Package ‘anomalyDetection’

September 22, 2017

Type Package

Title Implementation of Augmented Network Log Anomaly Detection Procedures

Version 0.2.4

Maintainer Andrew McCarthy <andrew.mccarthy@theperducogroup.com>

Date 2017-09-22

Description Implements procedures to aid in detecting network log anomalies. By combining various multivariate analytic approaches relevant to network anomaly detection, it provides cyber analysts efficient means to detect suspected anomalies requiring further evaluation.

URL https://github.com/AFIT-R/anomalyDetection

BugReports https://github.com/AFIT-R/anomalyDetection/issues

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

Imports caret, dplyr, ggplot2, gmp, magrittr, MASS, plyr, purrr, Rcpp (>= 0.12.11), stats, tibble, tidyr,

RoxygenNote 6.0.1

Suggests gplots, knitr, RColorBrewer, rmarkdown, testthat,

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

NeedsCompilation yes

Author Andrew McCarthy [aut, cre],
 Brandon Greenwell [aut],
 Bradley Boehmke [aut],
 Robert Gutierrez [aut],
 Kenneth Bauer [ctb],
 Trevor Bihl [ctb],
 Cade Saie [ctb]
Repository CRAN
Date/Publication 2017-09-22 17:21:02 UTC

R topics documented:

anomalyDetection ... 2
bd_row ... 2
factor_analysis ... 3
factor_analysis_results 4
get_all_factors ... 5
hmat .. 6
horns_curve .. 8
inspect_block .. 9
kaisers_index ... 9
mahalanobis_distance 10
mc_adjust ... 12
principal_components 13
principal_components_result 14
security_logs ... 15
tabulate_state_vector 16
%>=% ... 17

Index

<table>
<thead>
<tr>
<th>R package</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>anomalyDetection</td>
<td>2</td>
</tr>
<tr>
<td>bd_row</td>
<td>2</td>
</tr>
<tr>
<td>factor_analysis</td>
<td>3</td>
</tr>
<tr>
<td>factor_analysis_results</td>
<td>4</td>
</tr>
<tr>
<td>get_all_factors</td>
<td>5</td>
</tr>
<tr>
<td>hmat</td>
<td>6</td>
</tr>
<tr>
<td>horns_curve</td>
<td>8</td>
</tr>
<tr>
<td>inspect_block</td>
<td>9</td>
</tr>
<tr>
<td>kaisers_index</td>
<td>9</td>
</tr>
<tr>
<td>mahalanobis_distance</td>
<td>10</td>
</tr>
<tr>
<td>mc_adjust</td>
<td>12</td>
</tr>
<tr>
<td>principal_components</td>
<td>13</td>
</tr>
<tr>
<td>principal_components_result</td>
<td>14</td>
</tr>
<tr>
<td>security_logs</td>
<td>15</td>
</tr>
<tr>
<td>tabulate_state_vector</td>
<td>16</td>
</tr>
<tr>
<td>%>=%</td>
<td>17</td>
</tr>
</tbody>
</table>

anomalyDetection

anomalyDetection: An R package for implementing augmented network log anomaly detection procedures.

Description

anomalyDetection: An R package for implementing augmented network log anomaly detection procedures.

bd_row

bd_row indicates which variables in data are driving the Mahalanobis distance for a specific row r, relative to the mean vector of the data.

Usage

bd_row(data, row, n = NULL)
factor_analysis

Factor Analysis with Varimax Rotation

Description

factor_analysis reduces the structure of the data by relating the correlation between variables to a set of factors, using the eigen-decomposition of the correlation matrix.

Usage

factor_analysis(data, hc_points)

Arguments

- `data` numeric data
- `row` row of interest
- `n` number of values to return. By default, will return all variables (columns) with their respective differences. However, you can choose to view only the top `n` variables by setting the `n` value.

Value

Returns a vector indicating the variables in `data` that are driving the Mahalanobis distance for the respective row.

See Also

mahalanobis_distance for computing the Mahalanobis Distance values

Examples

```r
## Not run:
x = matrix(rnorm(200*3), ncol = 10)
colnames(x) = paste0("c", 1:ncol(x))
# compute the relative differences for row 5 and return all variables
x %>%
  mahalanobis_distance("bd", normalize = TRUE) %>%
  bd_row(5)

# compute the relative differences for row 5 and return the top 3 variables that are influencing the Mahalanobis Distance the most
x %>%
  mahalanobis_distance("bd", normalize = TRUE) %>%
  bd_row(5, 3)
## End(Not run)
```
factor_analysis_results

Arguments

- **data**: numeric data
- **hc_points**: vector of eigenvalues [designed to use output from `horns_curve`]

Value

A list containing:

1. **fa_loadings**: numerical matrix with the original factor loadings
2. **fa_scores**: numerical matrix with the row scores for each factor
3. **fa_loadings_rotated**: numerical matrix with the varimax rotated factor loadings
4. **fa_scores_rotated**: numerical matrix with the row scores for each varimax rotated factor
5. **num_factors**: numeric vector identifying the number of factors

References

See Also

- `horns_curve` for computing the average eigenvalues used for `hc_points` argument

Examples

```r
# Perform Factor Analysis with matrix \code(x)
x <- matrix(rnorm(200*1), ncol = 10)

x %>%
  horns_curve() %>%
  factor_analysis(x, hc_points = .)
```

factor_analysis_results

Easy Access to Factor Analysis Results

Description

`factor_analysis_result` Provides easy access to factor analysis results

Usage

`factor_analysis_results(data, results = 1)`
get_all_factors

Arguments

- **data**: list output from `factor_analysis`
- **results**: factor analysis results to extract. Can use either results name or number (i.e. `fa_scores` or 2):
 1. `fa_loadings` (default)
 2. `fa_scores`
 3. `fa_loadings_rotated`
 4. `fa_scores_rotated`
 5. `num_factors`

Value

Returns the one of the selected results:

1. `fa_loadings`: numerical matrix with the original factor loadings
2. `fa_scores`: numerical matrix with the row scores for each factor
3. `fa_loadings_rotated`: numerical matrix with the varimax rotated factor loadings
4. `fa_scores_rotated`: numerical matrix with the row scores for each varimax rotated factor
5. `num_factors`: numeric vector identifying the number of factors

See Also

`factor_analysis` for computing the factor analysis results

Examples

```r
# An efficient means for getting factor analysis results
x <- matrix(rnorm(200*3), ncol = 10)
N <- nrow(x)
p <- ncol(x)

x %>%
  horns_curve() %>%
  factor_analysis(x, hc_points = .) %>%
  factor_analysis_results(fa_scores_rotated)
```

Description

`get_all_factors` finds all factor pairs for a given integer (i.e. a number that divides evenly into another number).
Usage
get_all_factors(n)

Arguments
n number to be factored

Value
A list containing the integer vector(s) containing all factors for the given n inputs.

Source
http://stackoverflow.com/a/6425597/3851274

Examples

Find all the factors of 39304
get_all_factors(39304)

hmast Plot a Histogram Matrix

Description
Display a histogram matrix for visual inspection of anomalous observation detection. The color of the blocks represents how anomalous each block is, where a lighter blue represents a more anomalous block. The size of the points indicate which values are driving the anomaly, with larger blocks representing more anomalous values.

Usage
hmat(data, input = "data", top = 20, order = "numeric",
 block_length = NULL, level_limit = 50, level_keep = 10,
 partial_block = TRUE, na.rm = FALSE, min_var = 0.1, max_cor = 0.9,
 action = "exclude", output = "both", normalize = FALSE)

Arguments
data the data set (data frame or matrix)
input the type of input data being passed to the function. data for a raw categorical data set, SV for a state vector input, and MD if the input has already had the Mahalanobis distances calculated
top how many of the most anomalous blocks you would like to display (default 20)
Examples

```r
# Not run:
# Data set input
hmat(security_logs, block_length = 8)

# Data Set input with top 10 blocks displayed
hmat(security_logs, top = 10, block_length = 5)

# State Vector Input
tabulate_state_vector(security_logs, block_length = 6, level_limit = 20) %>%
  hmat(input = "SV")

# End(Not run)
```
Horn's Parallel Analysis

Description

Computes the average eigenvalues produced by a Monte Carlo simulation that randomly generates a large number of \(n \times p \) matrices of standard normal deviates.

Usage

\[
\text{horns_curve}(\text{data}, n, p, \text{nsim} = 1000L)
\]

Arguments

- **data**: A matrix or data frame.
- **n**: Integer specifying the number of rows.
- **p**: Integer specifying the number of columns.
- **nsim**: Integer specifying the number of Monte Carlo simulations to run. Default is 1000.

Value

A vector of length \(p \) containing the averaged eigenvalues. The values can then be plotted or compared to the true eigenvalues from a dataset for a dimensionality reduction assessment.

References

Examples

```r
# Perform Horn's Parallel analysis with matrix n x p dimensions
x <- matrix(rnorm(200 * 10), ncol = 10)
 horns_curve(x)
 horns_curve(n = 200, p = 10)
plot(horns_curve(x))  # scree plot
```
inspect_block

Block Inspection

Description

`inspect_block` creates a list where the original data has been divided into blocks denoted in the state vector. Streamlines the process of inspecting specific blocks of interest.

Usage

```r
inspect_block(data, block_length)
```

Arguments

- `data`: data
- `block_length`: integer value to divide data

Value

A list where each item is a data frame that contains the original data for each block denoted in the state vector.

See Also

- `tabulate_state_vector` for creating the state vector matrix based on desired blocks.

Examples

```r
inspect_block(security_logs, 30)
```

kaisers_index

Kaiser’s Index of Factorial Simplicity

Description

`kaisers_index` computes scores designed to assess the quality of a factor analysis solution. It measures the tendency towards unifactoriality for both a given row and the entire matrix as a whole. Kaiser proposed the evaluations of the score shown below:

1. In the .90s: Marvelous
2. In the .80s: Meritorious
3. In the .70s: Middling
4. In the .60s: Mediocre
5. In the .50s: Miserable
6. < .50: Unacceptable

Use as basis for selecting original or rotated loadings/scores in factor_analysis.

Usage

kaisers_index(loadings)

Arguments

loadings numerical matrix of the factor loadings

Value

Vector containing the computed score

References

See Also

factor_analysis for computing the factor analysis loadings

Examples

Perform Factor Analysis with matrix \code(x)
x <- matrix(rnorm(200*3), ncol = 10)

x %>%
 horns_curve() %>%
 factor_analysis(x, hc_points = .) %>%
 factor_analysis_results(fa_loadings_rotated) %>%
 kaisers_index()

Description

Calculates the distance between the elements in a data set and the mean vector of the data for outlier detection. Values are independent of the scale between variables.
mahalanobis_distance

Usage

mahalanobis_distance(data, output = c("md", "bd", "both"),
 normalize = FALSE)

S3 method for class 'matrix'
mahalanobis_distance(data, output = c("md", "bd", "both"),
 normalize = FALSE)

S3 method for class 'data.frame'
mahalanobis_distance(data, output = c("md", "bd",
 "both"), normalize = FALSE)

Arguments

data A matrix or data frame. Data frames will be converted to matrices via data.matrix.

output Character string specifying which distance metric(s) to compute. Current options include: "md" for Mahalanobis distance (default); "bd" for absolute breakdown distance (used to see which columns drive the Mahalanobis distance); and "both" to return both distance metrics.

normalize Logical indicating whether or not to normalize the breakdown distances within each column (so that breakdown distances across columns can be compared).

Value

If output = "md", then a vector containing the Mahalanobis distances is returned. Otherwise, a matrix.

References

Examples

Not run:
Simulate some data
x <- data.frame(C1 = rnorm(100), C2 = rnorm(100), C3 = rnorm(100))

Add Mahalanobis distances
x %>% dplyr::mutate(MD = mahalanobis_distance(x))

Add Mahalanobis and breakdown distances
x %>% cbind(mahalanobis_distance(x, output = "both"))

Add Mahalanobis and normalized breakdown distances
x %>% cbind(mahalanobis_distance(x, output = "both", normalize = TRUE))

End(Not run)
mc_adjust
Multi-Collinearity Adjustment

Description

mc_adjust handles issues with multi-collinearity.

Usage

mc_adjust(data, min_var = 0.1, max_cor = 0.9, action = "exclude")

Arguments

data named numeric data object (either data frame or matrix)
min_var numeric value between 0-1 for the minimum acceptable variance (default = 0.1)
max_cor numeric value between 0-1 for the maximum acceptable correlation (default = 0.9)
action select action for handling columns causing multi-collinearity issues
 1. exclude: exclude all columns causing multi-collinearity issues (default)
 2. select: identify the columns causing multi-collinearity issues and allow
 the user to interactively select those columns to remove

Details

mc_adjust handles issues with multi-collinearity by first removing any columns whose variance is
close to or less than min_var. Then, it removes linearly dependent columns. Finally, it removes any
columns that have a high absolute correlation value equal to or greater than max_cor.

Value

mc_adjust returns the numeric data object supplied minus variables violating the minimum accept-
able variance (min_var) and the maximum acceptable correlation (max_cor) levels.

Examples

Not run:
x <- matrix(runif(100), ncol = 10)
x %>%
 mc_adjust()
x %>%
 mc_adjust(min_var = .15, max_cor = .75, action = "select")

End(Not run)
principal_components Principal Component Analysis

Description

principal_components relates the data to a set of components through the eigen-decomposition of the correlation matrix, where each component explains some variance of the data and returns the results as an object of class prcomp.

Usage

principal_components(data, retx = TRUE, center = TRUE, scale = FALSE, tol = NULL, ...)

Arguments

data numeric data.
retx a logical value indicating whether the rotated variables should be returned.
center a logical value indicating whether the variables should be shifted to be zero centered. Alternately, a vector of length equal the number of columns of x can be supplied. The value is passed to scale.
scale a logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with S, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of data can be supplied. The value is passed to scale.
tol a value indicating the magnitude below which components should be omitted. (Components are omitted if their standard deviations are less than or equal to tol times the standard deviation of the first component.) With the default null setting, no components are omitted. Other settings for tol could be tol = 0 or tol = sqrt(.Machine$double.eps), which would omit essentially constant components.
... arguments passed to or from other methods.

Details

The calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix. This is generally the preferred method for numerical accuracy.

Value

principal_components returns a list containing the following components:

1. pca_sdev: the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the correlation matrix, though the calculation is actually done with the singular values of the data matrix).
2. `pca_loadings`: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).

3. `pca_rotated`: if `retx` is TRUE the value of the rotated data (the centred (and scaled if requested) data multiplied by the rotation matrix) is returned. Hence, \(\text{cov}(x) \) is the diagonal matrix \(\text{diag}(\text{sdev}^2) \).

4. `pca_center`: the centering used

5. `pca_scale`: whether scaling was used

See Also

`prcomp`, `biplot.prcomp`, `screeplot`, `cor`, `cov`, `svd`, `eigen`

Examples

```r
x <- matrix(rnorm(200 * 3), ncol = 10)
principal_components(x)
principal_components(x, scale = TRUE)
```

Description

`principal_components_result` Provides easy access to principal component analysis results

Usage

```r
principal_components_result(data, results = 2)
```

Arguments

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>list output from <code>principal_components</code></td>
</tr>
<tr>
<td><code>results</code></td>
<td>principal component analysis results to extract. Can use either results name or number (i.e. <code>pca_loadings</code> or 2):</td>
</tr>
<tr>
<td></td>
<td>1. <code>pca_sdev</code></td>
</tr>
<tr>
<td></td>
<td>2. <code>pca_loadings</code> (default)</td>
</tr>
<tr>
<td></td>
<td>3. <code>pca_rotated</code></td>
</tr>
<tr>
<td></td>
<td>4. <code>pca_center</code></td>
</tr>
<tr>
<td></td>
<td>5. <code>pca_scale</code></td>
</tr>
</tbody>
</table>
security_logs

Value

Returns one of the selected results:

1. pca_sdev: the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the correlation matrix, though the calculation is actually done with the singular values of the data matrix).
2. pca_loadings: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
3. pca_rotated: if retx is TRUE the value of the rotated data (the centred (and scaled if requested) data multiplied by the rotation matrix) is returned. Hence, \(\text{cov}(x) \) is the diagonal matrix \(\text{diag}(sdev^2) \).
4. pca_center: the centering used
5. pca_scale: whether scaling was used

See Also

principal_components for computing the principal components results

Examples

An efficient means for getting principal component analysis results
x <- matrix(rnorm(200 * 3), ncol = 10)

principal_components(x) %>%
 principal_components_result(pca_loadings)

security_logs Security Log Data

Description

A mock dataset containing common information that appears in security logs.

Usage

security_logs

Format

A data frame with 300 rows and 10 variables:

- **Device Vend**or Company who made the device
- **Device Product** Name of the security device
- **Device Action** Outcome result of access

Src_IP IP address of the source

Dst_IP IP address of the destination

Src_Port Port identifier of the source

Dst_Port Port identifier of the destination

Protocol Transport protocol used

Country_Src Country of the source

Bytes_TRF Number of bytes transferred

tabulate_state_vector *Tabulate State Vector*

Description

`tabulate_state_vector` employs a tabulated vector approach to transform security log data into unique counts of data attributes based on time blocks. Taking a contingency table approach, this function separates variables of type character or factor into their unique levels and counts the number of occurrences for those levels within each block. Due to the large number of unique IP addresses, this function allows for the user to determine how many IP addresses they would like to investigate. The function tabulates the most popular IP addresses.

Usage

```r
tabulate_state_vector(data, block_length, level_limit = 50L,
                      level_keep = 10L, partial_block = FALSE, na.rm = FALSE)
```

Arguments

- `data` data
- `block_length` integer value to divide data by
- `level_limit` integer value to determine the cutoff for the number of factors in a column to display before being reduced to show the number of levels to keep (default is 50)
- `level_keep` integer value indicating the top number of factor levels to retain if a column has more than the level limit (default is 10)
- `partial_block` a logical which determines whether incomplete blocks are kept in the analysis in the case where the number of log entries isn’t evenly divisible by the `block_length`
- `na.rm` whether to keep track of missing values as part of the analysis or ignore them

Value

A data frame where each row represents one block and the columns count the number of occurrences that character/factor level occurred in that block
Examples

```r
tabulate_state_vector(security_logs, 30)
```

Pipe functions

Description

Like dplyr, anomalyDetection also uses the pipe function, %>% to turn function composition into a series of imperative statements.

Arguments

- `lhs`, `rhs` An R object and a function to apply to it

Examples

```r
x <- matrix(rnorm(200*3), ncol = 10)
N <- nrow(x)
p <- ncol(x)

# Instead of
hc <- horns_curve(x)
fa <- factor_analysis(x, hc_points = hc)
factor_analysis_results(fa, fa_scores_rotated)

# You can write
horns_curve(x) %>%
  factor_analysis(x, hc_points = .) %>%
  factor_analysis_results(fa_scores_rotated)
```
Index

*Topic datasets
 security_logs, 15
%>, 17

anomalyDetection, 2
anomalyDetection-package
 (anomalyDetection), 2

bd_row, 2
biplot.prcomp, 14

cor, 14
cov, 14
eigen, 14

factor_analysis, 3, 5, 10
factor_analysis_results, 4

geta ll_factors, 5

hmat, 6
horns_curve, 4, 8

inspect_block, 9

kaisers_index, 9

mahalanobis_distance, 3, 10
mc_adjust, 12

prcomp, 14
principal_components, 13, 15
principal_components_result, 14

screeplot, 14
security_logs, 15
svd, 14

tabulate_state_vector, 9, 16