Type Package

Title Statistical Network Analysis of Animal Social Networks

Version 1.0

Date 2023-02-01

Description Obtain network structures from animal GPS telemetry observations and statistically analyse them to assess their adequacy for social network analysis. Methods include pre-network data permutations, bootstrapping techniques to obtain confidence intervals for global network metrics, and correlation and regression analysis of the local network metrics.

License MIT + file LICENSE

Imports dplyr, ggplot2, graphics, igraph, lubridate, magrittr, parallel, Rcpp, reshape, rlang, stats, stringr, utils

LinkingTo Rcpp

RoxygenNote 7.2.1

Encoding UTF-8

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

LazyDataCompression xz

NeedsCompilation yes

Author Prabhleen Kaur [aut, cre],
 Michael Salter-Townshend [ctb]

Maintainer Prabhleen Kaur <prabhleen.kaur.ucd@gmail.com>

Repository CRAN

Date/Publication 2023-02-17 09:50:09 UTC
R topics documented:

aniSNA ... 2
bootstrap_difference_pvalues 3
correlation_analyze .. 4
distance_radian_coordinates .. 5
elk_2010_permutations .. 5
elk_all_interactions_2010 ... 6
elk_data_2010 .. 6
elk_interactions_2010 ... 7
elk_network_2010 .. 7
get_coordinates_in_radian .. 8
get_interactions .. 8
get_network_summary .. 9
get_spatial_threshold ... 10
interacting_pairs ... 10
network_from_interactions .. 11
network_subsamples .. 12
obtain_bootstrapped_samples .. 13
obtain_permuted_network_versions 13
plot.bootstrapped_pvalue_matrix 14
plot.list_correlation_matrices 15
plot.list_permuted_networks .. 16
plot.list_regression_matrices ... 17
plot.Subsampled_Network_Metrics 17
plot.Subsampled_Permuted_Network_Metrics 18
plot.Width_CI_matrix .. 19
plot_network ... 20
rcpp_hello_world ... 20
regression_slope_analyze .. 21
subsamples_permuted_networks 22
width_CI ... 23

Index 24

aniSNA aniSNA

Description

Obtain network structures from animal GPS telemetry observations and statistically analyse them to assess their adequacy for social network analysis. Methods include pre-network data permutations, bootstrapping techniques to obtain confidence intervals for global network metrics, and correlation and regression analysis of the local network metrics.

Author(s)

Prabheen Kaur
To obtain two non-overlapping bootstrapped versions and obtain p-values for the significance of difference between them.

Arguments

- `network`: An igraph object.
- `n_versions`: Number of bootstrapped versions to be used.
- `seed`: Seed number.
- `n.iter`: Number of iterations at each level.
- `network_metrics`: Network metrics to be evaluated. This should be supplied as a character vector and the values should be chosen from "mean_degree", "mean_strength", "density", "diameter", "transitivity". (default = c("mean_degree", "mean_strength", "density", "diameter", "transitivity").

Value

A matrix of p-values whose rows correspond to the sub-sample size and columns correspond to the chosen network metric.

Examples

```r
data(elk_network_2010)
bootstrapped_difference_pvalues(elk_network_2010, n_versions = 100)
```
correlation_analyze

Description

To perform correlation analysis for local network metrics

Usage

correlation_analyze(
 network,
 n_simulations = 10,
 subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
 network_metrics = c("degree", "strength", "betweenness", "clustering_coefficient",
 "eigenvector_centrality")
)

Arguments

network An igraph graph object consisting of observed network
n_simulations Number of sub-samples to be obtained at each level
subsampling_proportion A vector depicting proportions of sub-sampled nodes
network_metrics A vector depicting names of local global network metrics

Value

A list of network metrics of class list_correlation_matrices. Each element of list is a matrix whose columns correspond to subsampling_proportion and rows correspond to n_simulations. The entries of the matrix provide value of correlation between the nodes in full network and the sub-sampled network for the corresponding metric.

Examples

data(elk_network_2010)
correlation_analyze(elk_network_2010)
distance_radian_coordinates

Calculate distance between two pairs of radian coordinates

Description

Calculate distance between two pairs of radian coordinates

Usage

```r
distance_radian_coordinates(latf, lonf, latt, lont)
```

Arguments

- `latf`: latitude from
- `lonf`: longitude from
- `latt`: latitude to
- `lont`: longitude to

Value

distance value in meters

elk_2010_permutations *A list of 100 igraph objects obtained by permuting the raw elk_data_2010 and obtaining network from those*

Description

A list of 100 igraph objects obtained by permuting the raw elk_data_2010 and obtaining network from those

Usage

```
elk_2010_permutations
```

Format

A list of 100 igraph objects

Examples

```r
data(elk_2010_permutations)
```
elk_all_interactions_2010

Dataset of all possible interactions from elk_data_2010

Description

Dataset of all possible interactions from elk_data_2010

Usage

elk_all_interactions_2010

Format

A dataframe with 7615 rows and 5 variables

Animal_A First animal ID
Animal_B Second animal ID
Timestamp_A Observation timestamp of first animal
Timestamp_B Observation timestamp of second animal
distance Distance in metres between the two animals

Examples

data(elk_all_interactions_2010)

elk_data_2010

Data to showcase functions in our package

Description

Contains GPS telemetry observations of the species elk in year 2010

Usage

elk_data_2010

Format

A dataframe with 123568 rows and 4 variables:

animal_id Unique ID of individuals in the observed sample
datetime Date and timestamp of the observation
latitude_rad Latitude of individual observation in radians
longitude_rad Longitude of individual observation in radians
elk_interactions_2010

Examples

data(elk_data_2010)

elk_interactions_2010 Dataset of interactions from elk_data_2010 using first mode as the spatial threshold

Description

Dataset of interactions from elk_data_2010 using first mode as the spatial threshold

Usage

elk_interactions_2010

Format

A dataframe with 2393 rows and 5 variables

Animal_A First animal ID
Animal_B Second animal ID
Timestamp_A Observation timestamp of first animal
Timestamp_B Observation timestamp of second animal
distance Distance in metres between the two animals

Examples

data(elk_interactions_2010)

elk_network_2010 An igraph object depicting the network obtained from elk_interactions_2010

Description

An igraph object depicting the network obtained from elk_interactions_2010

Usage

elk_network_2010

Format

An igraph object with 57 nodes and 114 edges

Examples

igraph::E(elk_network_2010)
get_coordinates_in_radian

To obtain latitude and longitude values in radian

Description
To obtain latitude and longitude values in radian

Usage
get_coordinates_in_radian(species_raw)

Arguments
species_raw A DataFrame consisting of GPS observations. The DataFrame must have a "latitude" column and a "longitude" column

Value
The same DataFrame that has been passed as the argument with two additional columns namely "latitude_rad" and "longitude_rad"

get_interactions To obtain interactions from raw GPS observations

Description
To obtain interactions from raw GPS observations

Usage
get_interactions(species_raw, temporal_thresh = 7, spatial_thresh, n_cores = 1)

Arguments
species_raw A DataFrame consisting of GPS observations. It should have at least four columns namely "animal_id", "datetime", "latitude_rad", and "longitude_rad". "latitude_rad" and "longitude_rad" are latitude and longitude values in radians respectively. See function "get_coordinates_in_radian" to get these values.
temporal_thresh Temporal threshold in minutes with default 7 minutes
spatial_thresh The maximum distance in meters within which two animals are considered interacting
n_cores Number of cores for parallel processing with default 1
Value

A dataframe consisting of five columns. The first two columns contain animal ids, third and fourth column contain timestamp of their observations and the final column contains the distance between the two individuals.

Examples

```r
data(elk_data_2010)
get_interactions(elk_data_2010, temporal_thresh = 7, spatial_thresh = 15)
```

Description

Calculates and prints network summary statistics

Usage

```r
get_network_summary(network)
```

Arguments

- `network`: An undirected network with nodes representing animal IDs and edges representing associations between them.

Value

No return value, called for side effects. The function prints values of network metrics to the console.

Examples

```r
data(elk_network_2010)
get_network_summary(elk_network_2010)
```
get_spatial_threshold To obtain spatial threshold for calculating interactions from raw GPS observations. The threshold is obtained as the distance interval that captures maximum number of inter-individual interactions.

Usage

get_spatial_threshold(species_interactions, interval_size)

Arguments

- **species_interactions**: A dataframe consisting of individual interactions within maximum possible distance
- **interval_size**: Minimum interval size within which the number of interactions should be calculated

Value

Spatial threshold in meters

Examples

data(elk_all_interactions_2010)
get_spatial_threshold(elk_all_interactions_2010, interval_size = 2)

interacting_pairs *Function to obtain pairs of interacting animals*

Description

Function to obtain pairs of interacting animals

Usage

interacting_pairs(
 i,
 datetime,
 latitude,
 longitude,
 temporal_thresh,
 spatial_thresh
)
Arguments

i Index of the animal
datetime DateTime vector
latitude latitude vector
longitude longitude vector
temporal_thresh time threshold in minutes
spatial_thresh spatial threshold in meters

Value

A matrix consisting of two row. The first row corresponds to the interacting indices and the second row to the respective distances.

network_from_interactions

Function to obtain a network structure from interactions dataframe

Description

Function to obtain a network structure from interactions dataframe

Usage

network_from_interactions(species_raw, interactions, n_cores = 1)

Arguments

species_raw A dataframe consisting of raw GPS observations. It should have at least four columns namely "animal_id", "datetime", "latitude_rad", and "longitude_rad". "latitude_rad", and "longitude_rad" are latitude and longitude values in radians respectively. See function "get_coordinates_in_radian" to get these values.
interactions A dataframe of interactions obtained from raw GPS observations using the function "get_interactions"
n_cores Number of cores for parallel processing, default is 1

Value

An object of class igraph

Examples

data(elk_data_2010, elk_interactions_2010)
network_from_interactions(elk_data_2010, elk_interactions_2010)
network_subsamples

To generate subsamples and obtain network metrics of the subsamples

Description

To generate subsamples and obtain network metrics of the subsamples

Usage

```r
network_subsamples(
  network,
  n_simulations = 100,
  subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
  network_metrics = c("density", "mean_strength", "diameter", "transitivity")
)
```

Arguments

- `network`: An igraph graph object consisting of observed network
- `n_simulations`: Number of sub-samples to be obtained at each level
- `subsampling_proportion`: A vector depicting the levels (in proportion) at which subsamples to be taken
- `network_metrics`: A vector depicting names of global network metrics. Default = `network_metrics = c("density", "mean_strength", "diameter", "transitivity")`

Value

A list of network metrics of class "Subsampled_Network_Metrics". Each element of list is a matrix whose columns correspond to `subsampling_proportion` and rows correspond to `n_simulations`. The entries of the matrix provide values of the corresponding metric.

Examples

```r
data(elk_network_2010)
network_subsamples(elk_network_2010)
```
obtain_bootstrapped_samples

To obtain bootstrapped versions of a network

Description

To obtain bootstrapped versions of a network

Usage

obtain_bootstrapped_samples(
 network,
 n_nodes = igraph::gorder(network),
 n_versions = 1000,
 seed = 12345
)

Arguments

network An igraph object
n_nodes Number of nodes to be selected in bootstrapped versions (default: All nodes)
n_versions Number of bootstrapped versions required
seed seed number

Value

A list of class bootstrapped_pvalue_matrix consisting of two elements. The first element contains the original network and the second element contains bootstrapped versions.

Examples

data(elk_network_2010)
obtain_bootstrapped_samples(elk_network_2010, n_versions = 100)

obtain_permuted_network_versions

Function to obtain permuted networks from raw datastream

Description

Function to obtain permuted networks from raw datastream
Usage

obtain_permuted_network_versions(
 species_raw,
 temporal_thresh,
 spatial_thresh,
 n_permutations,
 n_cores = 1
)

Arguments

species_raw A dataframe consisting of raw GPS observations
temporal_thresh Temporal threshold in minutes
spatial_thresh Spatial threshold
n_permutations Number of permuted versions to obtain
n_cores Number of cores for parallel processing with default 1

Value

A list of size n_permutations where each element is a network of class igraph obtained by permuting raw datastream

Examples

data(elk_data_2010)
permuted_versions <- obtain_permuted_network_versions(elk_data_2010,
 temporal_thresh = 7, spatial_thresh = 15, n_permutations = 10, n_cores = 2)

plot.bootstrapped_pvalue_matrix

To plot the results obtained from bootstrapped_difference_pvalues function

Description

To plot the results obtained from bootstrapped_difference_pvalues function

Usage

S3 method for class 'bootstrapped_pvalue_matrix'
plot(x, ...)
Arguments

x A matrix of p-values obtained from bootstrapped_difference_pvalues function

... Further arguments are ignored.

Value

No return value, called for side effects. The plot shows p-values between 0 and 1 corresponding to each sample size.

Examples

data(elk_network_2010)
mean_pvalue_matrix <- bootstrapped_difference_pvalues(elk_network_2010, n_versions = 100)
plot(mean_pvalue_matrix)

plot.list_correlation_matrices

To plot correlation analysis results

Description

To plot correlation analysis results

Usage

S3 method for class 'list_correlation_matrices'
plot(x, ...)

Arguments

x A list of matrices obtained from correlation_analyze function

... Further arguments are ignored

Value

No return value, called for side effects. The plots show mean and standard deviation of correlation coefficients obtained over multiple iterations.

Examples

data(elk_network_2010)
elk_correlation_analysis <- correlation_analyze(elk_network_2010)
plot(elk_correlation_analysis)
plot.list_permuted_networks

Function to plot the network metrics distribution of permuted networks

Description

Function to plot the network metrics distribution of permuted networks

Usage

S3 method for class 'list_permuted_networks'
plot(
x,
species_original_network,
network_metrics = c("density", "mean_strength", "diameter", "transitivity"),
...
)

Arguments

x

A list of igraph objects obtained using the function obtain_permuted_network_versions

species_original_network

An igraph object which is the original network

network_metrics

A vector depicting names of global network metrics. This should be supplied as a character vector and the values should be chosen from "mean_strength", "density", "diameter", "transitivity". (default = c("mean_strength", "density", "diameter", "transitivity"))

...

Further arguments are ignored.

Value

No return value, called for side effects.

Examples

data(elk_data_2010, elk_network_2010)
permuted_versions <- obtain_permuted_network_versions(elk_data_2010, temporal_thresh = 7, spatial_thresh = 15, n_permutations = 10, n_cores = 2)
plot(permuted_versions, elk_network_2010)
To plot regression analysis results

Usage

```r
## S3 method for class 'list_regression_matrices'
plot(x, ...)
```

Arguments

- `x` A list of matrices obtained from regression_slope_analyze function
- `...` Further arguments are ignored

Value

No return value, called for side effects. The plots show regression slope values corresponding to proportion of individuals in the sample.

Examples

```r
data(elk_network_2010)
elk_regression_analysis <- regression_slope_analyze(elk_network_2010)
plot(elk_regression_analysis)
```

To plot sub-sampling results

Usage

```r
## S3 method for class 'Subsampled_Network_Metrics'
plot(x, network, ...)
```

Examples

```r
```
Arguments

- **x**: A list of matrices obtained from network_subsamples function of class "Subsampled_Network_Metrics"
- **network**: An igraph graph object consisting of observed network
- **...**: Further arguments are ignored

Value

No return value, called for side effects. The boxplots depict range of values, network metrics take when multiple subsamples are chosen from the observed sample.

Examples

```r
data(elk_network_2010)
elk_subsamples <- network_subsamples(elk_network_2010)
plot(elk_subsamples, elk_network_2010)
```

Description

To plot sub-sampling results of the original network and permuted networks

Usage

```r
## S3 method for class 'Subsampled_Permuted_Network_Metrics'
plot(x, network, ...)
```

Arguments

- **x**: A list of matrices obtained from subsamples_permuted_networks function of class "Subsampled_Permuted_Network_Metrics"
- **network**: An igraph graph object consisting of observed network
- **...**: Further arguments are ignored

Value

No return value, called for side effects. The boxplots show side-by-side comparison of network metrics distribution from subsamples of observed network and subsamples from permuted networks.
Examples

```r
data(elk_2010_permutations, elk_network_2010)
elk_subsamples_permuted_networks <- subsamples_permuted_networks(elk_2010_permutations)
plot(elk_subsamples_permuted_networks, elk_network_2010)
```

Description

To plot the results obtained from width_CI function

Usage

```r
## S3 method for class 'Width_CI_matrix'
plot(x, ...)
```

Arguments

- `x` A matrix of width of Confidence Intervals obtained from width_CI function
- `...` Further arguments are ignored.

Value

No return value, called for side effects. Plots show width of confidence intervals corresponding to number of individuals in the sub-sample.

Examples

```r
data(elk_network_2010)
width_CI_elk <- width_CI(elk_network_2010, n_versions = 100)
plot(width_CI_elk)
```
plot_network
Visualize Animal Network

Description
Visualize Animal Network

Usage
```r
plot_network(species_network, seed = 1)
```

Arguments
- `species_network`
 An igraph graph object consisting of observed network.
- `seed`
 Seed to be set for layout.

Value
No return value, called for side effects. The plots depict a visualisation of network structure.

Examples
```r
data(elk_network_2010)
plot_network(elk_network_2010)
```

rcpp_hello_world
Simple function using Rcpp

Description
Simple function using Rcpp

Usage
```r
rcpp_hello_world()
```

Examples
```r
## Not run:
rcpp_hello_world()
## End(Not run)```
To perform regression analysis for local network metrics

**Usage**

```r
regression_slope_analyze(
 network,
 n_simulations = 10,
 subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
 network_metrics = c("degree", "strength", "betweenness", "clustering_coefficient", "eigenvector_centrality")
)
```

**Arguments**

- `network`: An igraph graph object consisting of observed network
- `n_simulations`: Number of sub-samples to be obtained at each level
- `subsampling_proportion`: A vector depicting proportions of sub-sampled nodes
- `network_metrics`: A vector depicting names of local global network metrics

**Value**

A list of network metrics of class list_regression_matrices. Each element of list is a matrix whose columns correspond to subsampling_proportion and rows correspond to n_simulations. The entries of the matrix provide value of the slope of regression when the nodal values in sub-sampled network are regressed upon the values of the same nodes in the full network for the corresponding metric.

**Examples**

```r
data(elk_network_2010)
regression_slope_analyze(elk_network_2010)
```
subsamples_permuted_networks

To generate subsamples of the permuted networks and obtain network metrics of those subsamples

Description

To generate subsamples of the permuted networks and obtain network metrics of those subsamples

Usage

```r
subsamples_permuted_networks(
 networks_list,
 subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
 network_metrics = c("density", "mean_strength", "diameter", "transitivity")
)
```

Arguments

- `networks_list`: A list of igraph objects obtained by permuting the observed network
- `subsampling_proportion`: A vector depicting the levels (in proportion) at which subsamples to be taken
- `network_metrics`: A vector depicting names of global network metrics. Default = `network_metrics = c("density", "mean_strength", "diameter", "transitivity")`

Value

A list of network metrics of class "Subsampled_Permuted_Network_Metrics". Each element of list is a matrix whose columns correspond to `subsampling_proportion` and rows correspond to the number of networks in `networks_list`. The entries of the matrix provide values of the corresponding metric.

Examples

```r
data(elk_2010_permutations)
subsamples_permuted_networks(elk_2010_permutations)
```
width_CI

To obtain width of confidence intervals using bootstrapped versions at each level of sub-sampling

Description
To obtain width of confidence intervals using bootstrapped versions at each level of sub-sampling

Usage
width_CI(
  network,
  n_versions = 100,
  seed = 12345,
  n.iter = 10,
  network_metrics = c("mean_degree", "mean_strength", "density", "diameter",
                      "transitivity"),
  scaled_metrics = NULL
)

Arguments
  network          An igraph object
  n_versions       Number of bootstrapped versions to be used. (default = 100)
  seed             seed number
  n.iter           Number of iterations at each level. (default = 10)
  network_metrics  Network metrics to be evaluated. This should be supplied as a character vector and
                   the values should be chosen from "mean_degree", "mean_strength", "density",
                   "diameter", "transitivity". (default = c("mean_degree", "mean_strength",
                   "density", "diameter", "transitivity"))
  scaled_metrics   Optional. A vector subset of network_metrics with the names of metrics that
                   should be scaled. Values can be chosen from c("mean_degree", "mean_strength",
                   "diameter").

Value
A matrix of class Width_CI_matrix containing width of Confidence Intervals where each row corresponds to the sub-sample size and columns correspond to the chosen network metric.

Examples
data(elk_network_2010)
width_CI(elk_network_2010, n_versions = 100)
Index

* datasets
  elk_2010_permutations, 5
  elk_all_interactions_2010, 6
  elk_data_2010, 6
  elk_interactions_2010, 7
  elk_network_2010, 7

aniSNA, 2

bootstrapped_difference_pvalues, 3

correlation_analyze, 4

distance_radian_coordinates, 5

elk_2010_permutations, 5
elk_all_interactions_2010, 6
elk_data_2010, 6
elk_interactions_2010, 7
elk_network_2010, 7

g gotCoordinates_in_radian, 8
get_interactions, 8
get_network_summary, 9
get_spatial_threshold, 10

interacting_pairs, 10

network_from_interactions, 11
network_subsamples, 12

obtain_bootstrapped_samples, 13
obtain_permuted_network_versions, 13

plot.bootstrapped_pvalue_matrix, 14
plot.list_correlation_matrices, 15
plot.list_permuted_networks, 16
plot.list_regression_matrices, 17
plot.Subsampled_Network_Metrics, 17
plot.Subsampled_Permuted_Network_Metrics, 18
plot.Width_CI_matrix, 19
plot_network, 20
rcpp_hello_world, 20
regression_slope_analyze, 21
subsamples_permuted_networks, 22
width_CI, 23

24