Package ‘alluvial’

September 9, 2016

Type Package
Title Alluvial Diagrams
Version 0.1-2
Date 2016-09-09
Description Creating alluvial diagrams (also known as parallel sets plots) for multivariate
and time series-like data.

URL https://github.com/mbojan/alluvial
BugReports https://github.com/mbojan/alluvial/issues
Suggests devtools, testthat, reshape2, knitr, rmarkdown, dplyr
License MIT + file LICENSE
LazyLoad yes
LazyData yes
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Author Michal Bojanowski [aut, cre],
Robin Edwards [aut]
Maintainer Michal Bojanowski <michal2992@gmail.com>
Repository CRAN
Date/Publication 2016-09-09 13:08:51

R topics documented:

alluvial .. 2
alluvial_ts 4
Refugees 6

Index 7
Description

Drawing alluvial diagrams, also known as parallel set plots.

Usage

```r
alluvial(..., freq, col = "gray", border = 0, layer, hide = FALSE,
    alpha = 0.5, gap.width = 0.05, xw = 0.1, cw = 0.1, blocks = TRUE,
    ordering = NULL, axis_labels = NULL, cex = par("cex"),
    cex.axis = par("cex.axis"))
```

Arguments

- `...`: vectors or data frames, all for the same number of observations
- `freq`: numeric, vector of frequencies of the same length as the number of observations
- `col`: vector of colors of the stripes
- `border`: vector of border colors for the stripes
- `layer`: numeric, order of drawing of the stripes
- `hide`: logical, should particular stripe be plotted
- `alpha`: numeric, vector of transparency of the stripes
- `gap.width`: numeric, relative width of inter-category gaps
- `xw`: numeric, the distance from the set axis to the control points of the xspline
- `cw`: numeric, width of the category axis
- `blocks`: logical, whether to use blocks to tie the flows together at each category, versus contiguous ribbons (also admits character value "bookends")
- `ordering`: list of numeric vectors allowing to reorder the alluvia on each axis separately, see Examples
- `axis_labels`: character, labels of the axes, defaults to variable names in the data
- `cex, cex.axis`: numeric, scaling of fonts of category labels and axis labels respectively. See `par`.

Value

Invisibly a list with elements:

- `endpoints`: A list of matrices of y-coordinates of endpoints of the alluvia. x-coordinates are consecutive natural numbers.

Note

Please mind that the API is planned to change to be more compatible with `dplyr` verbs.
Examples

Titanic data
tit <- as.data.frame(Titanic)

2d
tit2d <- aggregate(Freq ~ Class + Survived, data=tit, sum)
alluvial(tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
gap.width=0.1, col="steelblue", border="white",
layer = tit2d$Survived != "Yes")

alluvial(tit2d[,1:2], freq=tit2d$Freq,
hide=tit2d$Freq < 150,
xw=0.0, alpha=0.8,
gap.width=0.1, col="steelblue", border="white",
layer = tit2d$Survived != "Yes")

3d
tit3d <- aggregate(Freq ~ Class + Sex + Survived, data=tit, sum)

alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
col=ifelse(tit3d$Survived == "No", "red", "gray"),
layer = tit3d$Sex != "Female",
border="white")

4d
alluvial(tit[,1:4], freq=tit$Freq, border=NA,
hide = tit$Freq < quantile(tit$Freq, .50),
col=ifelse(tit$Class == "3rd" & tit$Sex == "Male", "red", "gray"))

3d example with custom ordering
Reorder "Sex" axis according to survival status
ord <- list(NULL, with(tit3d, order(Sex, Survived)), NULL)
alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
col=ifelse(tit3d$Survived == "No", "red", "gray"),
layer = tit3d$Sex != "Female",
border="white", ordering=ord)

Possible blocks options
for (blocks in c(TRUE, FALSE, "bookends")) {
 # Elaborate alluvial diagram from main examples file
 alluvial(tit[,1:4], freq = tit$Freq, border = NA,
 hide = tit$Freq < quantile(tit$Freq, .50),
 col = ifelse(tit$Class == "3rd" & tit$Sex == "Male", "red", "gray"),
 blocks = blocks)
}

Data returned
x <- alluvial(tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
alluvial_ts

Description

This is a variant of alluvial diagram suitable for multiple (cross-sectional) time series. It also works with continuous variables equivalent to time.

Usage

```r
alluvial_ts(dat, wave = NA, ygap = 1, col = NA, alpha = NA, plotdir = "up", rankup = FALSE, lab.cex = 1, lab.col = "black", xmargin = 0.1, axis.col = "black", title = NA, title.cex = 1, axis.cex = 1, grid = FALSE, grid.col = "grey80", grid.lwd = 1, leg.mode = TRUE, leg.x = 0.1, leg.y = 0.9, leg.cex = 1, leg.col = "black", leg.lty = NA, leg.lwd = NA, leg.max = NA, xlab = NA, ylab = NA, xlab.pos = 2, ylab.pos = 1, lwd = 1, ...)```

**Arguments**

- **dat**: data.frame of time-series (or suitable equivalent continuously disaggregated data), with 3 columns (in order: category, time-variable, value) with <= 1 row for each category-time combination.
- **wave**: numeric, curve wavyness defined in terms of x axis data range - i.e. bezier point offset. Experiment to get this right.
- **ygap**: numeric, vertical distance between polygons - a multiple of 10% of the mean data value.
- **col**: colour, value or vector of length matching the number of unique categories. Individual colours of vector are mapped to categories in alpha-numeric order.
- **alpha**: numeric, [0,1] polygon fill transparency.
- **plotdir**: character, string (’up’, ’down’ or ’centred’) giving the vertical alignment of polygon stacks.
- **rankup**: logical, rank polygons on time axes upward by magnitude (largest to smallest) or not.
- **lab.cex**: numeric, category label font size.
- **lab.col**: colour, of category label.
- **xmargin**: numeric [0,1], proportional space for category labels.
- **axis.col**: colour, of axes.
- **title**: character, plot title.
title.cex  numeric, plot title font size
axis.cex   numeric, font size of x-axis break labels
grid      logical, plot vertical axes
grid.col  colour, of grid axes
grid.lwd  numeric, line width of grid axes
leg.mode  logical, draw y-axis scale legend inside largest data point (TRUE default) or alternatively with custom position/value (FALSE)
leg.x, leg.y numeric [0,1], x/y positions of legend if leg.mode = FALSE
leg.cex   numeric, legend text size
leg.col   colour, of legend lines and text
leg.lty   numeric, code for legend line type
leg.lwd   numeric, legend line width
leg.max   numeric, legend scale line width
xlab, ylab character, x-axis / y-axis titles
xlab.pos, ylab.pos numeric, perpendicular offset for axis titles
lwd       numeric, value or vector of length matching the number of unique categories for polygon stroke line width. Individual values of vector are mapped to categories in alpha-numeric order
...
    arguments to pass to polygon()

Examples

if( require(reshape2) )
{
  data(Refugees)
  reshape2::dcast(Refugees, country ~ year, value.var = 'refugees')
  d <- Refugees

  set.seed(39) # for nice colours
  cols <- hsv(h = sample(1:10/10), s = sample(3:12)/15, v = sample(3:12)/15)

  alluvial_ts(d)
  alluvial_ts(d, wave = .2, ygap = 5, lwd = 3)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, rankup = TRUE)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, plottdir = 'down')
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, plottdir = 'centred', grid=TRUE,
             grid.lwd = 5)
  alluvial_ts(d, wave = 0, ygap = 0, col = cols, alpha = .9, border = 'white',
             grid = TRUE, grid.lwd = 5)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.4)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex = .7)
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex=.7,
             lab.cex=.7, lab.col = 'white')
  alluvial_ts(d, wave = .3, ygap = 5, col = cols, leg.mode = FALSE, leg.x = .1,
Refugees

Refugees data

Description

Top 10 countries/territories of origin (excluding "Various") for period 2003-13 of UNHCR statistics on "Persons recognized as refugees under the 1951 UN Convention/1967 Protocol, the 1969 OAU Convention, in accordance with the UNHCR Statute, persons granted a complementary form of protection and those granted temporary protection."

Format

Data frame with the following columns:

- **country** Country or territory of origin
- **year** Year (2003-13)
- **refugees** Persons recognized as refugees under the 1951 UN Convention, etc..

Source

http://data.un.org/Data.aspx?d=UNHCR&f=indID%3aType-Ref
Index

alluvial, 2
alluvial_ts, 4
par, 2
Refugees, 6