Package ‘amen’

October 12, 2022

Title Additive and Multiplicative Effects Models for Networks and Relational Data

Version 1.4.4

Description Analysis of dyadic network and relational data using additive and multiplicative effects (AME) models. The basic model includes regression terms, the covariance structure of the social relations model (Warner, Kenny and Stoto (1979) <DOI:10.1037/0022-3514.37.10.1742>, Wong (1982) <DOI:10.2307/2287296>), and multiplicative factor models (Hoff(2009) <DOI:10.1007/s10588-008-9040-4>). Several different link functions accommodate different relational data structures, including binary/network data, normal relational data, zero-inflated positive outcomes using a tobit model, ordinal relational data and data from fixed-rank nomination schemes. Several of these link functions are discussed in Hoff, Fosdick, Volfovsky and Stovel (2013) <DOI:10.1017/nws.2013.17>. Development of this software was supported in part by NIH grant R01HD067509.

Maintainer Peter Hoff <peter.hoff@duke.edu>

URL https://github.com/pdhoff/amen

BugReports https://github.com/pdhoff/amen/issues

License GPL-3

Date 2020-12-01

LazyData true

Depends R (>= 3.5.0)

Suggests coda, network, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Peter Hoff [aut, cre], Bailey Fosdick [aut], Alex Volfovsky [aut], Yanjun He [ctb]
R topics documented:

<table>
<thead>
<tr>
<th>Repository</th>
<th>CRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Publication</td>
<td>2020-12-16 14:00:09 UTC</td>
</tr>
</tbody>
</table>

R topics documented:

<table>
<thead>
<tr>
<th>Package/Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>amen-package</td>
<td>3</td>
</tr>
<tr>
<td>addhealthc3</td>
<td>4</td>
</tr>
<tr>
<td>addhealthc9</td>
<td>5</td>
</tr>
<tr>
<td>addlines</td>
<td>5</td>
</tr>
<tr>
<td>ame</td>
<td>6</td>
</tr>
<tr>
<td>ame_rep</td>
<td>8</td>
</tr>
<tr>
<td>circplot</td>
<td>10</td>
</tr>
<tr>
<td>coldwar</td>
<td>11</td>
</tr>
<tr>
<td>comtrade</td>
<td>12</td>
</tr>
<tr>
<td>design_array</td>
<td>12</td>
</tr>
<tr>
<td>dutchcollege</td>
<td>13</td>
</tr>
<tr>
<td>el2sm</td>
<td>14</td>
</tr>
<tr>
<td>gofstats</td>
<td>14</td>
</tr>
<tr>
<td>IR90s</td>
<td>15</td>
</tr>
<tr>
<td>lazegalso</td>
<td>16</td>
</tr>
<tr>
<td>ldZgbme</td>
<td>16</td>
</tr>
<tr>
<td>llsmRho</td>
<td>17</td>
</tr>
<tr>
<td>mhalf</td>
<td>18</td>
</tr>
<tr>
<td>netplot</td>
<td>18</td>
</tr>
<tr>
<td>plot.ame</td>
<td>19</td>
</tr>
<tr>
<td>precomputeX</td>
<td>20</td>
</tr>
<tr>
<td>raSab_bin_fc</td>
<td>20</td>
</tr>
<tr>
<td>raSab_cbin_fc</td>
<td>21</td>
</tr>
<tr>
<td>raSab_frn_fc</td>
<td>22</td>
</tr>
<tr>
<td>rbeta_ab_fc</td>
<td>23</td>
</tr>
<tr>
<td>rbeta_ab_rep_fc</td>
<td>24</td>
</tr>
<tr>
<td>rmvnorm</td>
<td>24</td>
</tr>
<tr>
<td>rrho_fc</td>
<td>25</td>
</tr>
<tr>
<td>rrho_mh</td>
<td>26</td>
</tr>
<tr>
<td>rrho_mh_rep</td>
<td>26</td>
</tr>
<tr>
<td>rs2_fc</td>
<td>27</td>
</tr>
<tr>
<td>rs2_rep_fc</td>
<td>28</td>
</tr>
<tr>
<td>rSab_fc</td>
<td>28</td>
</tr>
<tr>
<td>rSuv_fc</td>
<td>29</td>
</tr>
<tr>
<td>rUV_fc</td>
<td>29</td>
</tr>
<tr>
<td>rUV_rep_fc</td>
<td>30</td>
</tr>
<tr>
<td>rUV_sym_fc</td>
<td>31</td>
</tr>
<tr>
<td>rwish</td>
<td>32</td>
</tr>
<tr>
<td>rZ_bin_fc</td>
<td>33</td>
</tr>
<tr>
<td>rZ_cbin_fc</td>
<td>33</td>
</tr>
<tr>
<td>rZ_frn_fc</td>
<td>34</td>
</tr>
<tr>
<td>rZ_nrm_fc</td>
<td>35</td>
</tr>
</tbody>
</table>
Description

Analysis of network and relational data using additive and multiplicative effects (AME) models. The basic model includes regression terms, the covariance structure of the social relations model (Warner, Kenny and Stoto (1979), Wong (1982)), and multiplicative factor effects (Hoff(2009)). Four different link functions accommodate different relational data structures, including binary/network data (bin), normal relational data (nrm), ordinal relational data (ord) and data from fixed-rank nomination schemes (frn). Several of these link functions are discussed in Hoff, Fosdick, Volfovsky and Stovel (2013). Development of this software was supported in part by NICHD grant R01HD067509.

Details

Package: amen
Type: Package
Version: 1.4.4
Date: 2020-12-01
License: GPL-3
Author(s)

Peter Hoff, Bailey Fosdick, Alex Volfovsky, Yanjun He

Maintainer: Peter Hoff <peter.hoff@duke.edu>

Examples

data(YX_frn)
fit<-ame(YX_frnY,YX_frnX,burn=5,nscan=5,odens=1,family="frn")

summary(fit)
plot(fit)

addhealthc3

AddHealth community 3 data

Description

A valued sociomatrix (Y) and matrix of nodal attributes (X) for students in community 3 of the AddHealth study.

- Y: A sociomatrix in which the value of the edge corresponds to an ad-hoc measure of intensity of the relation. Note that students were only allowed to nominate up to 5 male friends and 5 female friends.

- X: Matrix of students attributes, including sex, race (1=white, 2=black, 3=hispanic, 4=asian, 5=mixed/other) and grade.

Usage

data(addhealthc3)

Format

list
Description

A valued sociomatrix (Y) and matrix of nodal attributes (X) for students in community 9 of the AddHealth study.

- Y: A sociomatrix in which the value of the edge corresponds to an ad-hoc measure of intensity of the relation. Note that students were only allowed to nominate up to 5 male friends and 5 female friends.
- X: Matrix of students attributes, including sex, race (1=white, 2=black, 3=hispanic, 4=asian, 5=mixed/other) and grade.

Usage

data(addhealthc9)

Format

list

addlines

Add lines

Description

Add lines to a network plot

Usage

addlines(Y,X,col="lightblue",alength=0,...)

Arguments

Y a sociomatrix
X coordinates of nodes
col color of lines. Can be a vector of length equal to the number of edges to be drawn
alength length of arrows to be drawn
... additional plotting parameters

Author(s)

Peter Hoff
Examples

```r
data(addhealthc3)
Y<-addhealthc3$Y
X<-xnet(Y)
netplot(Y,X)
addlines(Y,X,col=Y[Y!=0])
```

ame
AME model fitting routine

Description

An MCMC routine providing a fit to an additive and multiplicative effects (AME) regression model to relational data of various types.

Usage

```r
ame(Y, Xdyad=NULL, Xrow=NULL, Xcol=NULL, family, R=0, rvar = !(family=="rrl"),
cvar = TRUE, dcor = !symmetric, nvar=TRUE,
intercept=!is.element(family,c("rrl","ord")),
symmetric=FALSE,
odmax=rep(max(apply(Y>0,1,sum,na.rm=TRUE)),nrow(Y)), seed = 1, nscan =
10000, burn = 500, odens = 25, plot=TRUE, print = TRUE, gof=TRUE,
prior=list())
```

Arguments

- **Y**: an n x n square relational matrix of relations. See family below for various data types.
- **Xdyad**: an n x n x pd array of covariates
- **Xrow**: an n x pr matrix of nodal row covariates
- **Xcol**: an n x pc matrix of nodal column covariates
- **family**: character: one of "nrm","tob","bin","ord","cbin","frn","rrl" - see the details below
- **R**: integer: dimension of the multiplicative effects (can be zero)
- **rvar**: logical: fit row random effects (asymmetric case)?
- **cvar**: logical: fit column random effects (asymmetric case)?
- **dcor**: logical: fit a dyadic correlation (asymmetric case)?
- **nvar**: logical: fit nodal random effects (symmetric case)?
- **intercept**: logical: fit model with an intercept?
- **symmetric**: logical: Is the sociomatrix symmetric by design?
ame

odmax a scalar integer or vector of length n giving the maximum number of nominations that each node may make - used for "frn" and "cbin" families
seed random seed
nscan number of iterations of the Markov chain (beyond burn-in)
burn burn in for the Markov chain
odens output density for the Markov chain
plot logical: plot results while running?
print logical: print results while running?
gof logical: calculate goodness of fit statistics?
prior list: A list of hyperparameters for the prior distribution

Details
This command provides posterior inference for parameters in AME models of relational data, assuming one of six possible data types/models:
"nrm": A normal AME model.
"tob": A tobit AME model.
"bin": A binary probit AME model.
"ord": An ordinal probit AME model. An intercept is not identifiable in this model.
"cbin": An AME model for censored binary data. The value of 'odmax' specifies the maximum number of links each row may have.
"frn": An AME model for fixed rank nomination networks. A higher value of the rank indicates a stronger relationship. The value of 'odmax' specifies the maximum number of links each row may have.
"rrl": An AME model based on the row ranks. This is appropriate if the relationships across rows are not directly comparable in terms of scale. An intercept, row random effects and row regression effects are not estimable for this model.

Value
BETA posterior samples of regression coefficients
VC posterior samples of the variance parameters
APM posterior mean of additive row effects a
BPM posterior mean of additive column effects b
U posterior mean of multiplicative row effects u
V posterior mean of multiplicative column effects v (asymmetric case)
UVPM posterior mean of UV (asymmetric case)
ULUPM posterior mean of ULU (symmetric case)
L posterior mean of L (symmetric case)
EZ estimate of expectation of Z matrix
YPM posterior mean of Y (for imputing missing values)
GOF observed (first row) and posterior predictive (remaining rows) values of four goodness-of-fit statistics
AME model fitting routine for replicated relational data

Description

An MCMC routine providing a fit to an additive and multiplicative effects (AME) regression model to replicated relational data of various types.

Usage

```r
ame_rep(Y,Xdyad=NULL, Xrow=NULL, Xcol=NULL, family, R=0, rvar = !(family=="rrl"),
cvar = TRUE, dcor = !symmetric, nvar=TRUE,
intercept=!is.element(family,c("rrl","ord")),
symmetric=FALSE,
odmax=rep(max(apply(Y>0,c(1,3),sum,na.rm=TRUE)),nrow(Y[,1])), seed = 1,
nscan = 10000, burn = 500, odens = 25, plot=TRUE, print = TRUE, gof=TRUE)
```

Arguments

- **Y**: an n x n x T array of relational matrix, where the third dimension corresponds to replicates (over time, for example). See family below for various data types.
- **Xdyad**: an n x n x pd x T array of covariates
- **Xrow**: an n x pr x T array of nodal row covariates
- **Xcol**: an n x pc x T array of nodal column covariates
- **family**: character: one of "nrm", "bin", "ord", "cbin", "frn", "rrl" - see the details below
- **R**: integer: dimension of the multiplicative effects (can be zero)
- **rvar**: logical: fit row random effects (asymmetric case)?
- **cvar**: logical: fit column random effects (asymmetric case)?
- **dcor**: logical: fit a dyadic correlation (asymmetric case)?
- **nvar**: logical: fit nodal random effects (symmetric case)?
- **intercept**: logical: fit model with an intercept?
- **symmetric**: logical: Is the sociomatrix symmetric by design?
ame_rep

odmax a scalar integer or vector of length n giving the maximum number of nominations that each node may make - used for "frn" and "cbin" families
seed random seed
nscan number of iterations of the Markov chain (beyond burn-in)
burn burn in for the Markov chain
odens output density for the Markov chain
plot logical: plot results while running?
print logical: print results while running?
gof logical: calculate goodness of fit statistics?

Details

This command provides posterior inference for parameters in AME models of independent replicated relational data, assuming one of six possible data types/models:

"nrm": A normal AME model.
"bin": A binary probit AME model.
"ord": An ordinal probit AME model. An intercept is not identifiable in this model.
"cbin": An AME model for censored binary data. The value of 'odmax' specifies the maximum number of links each row may have.
"frn": An AME model for fixed rank nomination networks. A higher value of the rank indicates a stronger relationship. The value of 'odmax' specifies the maximum number of links each row may have.
"rrl": An AME model based on the row ranks. This is appropriate if the relationships across rows are not directly comparable in terms of scale. An intercept, row random effects and row regression effects are not estimable for this model.

Value

BETA posterior samples of regression coefficients
VC posterior samples of the variance parameters
APM posterior mean of additive row effects a
BPM posterior mean of additive column effects b
U posterior mean of multiplicative row effects u
V posterior mean of multiplicative column effects v (asymmetric case)
UVPM posterior mean of UV
ULUPM posterior mean of ULU (symmetric case)
L posterior mean of L (symmetric case)
EZ estimate of expectation of Z matrix
YPM posterior mean of Y (for imputing missing values)
GOF observed (first row) and posterior predictive (remaining rows) values of four goodness-of-fit statistics
Author(s)

Peter Hoff, Yanjun He

Examples

data(YX_bin_long)
fit<-ame_rep(YX_bin_longY,YX_bin_longX,burn=5,nscan=5,odens=1,family="bin")
you should run the Markov chain much longer than this

circplot Circular network plot

Description

Produce a circular network plot.

Usage

circplot(
 Y,
 U = NULL,
 V = NULL,
 row.names = rownames(Y),
 col.names = colnames(Y),
 plotnames = TRUE,
 vscale = 0.8,
 pscale = 1.75,
 mscale = 0.3,
 lcol = "gray",
 rcol = "brown",
 ccol = "blue",
 pch = 16,
 lty = 3,
 jitter = 0.1 * (nrow(Y)/(1 + nrow(Y)));
 bty = "n",
 add = FALSE
)

Arguments

Y (matrix) m by n relational matrix.
U (matrix) m by 2 matrix of row factors of Y.
V (matrix) n by 2 matrix of column factors of Y.
row.names (character vector) names of the row objects.
coldwar

col.names (character vector) names of the columns objects.

plotnames (logical) plot row and column names.

vscale (scalar) scaling factor for V coordinates.

pscale (scalar) scaling factor for plotting characters.

mscale (scalar) scaling factor for plotting characters.

lcol (scalar or vector) line color(s) for the nonzero elements of Y.

rcol (scalar or vector) node color(s) for the rows.

ccol (scalar or vector) node color(s) for the columns.

pch (integer) plotting character.

dlty (integer) line type.

jitter (scalar) a number to control jittering of nodes.

bty (character) bounding box type.

add (logical) add to existing plot

Details

This function creates a circle plot of a relational matrix or social network. If not supplied via U and V, two-dimensional row factors and column factors are computed from the SVD of Y, scaled versions of which are used to plot positions on the outside edge (U) and inside edge (V) of the circle plot. The magnitudes of the plotting characters are determined by the magnitudes of the rows of U and V. Segments are drawn between each row object i and column object j for which Y[i,j]! = 0.

Author(s)

Peter Hoff

Examples

data(IR90s)
circplot(IR90s$dyadvars[,1])

coldwar

Cold War data

Description

Positive and negative relations between countries during the cold war
Format

A list including the following dyadic and nodal variables:

- **cc**: a socioarray of ordinal levels of military cooperation (positive) and conflict (negative), every 5 years;
- **distance**: between-country distance (in thousands of kilometers);
- **gdp**: country gdp in dollars every 5 years;
- **polity**: country polity every 5 years.

Source

Xun Cao: https://polisci.la.psu.edu/people/xuc11

comtrade | **Comtrade data**

Description

Eleven years of import and export data between 229 countries. The data use the SITC Rev. 1 commodity classification, aggregated at the first level (AG1).

Format

A list consisting of a socioarray `Trade` and a vector `dollars2010` of inflation rates. The socioarray gives yearly trade volume (exports and imports) in dollars for 10 different commodity classes for eleven years between 229 countries. This gives a five-way array. The first index is the reporting country, so `Trade[i,j,t,k,1]` is what \(i \) reports for exports to \(j \), but in general this is not the same as `Trade[j,i,t,k,2]`, what \(j \) reports as importing from \(i \).

Source

design_array | **Computes the design socioarray of covariate values**

Description

Computes the design socioarray of covariate values for an AME fit

Usage

```r
design_array(Xrow=NULL,Xcol=NULL,Xdyad=NULL,intercept=TRUE,n)
```
Arguments

\(X_{row} \)
an n x pr matrix of row covariates

\(X_{col} \)
an n x pc matrix of column covariates

\(X_{dyad} \)
an n x n x pd array of dyadic covariates

intercept
logical

\(n \)
number of rows/columns

Value

an n x n x (pr+pc+pd+intercept) 3-way array

Author(s)

Peter Hoff

Description

Longitudinal relational measurements and nodal characteristics of Dutch college students, described in van de Bunt, van Duijn, and Snijders (1999). The time interval between the first four measurements was three weeks, whereas the interval between the last three was six weeks.

Format

A list consisting of a socioarray \(Y \) and a matrix \(X \) of static nodal attributes. The relational measurements range from -1 to 4, indicating the following:

- -1 a troubled or negative relationship
- 0 don’t know
- 1 neutral relationship
- 2 friendly
- 3 friendship
- 4 best friends

Source

Linton Freeman
el2sm
Edgelist to sociomatrix

Description

Construction of a sociomatrix from an edgelist

Usage

```r
el2sm(el, directed=TRUE, nadiag=all(el[,1]!=el[,2]))
```

Arguments

- `el`
a matrix in which each row contains the indices of an edge and possibly the weight for the edge
- `directed`
if FALSE, then a relation is placed in both entry ij and ji of the sociomatrix, for each edge ij (or ji)
- `nadiag`
put NAs on the diagonal

Value

a sociomatrix

Author(s)

Peter Hoff

Examples

```r
Y<-matrix(rpois(10*10,.5),10,10) ; diag(Y)<-NA
E<-sm2el(Y)
el2sm(E) - Y
```

gofstats
Goodness of fit statistics

Description

Goodness of fit statistics evaluating second and third-order dependence patterns

Usage

```r
gofstats(Y)
```
Arguments

Y a relational data matrix

Value

a vector of gof statistics

Author(s)

Peter Hoff

Examples

data(YX_nrm)
gofstats(YX_nrm$Y)

Description

A relational dataset recording a variety of nodal and dyadic variables on countries in the 1990s, including information on conflicts, trade and other variables. Except for the conflict variable, the variables are averages across the decade.

Format

A list consisting of a socioarray dyadvars of dyadic variables and matrix nodevars of nodal variables. The dyadic variables include

- total number of conflicts;
- exports (in billions of dollars);
- distance (in thousands of kilometers);
- number of shared IGOs (averages across the years);
- polity interaction.

The nodal variables include

- population (in millions);
- gdp (in billions of dollars);
- polity

Source

Michael Ward.
Description

Several nodal and dyadic variables measured on 71 attorneys in a law firm.

Format

A list consisting of a socioarray Y and a nodal attribute matrix X.

The dyadic variables in Y include three binary networks: advice, friendship and co-worker status.

The categorical nodal attributes in X are coded as follows:

- status (1=partner, 2=associate)
- office (1=Boston, 2=Hartford, 3=Providence)
- practice (1=litigation, 2=corporate)
- law school (1=Harvard or Yale, 2=UConn, 3=other)

Seniority and age are given in years, and female is a binary indicator.

Source

Linton Freeman

ldZgbme

log density for GBME models

Description

Calculation of the log conditional density of the latent AMEN matrix Z given observed data Y.

Usage

```r
ldZgbme(Z, Y, l1YZ, EZ, rho, s2 = 1)
```

Arguments

- **Z**: n X n latent relational matrix following an AMEN model
- **Y**: n X n observed relational matrix
- **l1YZ**: a vectorizable function taking two arguments, y and z. See details below.
- **EZ**: n X n mean matrix for Z based on AMEN model (including additive effects)
- **rho**: dyadic correlation in AMEN model for Z
- **s2**: residual variance in AMEN model for $Z`
Details

This function is used for updating dyadic pairs of the latent variable matrix Z based on Y and an AMEN model for Z. The function \(\text{llYZ} \) specifies the log likelihood for each single \(z[i,j] \) based on \(y[i,j] \), that is, \(\text{llYZ} \) gives the log probability density (or mass function) of \(y[i,j] \) given \(z[i,j] \).

Value

A symmetric matrix where entry \(i,j \) is proportional to the log conditional bivariate density of \(z[i,j],z[j,i] \).

Author(s)

Peter Hoff

Examples

```r
## For (overdispersed) Poisson regression, use
llYZ<-function(y,z){ dpois(y,z,log=TRUE) }
```

llsmRho

SRM log likelihood evaluated on a grid of rho-values

Description

Calculation of the SRM log-likelihood over a grid of rho-values

Usage

```r
llsmRho(Y, Sab, rhos, s2 = 1)
```

Arguments

- **Y**: sociomatrix assumed to follow a mean-zero SRM distribution
- **Sab**: covariance matrix of additive effects
- **rhos**: vector of rho-values at which to calculate the log-likelihood
- **s2**: current value of s2

Value

A vector of log-likelihood values

Author(s)

Peter Hoff
mhalf

Symmetric square root of a matrix

Description

Computes the symmetric square root of a positive definite matrix

Usage

```r
mhalf(M)
```

Arguments

- `M` a positive definite matrix

Value

a matrix H such that H^2 equals M

Author(s)

Peter Hoff

netplot

Network plotting

Description

Plot the graph of a sociomatrix

Usage

```r
netplot(Y,X=NULL,xaxt="n",yaxt="n",xlab="",ylab="",lcol="gray",ncol="black",lwd=1,lty=1,pch=16,bty="n",plotnames=FALSE,seed=1,plot.iso=TRUE,directed=NULL,add=FALSE,...)
```

Arguments

- `Y` a sociomatrix
- `X` coordinates for plotting the nodes
- `xaxt` x-axis type
- `yaxt` y-axis type
- `xlab` x-axis label
plot.ame

```
ylab    y-axis label
lcol    edge color
ncol    node color (can be node-specific)
lwd     line width
lty     line type
pch     plotting character for nodes (can be node-specific)
bty     bounding box type
plotnames plot rownames of Y as node labels
seed    random seed
plot.iso include isolates in plot
directed draw arrows
add     add to an existing plot region
...     additional plotting parameters
```

Author(s)

Peter Hoff

Examples

```
data(addhealthc3)
Y<-addhealthc3$Y
X<-xnet(Y)
netplot(Y,X)
```

plot.ame
Plot results of an AME object

Description

A set of plots summarizing the MCMC routine for an AME fit, as well as some posterior predictive checks.

Usage

```r
## S3 method for class 'ame'
plot(x, ...)
```

Arguments

```
x     the result of fitting an AME model
...
    additional parameters (not used)
```
PrecomputeX
Precomputation of design matrix quantities.

Description
Computation of a variety of quantities from the design array to be used in MCMC model fitting algorithms.

Usage
`precomputeX(X)`

Arguments
- `X`: a three way array, the design array for an AME model

Value
the same three-way array but with derived quantities as attributes.

Author(s)
Peter Hoff

rasab_bin_fc
Simulate a and Sab from full conditional distributions under bin likelihood

Description
Simulate a and Sab from full conditional distributions under bin likelihood

Usage
`rasab_bin_fc(Z, Y, a, b, Sab, Sab0=NULL, eta0=NULL, SS = round(sqrt(nrow(Z))))`
Arguments

- **Z**: a square matrix, the current value of Z
- **Y**: square binary relational matrix
- **a**: current value of row effects
- **b**: current value of column effects
- **Sab**: current value of Cov(a,b)
- **Sab0**: prior (inverse) scale matrix for the prior distribution
- **eta0**: prior degrees of freedom for the prior distribution
- **SS**: number of iterations

Value

- **Z**: new value of Z
- **Sab**: new value of Sab
- **a**: new value of a

Author(s)

Peter Hoff

raSab_cbin_fc
Simulate a and Sab from full conditional distributions under the cbin likelihood

Description

Simulate a and Sab from full conditional distributions under the cbin likelihood

Usage

```r
raSab_cbin_fc(Z, Y, a, b, Sab, odmax, odobs, Sab0=NULL, eta0=NULL, SS = round(sqrt(nrow(Z))))
```

Arguments

- **Z**: a square matrix, the current value of Z
- **Y**: square matrix of ranked nomination data
- **a**: current value of row effects
- **b**: current value of column effects
- **Sab**: current value of Cov(a,b)
- **odmax**: a scalar or vector giving the maximum number of nominations for each individual
- **odobs**: observed outdegree
- **Sab0**: prior (inverse) scale matrix for the prior distribution
- **eta0**: prior degrees of freedom for the prior distribution
- **SS**: number of iterations
raSab_frn_fc

Value

- Z: new value of Z
- Sab: new value of Sab
- a: new value of a

Author(s)

Peter Hoff

raSab_frn_fc

Simulate a and Sab from full conditional distributions under frn likelihood

Description

Simulate a and Sab from full conditional distributions under frn likelihood

Usage

raSab_frn_fc(Z, Y, YL, a, b, Sab, odmax, odobs, Sab0=NULL, eta0=NULL, SS=round(sqrt(nrow(Z))))

Arguments

- Z: a square matrix, the current value of Z
- Y: square matrix of ranked nomination data
- YL: list of ranked individuals, from least to most preferred in each row
- a: current value of row effects
- b: current value of column effects
- Sab: current value of Cov(a,b)
- odmax: a scalar or vector giving the maximum number of nominations for each individual
- odobs: observed outdegree
- Sab0: prior (inverse) scale matrix for the prior distribution
- eta0: prior degrees of freedom for the prior distribution
- SS: number of iterations

Value

- Z: new value of Z
- Sab: new value of Sab
- a: new value of a

Author(s)

Peter Hoff
rbeta_ab_fc

Conditional simulation of additive effects and regression coefficients

Description

Simulates from the joint full conditional distribution of (beta,a,b) in a social relations regression model.

Usage

```r
rbeta_ab_fc(
  Z, Sab, rho, X = NULL, s2 = 1, offset = 0, iV0 = NULL, m0 = NULL, g = length(Z)
)
```

Arguments

- **Z**: n X n normal relational matrix
- **Sab**: row and column covariance
- **rho**: dyadic correlation
- **X**: n x n x p covariate array
- **s2**: dyadic variance
- **offset**: a matrix of the same dimension as Z. It is assumed that Z-offset follows a SRRM, so the offset should contain any multiplicative effects (such as U%*% t(V))
- **iV0**: prior precision matrix for regression parameters
- **m0**: prior mean vector for regression parameters
- **g**: prior variance scale for g-prior when iV0 is unspecified

Value

- **beta**: regression coefficients
- **a**: additive row effects
- **b**: additive column effects

Author(s)

Peter Hoff
rbeta_ab_rep_fc
Gibbs sampling of additive row and column effects and regression coefficient with independent replicate relational data

Description
Simulates from the joint full conditional distribution of \((a,b,\beta)\), assuming same additive row and column effects and regression coefficient across replicates.

Usage

```
rbeta_ab_rep_fc(Z.T, Sab, rho, X.T, s2=1)
```

Arguments
- `Z.T`: \(n \times n \times T\) array, with the third dimension for replicates. Each slice of the array is a (latent) normal relational matrix, with multiplicative effects subtracted out
- `Sab`: row and column covariance
- `rho`: dyadic correlation
- `X.T`: \(n \times n \times p \times T\) covariate array
- `s2`: dyadic variance

Value
- `beta`: regression coefficients
- `a`: additive row effects
- `b`: additive column effects

Author(s)
Peter Hoff, Yanjun He

rmvnorm
Simulation from a multivariate normal distribution

Description
Simulates a matrix where the rows are i.i.d. samples from a multivariate normal distribution

Usage

```
rmvnorm(n, mu, Sigma, Sigma.chol = chol(Sigma))
```
Arguments

- **n** sample size
- **mu** multivariate mean vector
- **Sigma** covariance matrix
- **Sigma.chol** Cholesky factorization of Sigma

Value

- a matrix with n rows

Author(s)

Peter Hoff

rrho_fc

Griddy Gibbs update for dyadic correlation

Description

Simulation of dyadic correlation from its approximate full conditional distribution using griddy Gibbs sampling

Usage

```r
rrho_fc(Z, Sab, s2 = 1, offset = 0, ngp = 100, asp = NULL)
```

Arguments

- **Z** n X n normal relational matrix
- **Sab** covariance of additive effects
- **s2** residual variance
- **offset** matrix of the same dimension as Z. It is assumed that Z-offset follows an SRM distribution, so the offset should contain any regression terms and multiplicative effects (such as `Xbeta(X,beta+ U%%t(V) `)
- **ngp** the number of points for an unevenly-spaced grid on which to approximate the full conditional distribution
- **asp** use arc sine prior (TRUE) or uniform prior (FALSE)

Value

- a value of rho

Author(s)

Peter Hoff
rrho_mh

Metropolis update for dyadic correlation

Description
Metropolis update for dyadic correlation

Usage

```r
rrho_mh(Z, rho, s2 = 1, offset=0, asp=NULL)
```

Arguments
- `Z` n X n normal relational matrix
- `rho` current value of rho
- `s2` current value of s2
- `offset` matrix of the same dimension as Z. It is assumed that Z-offset is equal to dyadic noise, so the offset should contain any additive and multiplicative effects (such as `Xbeta(X,beta+ U%*%t(V) + outer(a,b,"+")`))
- `asp` use arc sine prior (TRUE) or uniform prior (FALSE)

Value
a new value of rho

Author(s)
Peter Hoff

rrho_mh_rep

Metropolis update for dyadic correlation with independent replicate data

Description
Metropolis update for dyadic correlation with independent replicate data.

Usage

```r
rrho_mh_rep(E.T, rho, s2 = 1)
```
Arguments

E.T Array of square residual relational matrix series. The third dimension of the array is for different replicates. Each slice of the array according to the third dimension is a square residual relational matrix.

rho current value of rho

s2 current value of s2

Value

a new value of rho

Author(s)

Peter Hoff, Yanjun He

rs2_fc
Gibbs update for dyadic variance

Description

Gibbs update for dyadic variance

Usage

```
rs2_fc(Z, rho, offset=0, nu0=NULL, s20=NULL)
```

Arguments

- **Z**
n X n normal relational matrix
- **rho**
current value of rho
- **offset**
matrix of the same dimension as Z. It is assumed that Z-offset is equal to dyadic noise, so the offset should contain any additive and multiplicative effects (such as `Xbeta(X,beta + U%*%t(V) + outer(a,b,"+"))`)
- **nu0**
prior degrees of freedom
- **s20**
prior estimate of s2

Value

a new value of s2

Author(s)

Peter Hoff
rSab_fc
Gibbs update for additive effects covariance

Description

Gibbs update for additive effects covariance

Usage

```
rSab_fc(a,b,Sab0=NULL,eta0=NULL)
```

Arguments

- **a**: vector of row random effects
- **b**: vector of row random effects
- **Sab0**: prior (inverse) scale matrix for the prior distribution
- **eta0**: prior degrees of freedom for the prior distribution

Author(s)

Peter Hoff

r2_rep_fc
Gibbs update for dyadic variance with independent replicate relational data

Description

Gibbs update for dyadic variance with independent replicate relational data

Usage

```
r2_rep_fc(E.T, rho)
```

Arguments

- **E.T**: Array of square residual relational matrix series. The third dimension of the array is for different replicates. Each slice of the array according to the third dimension is a square residual relational matrix
- **rho**: current value of rho

Value

a new value of s2

Author(s)

Peter Hoff, Yanjun He
rSuv_fc

Gibbs update for multiplicative effects covariance

Description

Gibbs update for multiplicative effects covariance

Usage

\[rSuv_fc(U, V, \text{Suv0=\text{NULL}}, \text{kappa0=\text{NULL}}) \]

Arguments

- **U**: matrix of row random effects
- **V**: matrix of row random effects
- **Suv0**: prior (inverse) scale matrix for the prior distribution
- **kappa0**: prior degrees of freedom for the prior distribution

Author(s)

Peter Hoff

rUV_fc

Gibbs sampling of U and V

Description

A Gibbs sampler for updating the multiplicative effect matrices U and V

Usage

\[rUV_fc(Z, U, V, \text{Suv}, \text{rho}, \text{s2 = 1}, \text{offset = 0}) \]

Arguments

- **Z**: n X n normal relational matrix
- **U**: current value of U
- **V**: current value of V
- **Suv**: covariance of (U V)
- **rho**: dyadic correlation
- **s2**: dyadic variance
- **offset**: a matrix of the same dimension as Z. It is assumed that Z-offset is equal to the multiplicative effects plus dyadic noise, so the offset should contain any additive effects (such as \(X\text{beta}(X, \text{beta + outer(a,b,"++")})\))
rUV_rep_fc

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>a new value of U</td>
</tr>
<tr>
<td>V</td>
<td>a new value of V</td>
</tr>
</tbody>
</table>

Author(s)

Peter Hoff

Description

A Gibbs sampler for updating the multiplicative effect matrices U and V, assuming they are the same across replicates.

Usage

```r
rUV_rep_fc(E.T,U,V,rho,s2=1,shrink=TRUE)
```

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E.T</td>
<td>Array of square residual relational matrix series with additive effects and covariates subtracted out. The third dimension of the array is for different replicates. Each slice of the array according to the third dimension is a square residual relational matrix.</td>
</tr>
<tr>
<td>U</td>
<td>current value of U</td>
</tr>
<tr>
<td>V</td>
<td>current value of V</td>
</tr>
<tr>
<td>rho</td>
<td>dyadic correlation</td>
</tr>
<tr>
<td>s2</td>
<td>dyadic variance</td>
</tr>
<tr>
<td>shrink</td>
<td>adaptively shrink the factors with a hierarchical prior</td>
</tr>
</tbody>
</table>

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>a new value of U</td>
</tr>
<tr>
<td>V</td>
<td>a new value of V</td>
</tr>
</tbody>
</table>

Author(s)

Peter Hoff, Yanjun He
Description

A Gibbs sampler for updating the multiplicative effect matrices U and V in the symmetric case. In this case UU^t is symmetric, so this is parameterized as $V=UL$ where L is the diagonal matrix of eigenvalues of UU^t.

Usage

```r
rUV_sym_fc(E, U, V, s2 = 1, shrink=TRUE)
```

Arguments

- **E**: square residual relational matrix
- **U**: current value of U
- **V**: current value of V
- **s2**: dyadic variance
- **shrink**: adaptively shrink the factors with a hierarchical prior

Value

- **U**: a new value of U
- **V**: a new value of V

Author(s)

Peter Hoff

Examples

```r
U0<-matrix(rnorm(30,2),30,2) ; V0<-U0%*%diag(c(3,-2))
E<- U0%*%t(V0) + matrix(rnorm(30^2),30,30)
rUV_sym_fc
```
Simulation from a Wishart distribution

Description
Simulates a random Wishart-distributed matrix

Usage
```r
rwish(S0, nu = dim(S0)[1] + 2)
```

Arguments
- `S0`: a positive definite matrix
- `nu`: a positive integer

Value
A positive definite matrix

Author(s)
Peter Hoff

Examples
```r
## The expectation is S0*nu
S0<-rwish(diag(3))
SS<-matrix(0,3,3)
for(s in 1:1000) { SS<-SS+rwish(S0,5) }
SS/s
S0*5
```
rZ_bin_fc
Simulate Z based on a probit model

Description
Simulates a random latent matrix Z given its expectation, dyadic correlation and a binary relational matrix Y.

Usage
```
rZ_bin_fc(Z, EZ, rho, Y)
```

Arguments
- Z: a square matrix, the current value of Z
- EZ: expected value of Z
- rho: dyadic correlation
- Y: square binary relational matrix

Value
a square matrix, the new value of Z

Author(s)
Peter Hoff

rZ_cbin_fc
Simulate Z given fixed rank nomination data

Description
Simulates a random latent matrix Z given its expectation, dyadic correlation and censored binary nomination data.

Usage
```
rZ_cbin_fc(Z, EZ, rho, Y, odmax, odobs)
```
Arguments

\begin{itemize}
 \item \(Z \): a square matrix, the current value of Z
 \item \(EZ \): expected value of Z
 \item \(\rho \): dyadic correlation
 \item \(Y \): square matrix of ranked nomination data
 \item \(\text{odmax} \): a scalar or vector giving the maximum number of nominations for each individual
 \item \(\text{odobs} \): observed outdegree
\end{itemize}

Details

Simulates Z under the constraints (1) \(Y[i,j]=1, Y[i,k]=0 \Rightarrow Z[i,j]>Z[i,k] \), (2) \(Y[i,j]=1 \Rightarrow Z[i,j]>0 \), (3) \(Y[i,j]=0 \& \text{odobs}[i]<\text{odmax}[i] \Rightarrow Z[i,j]<0 \)

Value

A square matrix, the new value of Z

Author(s)

Peter Hoff

Description

Simulates a random latent matrix Z given its expectation, dyadic correlation and fixed rank nomination data

Usage

\texttt{rZfrn.fc(Z, EZ, rho, Y, YL, odmax, odobs)}

Arguments

\begin{itemize}
 \item \(Z \): a square matrix, the current value of Z
 \item \(EZ \): expected value of Z
 \item \(\rho \): dyadic correlation
 \item \(Y \): square matrix of ranked nomination data
 \item \(YL \): list of ranked individuals, from least to most preferred in each row
 \item \(\text{odmax} \): a scalar or vector giving the maximum number of nominations for each individual
 \item \(\text{odobs} \): observed outdegree
\end{itemize}
rZ_nrm_fc

Details

Simulates Z under the constraints:
1. $Y[i,j] > Y[i,k]$ => $Z[i,j] > Z[i,k]$,
2. $Y[i,j] > 0$ => $Z[i,j] > 0$,
3. $Y[i,j] = 0$ & $odobs[i] < odmax[i]$ => $Z[i,j] < 0$

Value

A square matrix, the new value of Z

Author(s)

Peter Hoff

rZ_nrm_fc

Simulate missing values in a normal AME model

Description

Simulates missing values of a sociomatrix under a normal AME model

Usage

```
rZ_nrm_fc(Z, EZ, rho, s2, Y)
```

Arguments

- **Z**: A square matrix, the current value of Z
- **EZ**: Expected value of Z
- **rho**: Dyadic correlation
- **s2**: Dyadic variance
- **Y**: Square relational matrix

Value

A square matrix, equal to Y at non-missing values

Author(s)

Peter Hoff
rZ_ord_fc \[Simulate \text{ Z given the partial ranks} \]

Description
Simulates a random latent matrix Z given its expectation, dyadic correlation and partial rank information provided by W

Usage
\[rZ_ord_fc(Z, EZ, rho, Y)\]

Arguments
- **Z**: a square matrix, the current value of Z
- **EZ**: expected value of Z
- **rho**: dyadic correlation
- **Y**: matrix of ordinal data

Value
a square matrix, the new value of Z

Author(s)
Peter Hoff

rZ_rrl_fc \[Simulate Z given relative rank nomination data \]

Description
Simulates a random latent matrix Z given its expectation, dyadic correlation and relative rank nomination data

Usage
\[rZ_rrl_fc(Z, EZ, rho, Y, YL)\]

Arguments
- **Z**: a square matrix, the current value of Z
- **EZ**: expected value of Z
- **rho**: dyadic correlation
- **Y**: square matrix of ranked nomination data
- **YL**: list of ranked individuals, from least to most preferred in each row
Details

simulates Z under the constraints (1) Y[i,j]>Y[i,k] => Z[i,j]>Z[i,k]

Value

a square matrix, the new value of Z

Author(s)

Peter Hoff

rZ_tob_fc

Simulate Z based on a tobit model

Description

Simulates a random latent matrix Z given its expectation, dyadic correlation and a nonnegative relational matrix Y

Usage

```
rZ_tob_fc(Z, EZ, rho, s2, Y)
```

Arguments

- **Z**: a square matrix, the current value of Z
- **EZ**: expected value of Z
- **rho**: dyadic correlation
- **s2**: dyadic variance
- **Y**: square relational matrix with nonnegative entries

Value

a square matrix, the new value of Z

Author(s)

Peter Hoff
Description
Several dyadic variables measured on 18 members of a monastery.

Format
A sociourray whose dimensions represent nominators, nominatees and relations. Each monk was asked to rank up to three other monks on a variety of positive and negative relations. A rank of three indicates the “highest” ranking for a particular relational variable. The relations like_m2 and like_m1 are evaluations of likeing at one and two timepoints previous to when the other relations were measured.

Source
Linton Freeman
simY_bin

Simulate a network, i.e. a binary relational matrix

Description

Simulates a network, i.e. a binary relational matrix

Usage

```
simY_bin(EZ, rho)
```

Arguments

- **EZ**: square matrix giving the expected value of the latent Z matrix
- **rho**: dyadic correlation

Value

a square binary matrix

Author(s)

Peter Hoff

simY_frn

Simulate an relational matrix based on a fixed rank nomination scheme

Description

Simulate an relational matrix based on a fixed rank nomination scheme

Usage

```
simY_frn(EZ, rho, odmax, YO)
```

Arguments

- **EZ**: a square matrix giving the expected value of the latent Z matrix
- **rho**: dyadic correlation
- **odmax**: a scalar or vector giving the maximum number of nominations for each node
- **YO**: a square matrix identifying where missing values should be maintained

Value

a square matrix, where higher values represent stronger relationships
simY_nrm

Simulate a normal relational matrix

Description
Simulates a normal relational matrix

Usage
simY_nrm(EY, rho, s2)

Arguments
- EY: square matrix giving the expected value of the relational matrix
- rho: dyadic correlation
- s2: dyadic variance

Value
a square matrix

Author(s)
Peter Hoff

simY_ord

Simulate an ordinal relational matrix

Description
Simulates an ordinal relational matrix having a particular marginal distribution

Usage
simY_ord(EZ, rho, Y)

Arguments
- EZ: square matrix giving the expected value of the latent Z matrix
- rho: scalar giving the within-dyad correlation
- Y: ordinal relational data matrix
Value
a square matrix

Author(s)
Peter Hoff

simY_rrl

Simulate a relational matrix based on a relative rank nomination scheme

Description
Simulate an relational matrix based on a relative rank nomination scheme

Usage
```
simY_rrl(EZ, rho, odobs, YO)
```

Arguments
- **EZ**
a square matrix giving the expected value of the latent Z matrix
- **rho**
dyadic correlation
- **odobs**
a scalar or vector giving the observed number of nominations for each node
- **YO**
a square matrix identifying where missing values should be maintained

Value
a square matrix, where higher values represent stronger relationships

Author(s)
Peter Hoff
simY_tob
Simulate a tobit relational matrix

Description
Simulates a tobit relational matrix

Usage
```
simY_tob(EY, rho, s2)
```

Arguments
- **EY**: square matrix giving the expected value of the relational matrix
- **rho**: dyadic correlation
- **s2**: dyadic variance

Value
a square matrix

Author(s)
Peter Hoff

simZ
Simulate Z given its expectation and covariance

Description
Simulate Z given its expectation and covariance

Usage
```
simZ(EZ, rho, s2 = 1)
```

Arguments
- **EZ**: expected value of Z
- **rho**: dyadic correlation
- **s2**: dyadic variance

Value
a simulated value of Z
sm2el

Author(s)

Peter Hoff

sm2el
Sociomatrix to edgelist

Description

Construction of an edgelist from a sociomatrix

Usage

```r
sm2el(sm, directed = TRUE)
```

Arguments

- **sm**: a sociomatrix with possibly valued relations
- **directed**: if TRUE, only use the upper triangular part of the matrix to enumerate edges

Value

an edglist

Author(s)

Peter Hoff

Examples

```r
Y <- matrix(rpois(10*10, .5), 10, 10); diag(Y) <- NA
E <- sm2el(Y)
el2sm(E) - Y
```
summary.ame

Summary of an AME object

Description

Summary method for an AME object

Usage

```r
# S3 method for class 'ame'
summary(object, ...)
```

Arguments

- `object`: the result of fitting an AME model
- `...`: additional parameters (not used)

Value

A summary of parameter estimates and confidence intervals for an AME fit

Author(s)

Peter Hoff

Xbeta

Linear combinations of submatrices of an array

Description

Computes a matrix of expected values based on an array X of predictors and a vector beta of regression coefficients.

Usage

```r
Xbeta(X, beta)
```

Arguments

- `X`: an n by n by p array
- `beta`: a p by 1 vector

Value

An n by n matrix
Author(s)
Peter Hoff

xnet Network embedding

Description
Compute an embedding of a sociomatrix into a two-dimensional space.

Usage
xnet(Y, fm = suppressWarnings(require("network")), seed = 1)

Arguments
Y (square matrix) The sociomatrix.
fm (logical scalar) If TRUE, the Fruchterman-Reingold layout will be used (requires the network package).
seed (integer) The random seed (the FR layout is random).

Details
Coordinates are obtained using the Fruchterman-Reingold layout if the package network is installed, and otherwise uses the first two eigenvectors the sociomatrix.

Value
(matrix) A matrix of two-dimensional coordinates.

Author(s)
Peter Hoff

Examples
data(addhealthc3)
Y<-addhealthc3$Y
X<-xnet(Y)
netplot(Y,X)
YX_bin

binary relational data and covariates

Description

A synthetic dataset that includes binary relational data as well as information on eight covariates.

Usage

```r
data(YX_bin)
```

Format

The format is: List of 2

- **Y**: `num [1:100, 1:100]` NA 0 0 0 0 0 0 0 1 ...
- **X**: `num [1:100, 1:100, 1:8]` 1 1 1 1 1 1 1 1 ...

- attr(*, "dimnames")=List of 3
 - **Y**: `NULL`
 - **X**: `NULL`
 - **chr [1:8]** "intercept" "rgpa" "rsmoke" "cgpa" ...

Examples

```r
data(YX_bin)
gofstats(YX_bin$Y)
```

YX_bin_long

binary relational data and covariates

Description

A synthetic dataset that includes longitudinal binary relational data as well as information on covariates.

Usage

```r
data(YX_bin_long)
```

Format

A list

Examples

```r
data(YX_bin_long)
gofstats(YX_bin_long$Y[,1])
```
YX_cbin

Censored binary nomination data and covariates

Description
	a synthetic dataset that includes relational data where the number of nominations per row is censored at 10, along with information on eight covariates

Usage

data(YX_cbin)

Format

The format is: List of 2 $ Y: num [1:100, 1:100] NA 0 0 0 1 0 0 0 3 ... $ X: num [1:100, 1:100, 1:8] 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:8] "intercept" "rgpa" "rsmoke" "cgpa" ...

Examples

data(YX_cbin)
gofstats(YX_cbin$Y)

YX_frn

Fixed rank nomination data and covariates

Description

a synthetic dataset that includes fixed rank nomination data as well as information on eight covariates

Usage

data(YX_frn)

Format

The format is: List of 2 $ Y: num [1:100, 1:100] NA 0 0 0 1 0 0 0 3 ... $ X: num [1:100, 1:100, 1:8] 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:8] "intercept" "rgpa" "rsmoke" "cgpa" ...

Examples

data(YX_frn)
gofstats(YX_frn$Y)
\textbf{YX\textunderscore nrm} \hspace{1cm} \textit{normal relational data and covariates}

\textbf{Description}

a synthetic dataset that includes continuous (normal) relational data as well as information on eight covariates

\textbf{Usage}

data(YX\textunderscore nrm)

\textbf{Format}

The format is: List of 2 $ Y$: num [1:100, 1:100] NA -4.05 -0.181 -3.053 -1.579 ... $ X$: num [1:100, 1:100, 1:8] 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:8] "intercept" "rgpa" "rsmoke" "cgpa" ...

\textbf{Examples}

data(YX\textunderscore nrm)
gofstats(YX\textunderscore nrm$Y)

\textbf{YX\textunderscore ord} \hspace{1cm} \textit{ordinal relational data and covariates}

\textbf{Description}

a synthetic dataset that includes ordinal relational data as well as information on seven covariates

\textbf{Usage}

data(YX\textunderscore ord)

\textbf{Format}

The format is: List of 2 $ Y$: num [1:100, 1:100] NA 0 3 0 3 1 0 1 0 1 0 ... $ X$: num [1:100, 1:100, 1:7] 1 1 1 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:7] "rgpa" "rsmoke" "cgpa" "csmoke" ...

\textbf{Examples}

data(YX\textunderscore ord)
gofstats(YX\textunderscore ord$Y)
YX_rrl

Description

a synthetic dataset that includes row-specific ordinal relational data as well as information on five covariates

Usage

data(YX_rrl)

Format

The format is: List of 2 $ Y$: num [1:100, 1:100] NA 0 3 0 3 1 0 1 1 0 ... $ X$: num [1:100, 1:100, 1:5] 1 1 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:5] "cgpa" "csmoke" "igrade" "ismoke" ...

Examples

data(YX_rrl)
gofstats(YX_rrl$Y)

zscores

Description

Computes the normal scores corresponding to the ranks of a data vector

Usage

zscores(y,ties.method="average")

Arguments

- **y** a numeric vector
- **ties.method** method for dealing with ties

Value

a numeric vector

Author(s)

Peter Hoff
Index

* datasets
 addhealthc3, 4
 addhealthc9, 5
 YX_bin, 46
 YX_bin_long, 46
 YX_cbin, 47
 YX_frn, 47
 YX_nrm, 48
 YX_ord, 48
 YX_rrl, 49

* package
 amen-package, 3
 addhealthc3, 4
 addhealthc9, 5
 addlines, 5
 ame, 6
 ame_rep, 8
 amen (amen-package), 3
 amen-package, 3

 circplot, 10
 coldwar, 11
 comtrade, 12

 design_array, 12
 dutchcollege, 13

 e12sm, 14

 gofstats, 14

 IR90s, 15

 lazegalaw, 16
 ldZgbme, 16
 llsmRho, 17

 mhalf, 18

 netplot, 18

 plot.ame, 19
 precomputeX, 20

 raSab_bin_fc, 20
 raSab_cbin_fc, 21
 raSab_frn_fc, 22
 rbeta_ab_fc, 23
 rbeta_ab_rep_fc, 24
 rmvnorm, 24

 rrho_fc, 25
 rrho_mh, 26
 rrho_mh_rep, 26
 rs2_fc, 27
 rs2_rep_fc, 28
 rSab_fc, 28
 rSuv_fc, 29
 rUV_fc, 29
 rUV_rep_fc, 30
 rUV_sym_fc, 31
 rwish, 32
 rZ_bin_fc, 33
 rZ_cbin_fc, 33
 rZ_frn_fc, 34
 rZ_nrm_fc, 35
 rZ_ord_fc, 36
 rZ_rrl_fc, 36
 rZ_tob_fc, 37

 sampsonmonks, 38
 sheep, 38
 simY_bin, 39
 simY_frn, 39
 simY_nrm, 40
 simY_ord, 40
 simY_rrl, 41
 simY_tob, 42
 simZ, 42
 sm2el, 43
 summary.ame, 44
INDEX

Xbeta, 44
xnet, 45

YX_bin, 46
YX_bin_long, 46
YX_cbin, 47
YX_frn, 47
YX_nrm, 48
YX_ord, 48
YX_rrl, 49

zscores, 49