Package ‘alr3’

June 22, 2018

Version 2.0.8
Date 2018-06-22
Title Data to Accompany Applied Linear Regression 3rd Edition
Author Sanford Weisberg <sandy@umn.edu>
Maintainer Sanford Weisberg <sandy@umn.edu>
Depends R (>= 3.2.0), car
LazyData yes
Description Data files and a few functions used in the textbook S. Weisberg (2005), 'Applied Linear Regression,' 3rd edition, Wiley are presented. This package depends on the car package. Many functions formerly in alr3 have been renamed and now reside in car. Data files have been lightly modified to make some data columns row labels. Many of these files are also in the newer alr4 package.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-06-22 21:05:11 UTC

R topics documented:

ais ... 3
alshoots .. 4
alr3-deprecated ... 5
alrWeb ... 6
baeskel ... 7
banknote ... 7
BGSall .. 8
BigMac2003 .. 9
blowdown .. 10
brains .. 11
cakes ... 11
cathedral ... 12
R topics documented:

cautions .. 13
challenges ... 13
chloride .. 14
cloud .. 15
domedata ... 15
donner ... 16
downer ... 17
drugcost .. 18
dwaste .. 19
florida ... 20
forbes ... 20
ftcollinssnow .. 21
fue2001 .. 22
galapagos .. 23
galtonpeas ... 24
heights ... 24
highway .. 25
hooker ... 26
htwt .. 27
jevons ... 27
lakemary .. 28
lakes .. 29
landrent .. 30
latex1 .. 30
mantel ... 31
mile .. 32
Mitchell ... 32
MWwords .. 33
npdata ... 34
oldfaith .. 34
physics .. 35
pipeline .. 36
pod ... 36
prodscore .. 40
pureErrorAnova .. 41
randomLinComb .. 42
rat ... 43
salary ... 44
salarygov .. 44
segreg ... 45
shocks ... 46
sleep1 ... 46
snake ... 47
sniffer ... 48
snowgeese ... 49
stopping .. 49
swan96 .. 50
titanic ... 51
Description

Data on 102 male and 100 female athletes collected at the Australian Institute of Sport.

Format

This data frame contains the following columns:

- **Sex** (0 = male or 1 = female)
- **Ht** height (cm)
- **Wt** weight (kg)
- **LBM** lean body mass
- **RCC** red cell count
- **WCC** white cell count
- **Hc** Hematocrit
- **Hg** Hemoglobin
- **Ferr** plasma ferritin concentration
- **BMI** body mass index, weight/(height)**2
- **SSF** sum of skin folds
- **Bfat** Percent body fat
- **Label** Case Labels
- **Sport** Sport
Source

Ross Cunningham and Richard Telford

References

Examples

head(allshoots)

<table>
<thead>
<tr>
<th>allshoots</th>
<th>Apple shoots data</th>
</tr>
</thead>
</table>

Description

Bland’s Apple Shoot data. allshoots includes all the data, shortshoots just the short shoot data, and longshoots includes long shoots only.

Format

This data frame contains the following columns:

- **Day** days from dormancy
- **n** number of shoots sampled
- **ybar** average number of stem units
- **SD** within-day standard deviation
- **Type** 1 if long shoots, 0 if shortshoots.

Source

References

Examples

head(longshoots)
Degprecated Functions in the alr3 Package

Description

These functions are provided for compatibility with older versions of alr3 only, and may be removed eventually.

Usage

conf.intervals(...)
boot.case(...)
pure.error.anova(...)
delta.method(...)
powtran(...)
inv.tran.plot(...)
inv.tran_estimate(...)
inverse.response.plot(...)
inv.res.plot(...)
bctrans(...)
bctrans1(...)
lrt.bctrans(...)

resplot(...)
residual.plots(...)
marginal.model.plot(...)
marginal.model.plots(...)

alr3-deprecated
inf.index(...)
outlier.t.test(...)

Arguments
...
... pass arguments down.

Details
random.lin.comb pure.error.anova are now synonyms for sigmahat, randomLinComb and pureErrorAnova, all of which are still part of the alr3 package.
conf.intervals is a synonym for confint in the stats package.
All the remaining functions now shadow newer functions in the car package. In several cases, the arguments to the function have changed as well, and so there is no guarantee that any of these will work as expected. Please substitute the corresponding function from car.

alrWeb Access to the Applied Linear Regression website

Description
This function will access the website for Applied Linear Regression

Usage
alrWeb(page = c("webpage", "errata", "primer"), script)

Arguments
page A character string indicating what page to open. The default "webpage" will open the main webpage, "errata" displays the Errata sheet for the book, and "primer" fetches and displays the primer for R.
script If set, this will open an R script for one of the chapters in the book in a browser window, or a script from one of the chapters in the R Primer. Possible values are "chapter1", "chapter2", ... "chapter12", "appendix" for chapters and appendix from the book, or "primer0", "primer1", ... "primer12", "primerappendix" for material corresponding to the R primer.

Value
Either a webpage or a pdf document is displayed. This function gives quick access to the website for the book and in particular to the R primer.

Author(s)
Sanford Weisberg, based on the function UsingR in the UsingR package by John Verzani
Examples

Not run: alrWeb()

<table>
<thead>
<tr>
<th>baeskel</th>
<th>Surface tension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

The data in the file were collected in a study of the effect of dissolved sulfur on the surface tension of liquid copper (Baes and Kellogg, 1953)

Format

This data frame contains the following columns:

- **Sulfur** Weight percent sulfur
- **Tension** Decrease in surface tension, dynes/cm

Source

References

Examples

head(baeskel)

<table>
<thead>
<tr>
<th>banknote</th>
<th>Swiss banknote data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Six measurements made on 100 genuine Swiss banknotes and 100 counterfeit ones.
Format

This data frame contains the following columns:

- **Length** Length of bill, mm
- **Left** Width of left edge, mm
- **Right** Width of right edge, mm
- **Bottom** Bottom margin width, mm
- **Top** Top margin width, mm
- **Diagonal** Length of image diagonal, mm
- **Y** 0 = genuine, 1 = counterfeit

Source

References

Examples

head(banknote)

```
BGSall

Berkeley guidance study
```

Description

Data from the Berkeley guidance study of children born in 1928-29 in Berkeley, CA. BGSall contains all the data, BGSboys the boys only, and BGSgirls the girls only.

Format

This data frame contains the following columns:

- **Sex** 0 = males, 1 = females
- **WT2** Age 2 weight (kg)
- **HT2** Age 2 height (cm)
- **WT9** Age 9 weight (kg)
- **HT9** Age 9 height (cm)
- **LG9** Age 9 leg circumference (cm)
- **ST9** Age 9 strength (kg)
- **WT18** Age 18 weight (kg)
HT18 Age 18 height (cm)
LG18 Age 18 leg circumference (cm)
ST18 Age 18 strength (kg)
Soma Somatotype, a 1 to 7 scale of body type.

Source

References

Examples
head(BGSall)
head(BGSboys)
head(BGSgirls)

BigMac2003 World cities data

Description
Prices in many world cities from a 2003 Union Bank of Switzerland report.

Format
This data frame uses the name of the city as row names, and contains the following columns:

BigMac Minutes of labor to purchase a Big Mac
Bread Minutes of labor to purchase 1 kg of bread
Rice Minutes of labor to purchase 1 kg of rice
FoodIndex Food price index (Zurich=100)
Bus Cost in US dollars for a one-way 10 km ticket
Apt Normal rent (US dollars) of a 3 room apartment
TeachGI Primary teacher’s gross income, 1000s of US dollars
TeachNI Primary teacher’s net income, 1000s of US dollars
TaxRate Tax rate paid by a primary teacher
TeachHours Primary teacher’s hours of work per week:
Source

References

Examples
head(BigMac2003)

<table>
<thead>
<tr>
<th>blowdown</th>
<th>Blowdown data</th>
</tr>
</thead>
</table>

Description
Data from the Boundary Waters Canoe Area Wilderness Blowdown. The data frame blowdown includes nine species of trees, blowAPB gives data for aspen and paper birch, while blowBF gives data for Balsam Fir only.

Format
This data frame contains the following columns:

- **D** Tree diameter, in cm
- **S** Proportion of basal area killed for the four species BF, C, PB, BS, a measure of local severity of the storm.
- **y** 1 if the tree died, 0 if it survived
- **SPP** BF= balsam fir, BS= black spruce, C= cedar, JP= jackpine, PB= paper birch, RP= red pine, RM= red maple, BA = black ash, A= aspen.

Source
Roy Rich

References

Examples
head(blowBF)
brains

Mammal brain weights

Description

The data provided gives the average body weight in kilograms and the average brain weight in grams for sixty-two species of mammals.

Format

This data frame uses species names as row labels and contains the following columns:

- **BrainWt**: Brain weight, grams
- **BodyWt**: Body weight, kg

Source

References

Examples

```r
head(brains)
```

cakes

Cakes data

Description

Oehlert (2000, Example 19.3) provides data from a small experiment on baking packaged cake mixes.

Format

A data frame with 14 observations on the following 4 variables.

- **block**: a numeric vector
- **X1**: Baking time, minutes
- **X2**: Baking temperature, degrees F
- **Y**: Palatability score

```r
cakes
```
Source

References

Examples

```r
head(cakes)
lm(Y~X1+X2+I(X1^2)+I(X2^2)+X1:X2, data=cakes)
```

cathedral Cathedrals

Description

Heights and lengths of Gothic and Romanesque cathedrals.

Format

This data frame uses cathedral names as row label and contains the following columns:

Type Romanesque or Gothic
Height Total height, feet
Length Total length, feet

Source

Stephen Jay Gould

References

Examples

```r
head(cathedral)
```
Caution data

Description
Artificial data to illustrate problems with residual plots.

Format
This data frame contains the following columns:
- x1 Artificial data item.
- x2 Artificial data item.
- y Artificial data item.

Source

References

Examples
head(caution)

Challenger data

Description
Contains data from the performance of O-rings in 23 U.S. space shuttle flights prior to the Challenger disaster of January 20, 1986.

Format
This data frame contains the following columns:
- Temp Air Temp at launch (degrees F)
- Pres Leak check pressure
- Fail Number of O-rings that failed
- n 6, number of O-rings in launch
- Erosion Number of erosion incidents
- BlowBy Number of blowby incidents
- Damage Total Damage Index
- Date date of flight
Source

References

Examples
head(challeng)

<table>
<thead>
<tr>
<th>chloride</th>
<th>Chloride data</th>
</tr>
</thead>
</table>

Description
Seasonal variation in chloride level in marshes close to a road or distant from the road, in Minnesota.

Format
A data frame with 32 observations on the following 4 variables.

- **Marsh** March number
- **Type** a factor with levels *Isolated* and *Roadside*
- **Month** Month (4 = May, ... 10 = October)
- **Cl** Chloride concentration, mg/liter

Source
Stefanie Miklovic and Susan Galatowitsch

References

Examples
head(chloride)
cloud

Description

The data summarize the results of the first Florida Area Cumulus Experiment, or FACE-I, designed to study the effectiveness of cloud seeding to increase rainfall in a target area (Woodley, Simpson, Biondini, and Berkley, 1977).

Format

This data frame contains the following columns:

- **A**: Action, 1=seed, 0=do not seed
- **D**: Day after June 16, 1975
- **S**: Suitability for seeding
- **C**: percent cloud cover in experimental area, measured using radar in Coral Gables, Florida
- **P**: $10^7 m^3$ prewetness
- **E**: echo motion category, either 1 or 2, a measure for type of cloud
- **Rain**: $10^7 m^3$ in target area

Source

References

Examples

head(cloud)

domedata

Description

These files give the results of two experiments to see if manipulating the air conditioning fans in the Minneapolis metrodome can effect the distance travelled by a baseball. The data in domedata were collected in April 2003. The experiment was repeated in May 2003 and domedata1 gives the combined data from the two experiments.
Format

A data frame with 96 observations on the following 7 variables.

- **Date** a factor with levels March- May
- **Cond** a factor with levels Headwind, Tailwind
- **Angle** the actual angle
- **Velocity** in feet per second
- **BallWt** weight of ball in grams
- **BallDia** diameter of ball in inches
- **Dist** distance in feet of the flight of the ball

Source

Ivan Marusic

References

Examples

```r
head(donderdata1)
```

Description

The Donner Party was the most famous tragedy in the history of the westward migration in the United States. In the winter of 1846-47, about ninety wagon train emigrants were unable to cross the Sierra Nevada Mountains of California before winter, and almost one-half starved to death. Perhaps because they were ordinary people – farmers, merchants, parents, children. These data include some information about each of the members of the party from Johnson (1996).

Format

This data frame uses the person’s name as row labels and contains the following columns:

- **Age** Approximate age in 1846
- **Outcome** 1 if survived, 0 if died
- **Sex** Male or Female
- **Family.name** Either a family name, hired or single
- **Status** Family, single or hired
Source

References

Examples

head(donner)

downer Downer data

Description

For unknown reasons, some dairy cows become recumbant—they lay down. This condition can be serious, and may lead to death of the cow. These data are from a study of blood samples of over 500 cows studied at the Ruakura (N.Z.) Animal Health Laboratory during 1983-84. A variety of blood tests were performed, and for many of the animals the outcome (survived, died, or animal was killed) was determined. The goal is to see if survival can be predicted from the blood measurements. Case numbers 12607 and 11630 were noted as having exceptional care—and they survived.

Format

This data frame contains the following columns:

- **Calving** 0 if measured before calving, 1 if after
- **Daysrec** Days recumbent
- **CK** Serum creatine phosphokinase (U/l at 30C)
- **AST** serum asparate amino transferase (U/l at 30C)
- **Urea** serum urea (mmol/l)
- **PCV** Packed Cell Volume (Haemactocrit),
- **Inflamat** inflammation 0=no, 1=yes
- **Myopathy** Muscle disorder, 1 if present, 0 if absent
- **Outcome** outcome: 1 if survived, 0 if died or killed

Source

References

Examples

```r
head(drugcost)
```

<table>
<thead>
<tr>
<th>drugcost</th>
<th>Drug cost.</th>
</tr>
</thead>
</table>

Description

These data are to try to understand the effect of health plan characteristics on drug costs. Health plans vary in size, given as member months. Some plans use generic drugs more than others. All differ on copayments. Some have strong restrictions on which drugs can be dispensed: value of RI=0 means that all drugs are dispensed, RI=100 means that only one per category is available. The goal is to determine the terms that are related to cost, and in particular to understand the role of GS and RI in determining cost.

Format

This data frame uses a short code name for the drug plan as row labels and contains the following columns:

- **COST**: Ave. cost to plan for 1 prescription for 1 day
- **RXPM**: Number of prescriptions per member per year
- **GS**: Percent generic substitution, number between 0 (no substitution) to 100 (always use generic substitute)
- **RI**: Restrictiveness index (0=none, 100=total)
- **COPAY**: Average Rx copayment
- **AGE**: Average age of member
- **F**: Percent female members
- **MM**: Member months, a measure of the size of the plan

Source

Mark Siracuse

References

Examples

```r
head(drugcost)
```
An experiment was conducted to study the \textit{O2UP}, oxygen uptake in milligrams of oxygen per minute, given five chemical measurements: biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), total solids (TS), total vital solids (TVS), which is a component of TS, and chemical oxygen demand (COD), each measured in milligrams per liter (Moore, 1975).

This data frame contains the following columns:

- \textbf{Day} Day number
- \textbf{BOD} Biological oxygen demand
- \textbf{TKN} Total Kjeldahl nitrogen
- \textbf{TS} Total Solids
- \textbf{TVS} Total volatile solids
- \textbf{COD} Chemical oxygen demand
- \textbf{O2UP} Oxygen uptake

\texttt{head(dwaste)}
florida
Florida presidential election

Description

County-by-county vote for president in Florida in 2000 for Bush, Gore and Buchanan.

Format

A data frame three variables for each of Florida's 67 counties.

- **Gore** Vote for Gore
- **Bush** Vote for Bush
- **Buchanan** Vote for Buchanan

Source

References

Examples

```r
head(florida)
## maybe str(florida) ; plot(florida) ...
```

forbes
Forbes data

Description

The data consists of 17 pairs of numbers corresponding to observed boiling point and corrected barometric pressure, at locations in the Alps.

Format

This data frame contains the following columns. The first two columns of this data frame are also given in the data file forbes in the MASS package, with different column labels.

- **Temp** Adjusted boiling point of water in degrees F.
- **Pressure** Atmospheric pressure, in inches of Mercury
- **Lpres** 100 times log(Pressure,10), rounded to two digits beyond the decimal point
Source

References

Examples

head(forbes)

<table>
<thead>
<tr>
<th>ftcollinssnow</th>
<th>Ft. Collins snowfall</th>
</tr>
</thead>
</table>

Description

Monthly snowfall data for Fort Collins, CO, 1900-01 to 1992-93

Format

This data frame contains the following columns:

- **YR1** Year corresponding to the September to December data
- **Early** September to December snowfall, inches
- **Late** January to June snowfall, inches

Source

http://www.ulysses.atmos.colostate.edu

References

Examples

head(ftcollinssnow)
Description

Data on motor fuel consumption and related variables, for the year 2001. The unit is a state in the United States or the District of Columbia. Data are for 2001, unless noted.

Format

This data frame contains the following columns. Row labels are the two-digit US Postal abbreviations for the US states.

Drivers Number of Licensed drivers in the state
FuelC Gasoline sold for road use (1000s of gal.)
Income Per capita personal income (year 2000)
Miles Miles of Federal-aid highway miles in the state
MPC Estimated miles driven per capita
Pop Population age 16 and over
Tax Gasoline state tax rate, cents per gallon

Source

http://www.fhwa.dot.gov/ohim/hs01/index.htm

References

Examples

head(fuel2001)
Most of the examples in ALR3 that use these data first
transform several of the columns
fuel2001 <- transform(fuel2001,
 Dlic=1000 * Drivers/Pop,
 Fuel=1000 * FuelC/Pop,
 Income=Income/1000)
pairs(Fuel-Tax + Dlic + Income + log2(Miles), data=fuel2001)
Description

Johnson and Raven (1973) have presented data giving the number of species and related variables for 29 different islands in the Galapagos Archipelago.

Format

This data frame uses the island name as row labels and contains the following columns:

<table>
<thead>
<tr>
<th>NS</th>
<th>Number of Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>Number of endemic species (occur only on that island)</td>
</tr>
<tr>
<td>Area</td>
<td>Surface area of island, hectares</td>
</tr>
<tr>
<td>Anear</td>
<td>Area of closest island, hectares</td>
</tr>
<tr>
<td>Dist</td>
<td>Distance to closest island, km</td>
</tr>
<tr>
<td>DistSC</td>
<td>Distance from Santa Cruz Island, km</td>
</tr>
<tr>
<td>Elevation</td>
<td>Elevation in m, missing values given as zero</td>
</tr>
<tr>
<td>EM</td>
<td>1 if elevation is observed, 0 if missing</td>
</tr>
</tbody>
</table>

Source

References

Examples

head(galapagos)
Description

In a paper presented to the Royal Institute on February 9, 1877, Sir Francis Galton discussed his experiments on sweet peas in which he compared the sweet peas produced by parent plants to those produced by offspring plants. In these experiments he could observe inheritance from one generation to the next. Galton categorized the parent plants according to the typical diameter of the peas they produced.

Format

This data frame contains the following columns:

- **Parent** mean diameter of parent
- **Progeny** mean diameter of offspring
- **SD** offspring standard deviation

Source

References

Examples

```r
head(galtonpeas)
```

Description

Karl Pearson organized the collection of data on over 1100 families in England in the period 1893 to 1898. This particular data set gives the heights in inches of mothers and their daughters, with up to two daughters per mother. All daughters are at least age 18, and all mothers are younger than 65. Data were given in the source as a frequency table to the nearest inch. Rounding error has been added to remove discreteness from graph.
highway

Format

This data frame contains the following columns:

- **Mheight** Mother’s ht, in.
- **Dheight** Daughter’s ht, in.

Source

References

Examples

```r
head(heights)
```

<table>
<thead>
<tr>
<th>highway</th>
<th>Highway accidents</th>
</tr>
</thead>
</table>

Description

The data comes from an unpublished master’s paper by Carl Hoffstedt. They relate the automobile accident rate, in accidents per million vehicle miles to several potential terms. The data include 39 sections of large highways in the state of Minnesota in 1973. The goal of this analysis was to understand the impact of design variables, Acpts, Slim, Sig, and Shld that are under the control of the highway department, on accidents.

Format

This data frame contains the following columns:

- **ADT** average daily traffic count in thousands
- **Trks** truck volume as a percent of the total volume
- **Lane** total number of lanes of traffic
- **Acpt** number of access points per mile
- **Sigs** number of signalized interchanges per mile
- **Itg** number of freeway-type interchanges per mile
- **Slim** speed limit in 1973
- **Len** length of the highway segment in miles
- **Lwid** lane width, in feet
- **Shld** width in feet of outer shoulder on the roadway
- **Hwy** An indicator of the type of roadway or the source of funding for the road; 0 if MC, 1 if FAI, 2 if PA, 3 if MA
- **Rate** 1973 accident rate per million vehicle miles
Source

Carl Hoffstedt

References

Examples

head(highway)

<table>
<thead>
<tr>
<th>hooker</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hooker's data</td>
<td></td>
</tr>
</tbody>
</table>

Description

In his original paper, Forbes provided additional data collected by the botanist Dr. Joseph Hooker on temperatures and boiling points measured often at higher altitudes in the Himalaya Mountains.

Format

This data frame contains the following columns:

- **Temp** Measured boiling temperature, degrees F.
- **Pressure** Measured air pressure, inches of Mercury.

Source

References

Examples

head(hooker)
htwt

Artificial height and weight data

Description

The data for this table are a sample size of ten 18-year old girls taken from the study that was conducted by Tuddenham and Snyder (1954).

Format

This data frame contains the following columns:

Ht Height (cm) at age 18
Wt Weight (kg) at age 18

Source

References

Examples

head(htwt)

jevons

Jevon's gold coin data

Description

In a study of coinage, W. Stanley Jevons weighed 274 gold sovereigns that he had collected from circulation in Manchester, England. For each coin, he recorded the weight, after cleaning, to the nearest .001 gram, and the date of issue. The age classes are coded 1 to 5, roughly corresponding to the age of the coin in decades. The standard weight of a gold sovereign was suppose to be 7.9876 grams; minimum legal weight was 7.9379 grams.
Format

This data frame contains the following columns:

- **Age**: Age of coins, decades
- **n**: Number of coins
- **Weight**: Average weight, grams
- **SD**: Standard deviation.
- **Min**: Minimum weight
- **Max**: Maximum weight

Source

Stephen Stigler

References

Examples

```r
head(jevons)
```

<table>
<thead>
<tr>
<th>lakemary</th>
<th>Lake Mary bluegills</th>
</tr>
</thead>
</table>

Description

78 bluegills were captured from Lake Mary, Minnesota. On each fish, a key scale was removed. The age of a fish is determined by counting the number of annular rings on the scale. The goal is to relate length at capture to the radius of the scale.

Format

This data frame contains the following columns:

- **Age**: Years
- **Length**: mm

Source

References

Examples

head(lakemary)

lakes

Lake zooplankton diversity

Description

These data give the number of known crustacean zooplankton species for 69 world lakes. Also included are a number of characteristics of each lake. There are missing values.

Format

This data frame uses lake name as row label and contains the following columns:

- **Species**: Number of zooplankton species
- **MaxDepth**: Maximum lake depth, m
- **MeanDepth**: Mean lake depth, m
- **Cond**: Specific conductance, micro Siemans
- **Elev**: Elevation, m
- **Lat**: N latitude, degrees
- **Long**: W longitude, degrees
- **Dist**: Distance to nearest lake, km
- **NLakes**: Number of lakes within 20 km
- **Photo**: Rate of photosynthesis, mostly by the 14C method
- **Area**: Lake area, in hectares

Source

References

Examples

head(lakes)
landrent
Land rent

Description

The data were collected by Douglas Tiffany to study the variation in rent paid in 1977 for agricultural land planted to alfalfa.

Format

This data frame contains the following columns:

- **X1** average rent for all tillable land
- **X2** density of dairy cows (number per square mile)
- **X3** proportion of farmland used for pasture
- **X4** 1 if liming required to grow alfalfa; 0 otherwise
- **Y** average rent per acre planted to alfalfa

Source

Douglas Tiffany

References

Examples

head(landrent)

lathe1
Lathe data

Description

These data are the results of an experiment to study the performance of cutting-tool material in cutting steel on a lathe. The two factors are revolution speed and feed rate. The response is tool life in minutes.

Format

This data frame contains the following columns:

- **Feed** Coded feed rate, coded as (actual feed rate -13)/6. Feed is in thousandths of an inch per revolution.
- **Speed** Coded speed, coded as (actual speed -900)/300. Speed is in feet per minute.
- **Life** Life of tool until failure, minutes
mantel

Source

M. R. Delozier

References

Examples

head(lathe1)

mantel Mantel's artificial data for stepwise regression

Description

An artificial data set suggested by N. Mantel to illustrate stepwise regression methods.

Format

A data frame with 5 observations on the following 4 variables.

Y the response
X1 predictor 1
X2 predictor 2
X3 predictor 3

Source

References

Examples

head(mantel)
World records for the mile run

Description

World record times for the mile run, 1861–2003.

Format

A data frame with 46 observations:

- **Year** Year in which the record was set
- **Time** Running time, in seconds
- **Name** Name of person setting the record
- **Country** Country of residence of the record setter
- **Place** Place the record was set
- **Gender** Gender of the record holder

Source

Data source: http://www.saunalahti.fi/~sut/eng/

References

Examples

`head(mile)`

Mitchell soil temperature

Description

Data collected by Kenneth G. Hubbard on soil temperature at 20 cm depth in Mitchell, Nebraska for 17 years (1976-1992) The variable month is the month number.

Format

This data frame contains the following columns:

- **Month** Months beginning Jan, 1976
- **Temp** Average soil temperature, degrees C
Source
Kenneth G. Hubbard

References

Examples
`head(MWwords)`

MWwords
Word frequencies from Mosteller and Wallace

Description

The data give the frequencies of words in works from four different sources: the political writings of eighteenth century American political figures Alexander Hamilton, James Madison, and John Jay, and the book *Ulysses* by twentieth century Irish writer James Joyce.

Format

This data frame uses the word as row labels and contains the following columns:

- **Hamilton** Hamilton frequency
- **HamiltonRank** Hamilton rank
- **Madison** Madison frequency
- **MadisonRank** Madison rank
- **Jay** Jay frequency
- **JayRank** Jay rank
- **Ulysses** Word frequency in *Ulysses*
- **UlyssesRank** Word rank in *Ulysses*

Source

References

Examples

`head(MWwords)`
npdata
Northern pike catch per unit effort

Description

Catch per unit effort data for 16 Minnesota lakes

Format

A data frame with 16 observations on the following 4 variables.

- **CPUE** Estimated catch per unit effect
- **SECPUE** Estimated standard error of CPUE
- **Density** Estimated fish density
- **SEdens** Estimated standard error of Density

Source

R. Pierce, Minnesota Dept. of Natural Resources

References

Examples

```r
head(npdata)
```

oldfaith
Old Faithful Geyser data

Description

Data on eruptions of Old Faithful Geyser, October 1980. Variables are the duration in seconds of the current eruption, and the time in minutes to the next eruption. Collected by volunteers, and supplied by the Yellowstone National Park Geologist. Data was not collected between approximately midnight and 6 AM.

Format

This data frame contains the following columns:

- **Duration** Duration in seconds
- **Interval** Time to next eruption
Source
R. Hutchinson

References

Examples
head(oldfaith)

physics

Physics data

Description

The file physics contains results for π^+ meson as input and π^+ meson as output. physics1 is for π^- to π^-.

Format

This data frame contains the following columns:

- **x** Inverse total energy
- **y** Scattering cross-section/sec
- **SD** Standard deviation

Source

References

Examples

head(physics1)
The Alaska pipeline data consists of in-field ultrasonic measurements of the depths of defects in the Alaska pipeline. The depth of the defects were then re-measured in the laboratory. These measurements were performed in six different batches. The data were analyzed to calibrate the bias of the field measurements relative to the laboratory measurements. In this analysis, the field measurement is the response variable and the laboratory measurement is the predictor variable.

These data were originally provided by Harry Berger, who was at the time a scientist for the Office of the Director of the Institute of Materials Research (now the Materials Science and Engineering Laboratory) of NIST. These data were used for a study conducted for the Materials Transportation Bureau of the U.S. Department of Transportation.

This data frame contains the following columns:

- **Field**: Number of defects measured in the field.
- **Lab**: Number of defects measured in the laboratory.
- **Batch**: Batch number

Source

References

Examples

head(pipeline)

A partial one-dimensional model, or a POD model, provides a concise description of a regression model with many predictors and one grouping variable. It requires a nonlinear regression fit.
Usage

This is a generic function with different arguments depending on the class of the
first argument. The generic form is

pod(x, ...)

If the first argument to pod is a formula suitable for defining a linear model,

S3 method for class 'formula'
pod(formula, data = sys.parent(), group, subset, weights,
 na.action, mean.function = c("pod", "common", "parallel",
 "general"), singular.ok = FALSE, contrasts = NULL, offset,
 control = nls.control(), ...)

If the first argument to pod is the result of a linear model fit, the following
function call is used. All the arguments for pod.formula can also be passed to
pod.lm.

S3 method for class 'lm'
pod(x, group, mean.function, control, ...)

The following related function require a pod fit as the first argument:

S3 method for class 'pod'
anova(object, scale=0, test="F", ...)

S3 method for class 'pod'
plot(x, colors=1:nlevels(x$group),
 pch=1:nlevels(x$group), key="topleft", identify=FALSE,
 xlab="Linear Predictor", ylab=as.character(c(formula(x)[[2]])),
 ...)

S3 method for class 'pod.lm'
plot(x, colors=1:nlevels(x$group),
 pch=1:nlevels(x$group), key="topleft", identify=FALSE,
 xlab="Linear Predictor", ylab=as.character(c(formula(x)[[2]])),
 ...)

Arguments

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>A linear regression formula, as used in <code>lm</code>, or the results of a call to pod or a <code>lm</code> fit. See details below.</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>The result of a <code>lm</code> fit from which the formula and the arguments <code>data</code>, <code>subset</code>, <code>weights</code>, <code>na.action</code>, <code>singular.ok</code>, <code>contrasts</code> and <code>offset</code> will be taken.</td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>An optional data frame for the data to be used</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>The name of a grouping variable (not quoted) that defines the groups; see details below.</td>
<td></td>
</tr>
</tbody>
</table>
Which mean function should be fit? The default is “pod”, that fits the partial one-dimensional mean function. The other options are “common”, which fits a linear model with no grouping effects; “parallel” fits a parallel within-group regression, and “general”, available in pod but not plot.pod, fits a separate coefficient for each term in the model for each level of the grouping variable.

As in lm, the subset of cases to be used in the analysis

Weights will be used in fitting non-pod models. Since this argument is not supported for nls models, weights are ignored for fitting pod models. If nls is ever updated, then pod models will correctly use the weights.

At present, only na.omit is likely to work.

The default equal to FALSE is recommended.

Same as in lm

Same as in lm

A pod model is fit using the nonlinear least squares routine nls. This routine is very sensitive to starting values and other parameters set in the algorithm. This routine selects starting values for you that will often work very well, but in some problems the user may want to change the defaults to nls program using the nls.control function.

In pod, other arguments passed to nls, such as control parameters. In pod.anova, there are two additional arguments

The result of a call to pod.

Used for test in anova

Default is to compute F tests.

Colors for groups in the pod plot

Ploting symbol for the groups in the pod plot

If TRUE, clicking the mouse on a graph will print the case name of the nearest point. This continues until turned off (by pushing the escape key, among other ways of doing this).

The default is "topleft", in which case a legend is added to the top left corner of the plot; other choices include "bottomright". If key is a vector of two coordinates, the legend is drawn at the coordinates specified. If key is FALSE, no key is drawn; if TRUE, you can place the key interactively by clicking on the plot.

Horizontal label, optional

Vertical label, optional

Suppose we start with a linear mean function specified by $y \sim x_1 + x_2 + x_3$, where the right-side variables can be any valid R variables, such as transformations, but NOT factors or interactions (if you want to include these, you need to create the dummy variables yourself). The right-hand side variables must also be linearly independent. We also specify a grouping variable z with, say, g
levels. Let G_i be a dummy variable with values equal to 1 when $z = i$, and zero otherwise. The pod mean function is then has the nonlinear mean function

$$E(y|x, z) = \beta_0 + \beta' x + \sum_{j=2}^{g} G_j (\theta_0 + \theta_j \beta' x)$$

This is a nonlinear mean function that specifies that the response depends on the predictors only through one linear combination, that the dependence is linear, but the slope and intercept may be different for each group.

The pod mean function is easily fit using nls. For example, if z has two levels, a nonlinear mean function that would work is $y \sim b0 + b1*x1 + b2*x2 + b3*x3 + G2*(th02 + th12*(b1*x1 + b2*x2 + b3*x3))$. Starting values can be determined by fitting the parallel mean function, for this is a linear mean function and easily fit.

The function pod automates this process; you need only input the linear part of the mean function, and pod does the rest.

The function anova.pod is a little different from the generic anova function. It fits and compares all four mean functions that can be fit with the pod function: (1) no group effect; (2) parallel within group method; (3) pod mean function; (4) mean function with all main effects and two-factor interactions with the grouping variable.

The function plot will plot the response versus the fitted linear combination for either the common, parallel or pod models. There is no 2D plot for the general model.

Objects of class pod have methods defined for the generic functions print, summary, coef, anova, deviance, vcov, resid, formula, fitted, df.residual and predict. podresponse returns the values of the response.

Value

If `mean.function="pod"`, a list of class pod, with the following components

- `nls.fit` The usual output from a nls fit.
- `linear.part` The estimated linear predictor $\beta' x$.
- `call` The original call to pod
- `group` The grouping variable

If `mean.function` has any other value, an object of class c("pod.lm", "lm") is returned. Since the only method for pod.lm objects is a plotting method, except for plotting these objects behave like lm objects.

Author(s)

Sanford Weisberg, sandy@stat.umn.edu

References

Soil productivity scores for farms in townships in four counties in the Minneapolis St. Paul metropoli-
tan area, 1981-82. The goal is to see if the productivity score is a good predictor of the assessed
value of the farmland. If so, then productivity score could be used to set assessed value for farms
enrolled in the “green acres” program that requires that urban farmland be taxed at its agricultural
value only without regard to development potential.

This data frame contains the following columns:

County Name of the county
Value Assessed value in dollars per acre.
P Productivity score, a number between 1 and 100.
Year Tax year, either 1981 or 1982.

Douglas Tiffany

head(prodscore)
pureErrorAnova

pureErrorAnova Pure Error analysis of variance

Description
For a linear model object, finds the sum of squares for lack of fit and the sum of squares for pure error. These are added to the standard anova table to give a test for lack of fit. If there is no pure error, then the regular anova table is returned.

Usage

This is a generic function.

pureErrorAnova(mod)

S3 method for class 'lm'
pureErrorAnova(mod)

Methods for other than models for type lm have not been defined.

Arguments

mod an object of type lm

Details
For regression models with one predictor, say y ~ x, this method fits y ~ x + factor(x) and prints the anova table. With more than one predictor, it computes a random linear combination L of the terms in the mean function and then gives the anova table for update(mod, ~.+factor(L)).

Value
Returns an analysis of variance table.

Author(s)
Sanford Weisberg, sandy@stat.umn.edu

References

See Also
lm
randomLinComb

Compute a random linear combination of the columns of a matrix or data frame

Description

Computes \(Xa \) where \(X \) is an \(n \times p \) matrix, and \(a \) is a random vector of length \(p \).

Usage

randomLinComb(X, seed = NULL)

S3 method for class 'lm'
randomLinComb(X, seed=NULL)

Arguments

- **X**: An \(n \times p \) matrix or data frame. For the \(\text{lm} \) method, \(X \) is a linear regression model, and \(\text{randomLinComb} \) is applied to \(\text{model.matrix}(X) \)
- **seed**: If not NULL, use this to initialize the random number generator

Details

The matrix \(X \) is first scaled and centered. \(a \) is computed to have random uniform components on \((-1, 1)\).

Value

A vector of length \(n \).

Author(s)

Sanford Weisberg, <sandy@stat.umn.edu>

See Also

pure.error.anova

Examples

\[
\begin{align*}
x & \leftarrow c(1,1,2,3,4,4,4) \\
y & \leftarrow c(2.55,2.75,2.57,2.40,4.19,4.70,3.81,4.87,2.93,4.52) \\
m1 & \leftarrow \text{lm}(y \sim x) \\
\text{anova(m1)} \quad \# \text{ignore pure error} \\
\text{pureErrorAnova(m1)} \quad \# \text{include pure error}
\end{align*}
\]

head(forbes)

\[
\begin{align*}
m2 & \leftarrow \text{lm(Lpres~Temp, data=forbes)} \\
\text{pureErrorAnova(m2)} \quad \# \text{function does nothing because there is no pure error}
\end{align*}
\]
Description

Data collected in an experiment in which rats were injected with a dose of a drug approximately proportional to body weight. At the end of the experiment, the animal’s liver was weighed, and the fraction of the drug recovered in the liver was recorded. The experimenter expected the response to be independent of the predictors.

Format

This data frame contains the following columns:

- **BodyWt** BodyWt of the rat
- **LiverWt** LiverWt measured after sacrifice
- **Dose** Dose, roughly proportional to body weight
- **y** dose of drug recovered after sacrifice of the animal

Source

Dennis Cook

References

Examples

```r
head(rat)
```
salarygov

Description

Salary data

Salary of faculty in a small Midwestern college in the early 1980s.

Format

This data frame contains the following columns:

- **Degree**: Degree, 1 if PhD, 0 if Masters
- **Rank**: Rank (1 = Asst Prof, 2 Assoc Prof, 3 Prof)
- **Sex**: 1 if female, 0 if male
- **Year**: Years in current rank
- **YSdeg**: Years since highest degree earned
- **Salary**: dollars per year

Source

Sanford Weisberg

References

Examples

head(salary)

salarygov

Government salary study

Description

Government salary study

Data on non-unionized job classes in a US county in 1986. Included are the job class difficulty score, the number of employees in the class, number of female employees, and the name of the class.
Format

This data frame contains the following columns:

- **JobClass**: Name of job class
- **NW**: Number of women employees
- **NE**: Total number of employees in a job class
- **Score**: Difficulty score for job class
- **MaxSalary**: Maximum salary for job class

Source

Sanford Weisberg

References

Examples

```r
head(salarygov)
```

segreg

<table>
<thead>
<tr>
<th>segreg</th>
<th>Energy consumption</th>
</tr>
</thead>
</table>

Description

Data on electricity consumption (KWH) and mean temperature (degrees F) for one building on the University of Minnesota’s Twin Cities campus for 39 months in 1988-92. The goal is to model consumption as a function of temperature. Higher temperature causes the use of air conditioning, so high temperatures should mean high consumption. This building is steam heated, so electricity is not used for heating.

Format

This data frame contains the following columns:

- **Temp**: Monthly mean temperature, degrees F.
- **C**: Electricity consumption in KWH/day

Source

Charles Ng

References

Examples

head(segreg)

shocks

Small electric shocks in dairy cows

Description

Results of a small experiment to learn about the effects of small electric shocks on dairy cows.

Format

A data frame with 6 observations on the following 3 variables.

Intensity Shock level, milliamps
m Number of trials
Y Number of times a positive reaction was observed

Source

R. Norell

References

Examples

head(shocks)

sleep1

Sleep in mammals

Description

Includes species averages for 62 mammals.
Format

This data frame uses species as row label and contains the following columns:

- **SWS** Slow wave nondreaming sleep, hrs/day
- **PS** Paradoxical dreaming sleep, hrs/day
- **TS** Total sleep, hrs/day
- **BodyWt** Body weight in kg
- **BrainWt** Brain weight in g
- **Life** Maximum life span, years
- **GP** Gestation time, days
- **P** Predation index, 1=low, 5=hi
- **SE** Sleep exposure index 1=exposed, 5=protected
- **D** Danger index, 1=least, 5=most

Source

References

Examples

head(sleep1)

<table>
<thead>
<tr>
<th>snake</th>
<th>Snake river data</th>
</tr>
</thead>
</table>

Description

The data give the water content of snow and the water yield in inches in the Snake River watershed in Wyoming.

Format

This data frame contains the following columns:

- **X** water content of snow
- **Y** water yield from April to July

Source

References

Examples

head(sniffer)

sniffer

Sniffer data

Description

When gasoline is pumped into a tank, hydrocarbon vapors are forced out and into the atmosphere. To reduce this significant source of air pollution, devices are installed to capture the vapor. In testing these vapor recovery systems, a "sniffer" measures the amount recovered. John Rice provided the data for the file sniffer.txt.

Format

This data frame contains the following columns:

- **TankTemp** Initial tank temperature (degrees F)
- **GasTemp** Temperature of the dispensed gasoline (degrees F)
- **TankPres** Initial vapor pressure in the tank (psi)
- **GasPres** Vapor pressure of the dispensed gasoline (psi)
- **Y** Hydrocarbons emitted (grams)

Source

John Rice

References

Examples

head(sniffer)
snowgeese

Description
Counts of flocks of snow geese.

Format
This data frame contains the following columns:

- **photo** Photo count
- **obs1** Observer 1 count (aerial)
- **obs2** Observer 2 count (aerial)

Source
Dennis Cook

References

Examples
head(snowgeese)

stopping

Description
Ezekiel and Fox (1959) data on auto stopping distances.

Format
This data frame contains the following columns:

- **Speed** Speed (mph)
- **Distance** Stopping distance (in feet)

Source
References

Examples

head(stopping)

swan96

Black crappie study on Swan Lake, Minnesota

Description

Log catch per unit effect of 200 mm or longer black crappies was recorded 27 times over the course of 1996 on Swan Lake, Minnesota.

Format

A data frame with 27 observations on the following 2 variables.

- **Day**: Number of days after June 16, 1996
- **LCPUE**: log of the catch of 200 mm or longer black crappies per unit effort (WHAT IS THE BASE?)

Source

Minnesota Department of Natural Resources

References

Examples

head(swan96)
titanic

Description
For each person on board the fatal maiden voyage of the ocean liner Titanic, this dataset records sex, age (adult/child), economic status (first/second/third class, or crew) and whether or not that person survived.

Format
This data frame contains the following columns:

- Surv Number of survivors
- N Survivors + Deaths
- Class Crew or passenger class
- Age Adult or child
- Sex Male or female

Source
Report on the Loss of the ‘Titanic’ (S.S.) (1990), British Board of Trade Inquiry Report (reprint), Gloucester, UK: Allan Sutton Publishing. Taken from the Journal on Statistical Education Archive, submitted by rdawson@husky1.stmarys.ca.

References

Examples
head(titanic)

transact

Transaction data

Description
Data on transaction times in branch offices of a large Australian bank.

Format
This data frame contains the following columns:

- T1 number of type 1 transactions
- T2 number of type 2 transactions
- Time total transaction time, minutes
Source

References

Examples

head(transact)

turk0

| turk0 | Turkey data, one source |

Description

Turkey weight increase in an experiment in which the supplementation with methionine was varied.

Format

This data frame contains the following columns:

- **A** Amount of methionine supplement (percent of diet)
- **Gain** Pen weight increase (g)

Source

References

Examples

head(turk0)
turkey

Description

Data from an experiment on the growth of turkeys. 60 pens of turkeys were grown with a similar diet, supplemented with a dose of methionine from one of three sources. The response is average pen weight. Recorded is dose, source, m, always 5 except for dose=0, average weight gain, and within group SS.

Format

This data frame contains the following columns:

- **A**: Dose: Amount of supplement as a percent of the total diet
- **Gain**: Ave. weight gain, over all replications
- **S**: A factor for the source of methionine, three levels numbers 1, 2 and 3.
- **m**: Number of replications or pens
- **SD**: SD of the m pens with the same values of S and A.

Source

References

Examples

```r
head(turkey)
```

twins

Description

The given data are IQ scores from identical twins; one raised in a foster home, and the other raised by birth parents.
Format

This data frame contains the following columns:

- **C** Social class, 1=high, 2=medium, 3=low
- **IQb** biological
- **IQf** foster

Source

References

Examples

```
head(twins)
```

```
ufc
Height-diameter data for Upper Flat Creek, Idaho
```

Description

These data are forest inventory measures from the Upper Flat Creek stand of the University of Idaho Experimental Forest, dated 1991.

The file uf c contains all the data. uf cwc contains only Western red cedar. uf cfgf contains only grand fir.

Format

A data frame with the following 5 variables.

- **Plot** Plot number
- **Tree** Tree within plot
- **Species** a factor with levels DF = Douglas-fir, GF = Grand fir, SF = Subalpine fir, WL = Western larch, WC = Western red cedar, WP = White pine
- **Dbh** Diameter 137 cm perpendicular to the bole, mm
- **Height** Height of the tree, in decimeters

Source

Andrew Robinson
References

Examples

`head(ufcgf)`

UN1

National statistics from the United Nations

Description

Demographic data for 193 places, mostly UN members, but also other areas like Hong Kong that are not independent countries.

Format

This data frame uses the locality name as a row label. In some cases the geographic area is smaller than a country; for example Hong Kong. The file contains the following columns:

- **Fertility** Expected number of live births per female, 2000
- **PPgdp** Per capita 2001 GDP, in US \$

Details

These data were collected at published by the UN from a variety of sources. See original source for additional footnotes concerning values for individual countries. Country names are given in the first column of the data file. The same data, plus additional variables, is given in the file UN3.

Source

References

Examples

`head(UN1)`
Description

National health, welfare, and education statistics for 193 places, mostly UN members, but also other areas like Hong Kong that are not independent countries.

Format

This data frame uses locality name as row labels. In some cases, the geographic area is smaller than a country; for example, Hong Kong. The file contains the following columns:

- **logFertility**: log Expected number of live births per female, 2000
- **logPPgdp**: Log Per capita 2001 GDP, in US $
- **Purban**: Percent of population that is urban, 2001

Details

These data were collected at published by the UN from a variety of sources. See original source for additional footnotes concerning values for individual countries. Country names are given in the first column of the data file.

Source

http://unstats.un.org/unsd/demographic

References

Examples

head(UN2)
Format

This data frame uses locality name as row labels. It contains the following columns:

- **ModernC** Percent of unmarried women using a modern method of contraception.
- **Change** Annual population growth rate, percent.
- **PPgdp** Per capita 2001 GDP, in US $.
- **Frate** Percent of females over age 15 economically active.
- **Pop** Population, thousands.
- **Fertility** Expected number of live births per female, 2000
- **Purban** Percent of population that is urban, 2001

Details

These data were collected 2000-2003 and published by the UN from a variety of sources. See original source for additional footnotes concerning values for individual countries. Missing values in the data file indicated values for which no data is available, and will generally occur in less-developed localities.

Source

More recent values for these variables can be obtained from the following web pages:

References

Examples

```r
head(Walleye)
```

<table>
<thead>
<tr>
<th>walleye</th>
<th>Walleye length at age</th>
</tr>
</thead>
</table>

Description

These data give length and age for over 3000 walleye (a type of fish) captured in Butternut Lake, Wisconsin, in three periods with different management method in place.
Format

A data frame with 3198 observations on the following 3 variables.

- **age** Age of the fish, years
- **length** Length, mm

Source

Michelle LeBeau

References

Examples

```r
table(walleye)
```

<table>
<thead>
<tr>
<th>water</th>
<th>California water</th>
</tr>
</thead>
</table>

Description

Can Southern California’s water supply in future years be predicted from past data? One factor affecting water availability is stream runoff. If runoff could be predicted, engineers, planners and policy makers could do their jobs more efficiently. Multiple linear regression models have been used in this regard. This dataset contains 43 years worth of precipitation measurements taken at six sites in the Owens Valley (labeled APMAM, APSAB, APSLAKE, OPBPC, OPRC, and OPSLAKE), and stream runoff volume at a site near Bishop, California.

Format

This data frame contains the following columns:

- **Year** collection year
- **APMAM** Snowfall in inches measurement site
- **APSAB** Snowfall in inches measurement site
- **APSLAKE** Snowfall in inches measurement site
- **OPBPC** Snowfall in inches measurement site
- **OPRC** Snowfall in inches measurement site
- **OPSLAKE** Snowfall in inches measurement site
- **BSAAM** Stream runoff near Bishop, CA, in acre-feet
wblake

Source

References

Examples

```r
head(wblake)
```

| wblake | West Bearskin Lake small mouth bass data. |

Description

Data on samples of small mouth bass collected in West Bearskin Lake, Minnesota, in 1991. The file `wblake` includes only fish of ages 8 or younger, while `wblake2` adds a few older fish.

Format

This data frame contains the following columns:

- **Age**
 Age at capture (yrs)

- **Length**
 Length at capture (mm)

- **Scale**
 radius of a key scale, mm

Source

Minnesta Department of Natural Resources

References

Examples

```r
head(wblake)  # excludes fish age 9 or older
head(wblake2)  # all fish
```
Simple windmill data

Description

Windspeed data collected at a test site for a windmill, and also at a nearby long-term weather site, in Northern South Dakota. Data collected every six hours for all of 2002, except that all of the month of May and a few other observations are missing.

Format

A data frame with 1116 observations on the following 3 variables.

- **Date** A text variable with values like "2002/1/2/6" meaning the reading at 6AM on January 2, 2002
- **CSpd** Windspeed in m/s at the candidate site
- **RSpd** Windspeed for the reference site

Source

Mark Ahlstrom and Rolf Miller, WindLogics, Inc.

References

Examples

```r
head(wm1)
```

Windmill data with direction information

Description

Windspeed data collected at a test site for a windmill, and also at a nearby long-term weather site, in Northern South Dakota. Data collected every six hours for all of 2002, except that all of the month of May and a few other observations missing.

Format

A data frame with 1116 observations on the following 5 variables.

- **Date** A text variable with values like "2002/1/2/6" meaning the reading at 6AM on January 2, 2002
- **CSpd** Windspeed in m/s at the candidate site
- **RSpd** Windspeed for the reference site
- **RDir** Wind direction, in degrees, at the reference site
- **Bin** Wind direction binned into 16 equal width bins
Source

Mark Ahlstrom and Rolf Miller, WindLogics, Inc.

References

Examples

head(wm2)

wm3

Binned wind speed data

Description

For the windspeed data in the file *wm2*, this is the number of observations in each of the bins, and the average windspeed in that bin.

Format

A data frame with 16 observations on the following 2 variables.

- **bin.count** Number of observations in the bin
- **RSpd** Average windspeed in the bin

References

Examples

head(wm3)
Windmill data with direction information and four reference sites

Description

Windspeed data collected at a test site for a windmill, and also at four nearby long-term weather site, in Northern South Dakota. Data collected every six hours for all of 2002, except that all of the month of May and a few other observations are missing.

Format

A data frame with 1114 observations on the following 14 variables.

- **Date** A text variable with values like "2002/1/2/6" meaning the reading at 6AM on January 2, 2002
- **CSpd** Wind speed (m/s) at candidate site
- **Spd1** Wind speed (m/s) at reference site 1
- **Spd2** Wind speed (m/s) at reference site 2
- **Spd3** Wind speed (m/s) at reference site 3
- **Spd4** Wind speed (m/s) at reference site 4
- **Spd1Lag1** Lag 1 Wind speed (m/s) at reference site 1
- **Spd2Lag1** Lag 1 Wind speed (m/s) at reference site 2
- **Spd3Lag1** Lag 1 Wind speed (m/s) at reference site 3
- **Spd4Lag1** Lag 1 Wind speed (m/s) at reference site 4
- **Spd1sin1** Spd times sin(direction) at site 1
- **Spd1cos1** Spd times cos(direction) at site 1
- **bin1** Wind direction bin for site 1
- **Dir1** Wind direction for site 1, in degrees

Source

Mark Ahlstrom and Rolf Miller, WindLogics, Inc.

References

Examples

```
head(wm4)
```
Description

This is a three-factor experiment with each factor at three levels, for a total of 27 runs. Samples of worsted yarn were with different levels of the three factors were given a cyclic load until the sample failed. The goal is to understand how cycles to failure depends on the factors.

Format

This data frame contains the following columns:

- **Len** length of specimen (250, 300, 350 mm)
- **Amp** amplitude of loading cycle (8, 9, 10 min)
- **Load** load (40, 45, 50g)
- **Cycles** number of cycles until failure

Source

References

Examples

```r
head(wool)
```
Index

*Topic datasets
 ais, 3
 allshoots, 4
 baeskel, 7
 banknote, 7
 BigMac2003, 9
 blowdown, 10
 brains, 11
 cakes, 11
 cathedral, 12
 caution, 13
 challeng, 13
 chloride, 14
 cloud, 15
 domedata, 15
 donner, 16
 downer, 17
 drugcost, 18
 dwaste, 19
 florida, 20
 forbes, 20
 ftcollinssnow, 21
 fuel2001, 22
 galapagos, 23
 galtonpeas, 24
 heights, 24
 highway, 25
 hooker, 26
 htwt, 27
 jevons, 27
 lakemary, 28
 lakes, 29
 landrent, 30
 lathe1, 30
 mantel, 31
 mile, 32
 Mitchell, 32
 MWWords, 33
 npdata, 34
 oldfaith, 34
 physics, 35
 prodscore, 40
 rat, 43
 salary, 44
 salarygov, 44
 segreg, 45
 shocks, 46
 sleep1, 46
 snake, 47
 sniffer, 48
 snowgeese, 49
 stopping, 49
 swan96, 50
 titanic, 51
 transact, 51
 turk0, 52
 turkey, 53
 twins, 53
 ufc, 54
 UN1, 55
 UN2, 56
 UN3, 56
 walleye, 57
 water, 58
 wblake, 59
 wm1, 60
 wm2, 60
 wm3, 61
 wm4, 62
 wool, 63

*Topic hplot
 pod, 36

*Topic interface
 a1rWeb, 6

*Topic manip
 randomLinComb, 42
INDEX

*Topic **models**
 pod, 36
 pureErrorAnova, 41

*Topic **regression**
 pod, 36
 pureErrorAnova, 41

aas, 3
allshtos, 4
alr3-deprecated, 5
alrWeb, 6
anova.pod (pod), 36

baeskel, 7
banknote, 7
bctrans (alr3-deprecated), 5
bctrans1 (alr3-deprecated), 5
BGSall, 8
BGSBoys (BGSall), 8
BGSgirls (BGSall), 8
BigMac2003, 9
blowAPB (blowdown), 10
blowBF (blowdown), 10
blowdown, 10
boot.case (alr3-deprecated), 5
brains, 11

cakes, 11
cathedrals, 12
cautions, 13
challengs, 13
chlorides, 14
cloud, 15
coeff.pod (pod), 36
conf.intervals (alr3-deprecated), 5
delta.method (alr3-deprecated), 5
deviance.pod (pod), 36
df.residual.pod (pod), 36

domadata, 15
domadata1 (domadata), 15
donner, 16
downer, 17
drugcost, 18
dwaste, 19

fitted.pod (pod), 36
florida, 20
forbes, 20

formula.pod (pod), 36
ftcollinssnow, 21
fuel2001, 22
galapagos, 23
galtonpeas, 24

heights, 24
highway, 25
hooker, 26
htwt, 27

inf.index (alr3-deprecated), 5
inv.res.plot (alr3-deprecated), 5
inv.trans.estimate (alr3-deprecated), 5
inv.trans.plot (alr3-deprecated), 5
inverse.response.plot (alr3-deprecated), 5

jevons, 27

lakemary, 28
lakes, 29
landrent, 30
lathe1, 30
lm, 40, 41
longshoots (allshtos), 4
lrt.bctrans (alr3-deprecated), 5
mantel, 31
marginal.model.plot (alr3-deprecated), 5
marginal.model.plots (alr3-deprecated), 5
mile, 32
Mitchell, 32
MWWords, 33

nls, 40
nls.control, 38, 40
npdata, 34

oldfaith, 34
outlier.t.test (alr3-deprecated), 5

physics, 35
physics1 (physics), 35
pipeline, 36
plot.pod (pod), 36
pod, 36
podnls.fit (pod), 36
podresponse (pod), 36
powtran (alr3-deprecated), 5
predict.pod (pod), 36
print.pod (pod), 36
prodscore, 40
pure.error.anova, 42
pure.error.anova (alr3-deprecated), 5
pureErrorAnova, 41
randomLinComb, 42
rat, 43
resid.pod (pod), 36
residual.plots (alr3-deprecated), 5
residuals.pod (pod), 36
resplot (alr3-deprecated), 5
salary, 44
salarygov, 44
segreg, 45
shocks, 46
shortshoots (allshoots), 4
sleep1, 46
snake, 47
sniffer, 48
snowgeese, 49
stopping, 49
summary.pod (pod), 36
swan96, 50
titanic, 51
transact, 51
turk0, 52
turkey, 53
twins, 53
ufc, 54
ufcdf (ufc), 54
ufcgf (ufc), 54
ufcwcc (ufc), 54
UN1, 55
UN2, 56
UN3, 55, 56
vcov.pod (pod), 36
walleye, 57
water, 58
wblake, 59
wblake2 (wblake), 59
wm1, 60