, [0,1] polygon fill transparency

plotdir character, string (‘up’, ‘down’ or ‘centred’) giving the vertical alignment of polygon stacks

rankup logical, rank polygons on time axes upward by magnitude (largest to smallest) or not

lab.cex numeric, category label font size

lab.col colour, of category label

xmargin numeric [0,1], proportional space for category labels

axis.col colour, of axes

title character, plot title
alluvial_ts

title.cex numeric, plot title font size
axis.cex numeric, font size of x-axis break labels
grid logical, plot vertical axes
grid.col colour, of grid axes
grid.lwd numeric, line width of grid axes
leg.mode logical, draw y-axis scale legend inside largest data point (TRUE default) or alternatively with custom position/value (FALSE)
leg.x, leg.y numeric [0,1], x/y positions of legend if leg.mode = FALSE
leg.cex numeric, legend text size
leg.col colour, of legend lines and text
leg.lty numeric, code for legend line type
leg.lwd numeric, legend line width
leg.max numeric, legend scale line width
xlab, ylab character, x-axis / y-axis titles
xlab.pos, ylab.pos numeric, perpendicular offset for axis titles
lwd numeric, value or vector of length matching the number of unique categories for polygon stroke line width. Individual values of vector are mapped to categories in alpha-numeric order

Examples

```r
if( require(reshape2) )
{
  data(Refugees)
  reshape2::dcast(Refugees, country ~ year, value.var = 'refugees')
  d <- Refugees

  set.seed(39) # for nice colours
cols <- hsv(h = sample(1:10/10), s = sample(3:12)/15, v = sample(3:12)/15)

  alluvial_ts(d)
  alluvial_ts(d, wave = .2, ygap = 5, lwd = 3)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, rankup = TRUE)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'down')
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'centred', grid=TRUE, grid.lwd = 5)
  alluvial_ts(d, wave = 0, ygap = 0, col = cols, alpha = .9, border = 'white', grid = TRUE, grid.lwd = 5)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.4)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex = .7)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex=.7, leg.cex=.7, leg.col = 'white')
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, leg.mode = FALSE, leg.x = .1,
```
Refugees

Refugee data

Description

Top 10 countries/territories of origin (excluding "Various") for period 2003-13 of UNHCR statistics on "Persons recognized as refugees under the 1951 UN Convention/1967 Protocol, the 1969 OAU Convention, in accordance with the UNHCR Statute, persons granted a complementary form of protection and those granted temporary protection."

Format

Data frame with the following columns:

- **country** Country or territory of origin
- **year** Year (2003-13)
- **refugees** Persons recognized as refugees under the 1951 UN Convention, etc..

Source

http://data.un.org/Data.aspx?d=UNHCR&f=indID%3aType-Ref
Index

alluvial, 2
alluvial_ts, 4
par, 2
Refugees, 6