Package ‘anticlust’

November 24, 2020

Type Package

Title Subset Partitioning via Anticlustering

Version 0.5.6

Author Martin Papenberg [aut, cre] (<https://orcid.org/0000-0002-9900-4268>), Meik Michalke [ctb] (centroid based clustering algorithm), Gunnar W. Klau [ths], Juliane V. Tkotz [ctb] (package logo)

Maintainer Martin Papenberg <martin.papenberg@hhu.de>

Description
The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) in such a way that the between-group similarity is maximized and -- at the same time -- the within-group heterogeneity is maximized. This reverses the logic of cluster analysis that strives for high within-group homogeneity and low similarity of the different groups. Computationally, anticlustering is accomplished by maximizing instead of minimizing a clustering objective function, such as the intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters. The function anticlustering() implements exact and heuristic anticlustering algorithms as described in Papenberg and Klau (2020; <doi:10.1037/met0000301>). The exact approach requires that the GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>) is available and the R package ‘Rglpk’ (<https://cran.R-project.org/package=Rglpk>) is installed. Some other functions are available to solve classical clustering problems. The function balanced_clustering() applies a cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching() can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique partitioning problem or transitivity clustering.

License MIT + file LICENSE

URL https://github.com/m-Py/anticlust
BugReports https://github.com/m-Py/anticlуст/issues

Depends R (>= 3.6.0)

Imports Matrix, RANN (>= 2.6.0)

Suggests knitr, Rglpk, rmarkdown, testthat

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

LazyData true

NeedsCompilation yes

RoxygenNote 7.1.1

SystemRequirements The exact (anti)clustering algorithms require that
the GNU linear programming kit (GLPK library) is installed
(http://www.gnu.org/software/glpk/). Rendering the vignette
requires pandoc.

Repository CRAN

Date/Publication 2020-11-24 14:40:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>anticlusters</td>
<td>3</td>
</tr>
<tr>
<td>anticlustering</td>
<td>3</td>
</tr>
<tr>
<td>balanced_clustering</td>
<td>8</td>
</tr>
<tr>
<td>categorical_sampling</td>
<td>10</td>
</tr>
<tr>
<td>dispersion_objective</td>
<td>11</td>
</tr>
<tr>
<td>diversity_objective</td>
<td>12</td>
</tr>
<tr>
<td>fast_anticlustering</td>
<td>13</td>
</tr>
<tr>
<td>generate_partitions</td>
<td>14</td>
</tr>
<tr>
<td>kplus_objective</td>
<td>16</td>
</tr>
<tr>
<td>matching</td>
<td>18</td>
</tr>
<tr>
<td>mean_sd_obj</td>
<td>21</td>
</tr>
<tr>
<td>mean_sd_tab</td>
<td>22</td>
</tr>
<tr>
<td>n_partitions</td>
<td>23</td>
</tr>
<tr>
<td>plot_clusters</td>
<td>24</td>
</tr>
<tr>
<td>plot_similarity</td>
<td>26</td>
</tr>
<tr>
<td>schaper2019</td>
<td>27</td>
</tr>
<tr>
<td>variance_objective</td>
<td>28</td>
</tr>
<tr>
<td>wce</td>
<td>30</td>
</tr>
</tbody>
</table>

Index 32
anticlust

anticlust: Subset Partitioning via Anticlustering

Description

The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) in such a way that the between-group similarity is maximized and – at the same time – the within-group heterogeneity is maximized. This reverses the logic of cluster analysis that strives for high within-group homogeneity and low similarity of the different groups. Computationally, anticlustering is accomplished by maximizing instead of minimizing a clustering objective function, such as the intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters. The function anticlustering() implements exact and heuristic anticlustering algorithms as described in Papenberg and Klau (2020; <doi:10.1037/met0000301>). The exact approach requires that the GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>) is available and the R package 'Rglpk' (<https://cran.R-project.org/package=Rglpk>) is installed. Some other functions are available to solve classical clustering problems. The function balanced_clustering() applies a cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching() can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique partitioning problem or transitivity clustering.

Primary functions

anticlustering balanced_clustering matching categorical_sampling wce

Description

Create groups of elements (anticlusters) that are as similar as possible to each other, by maximizing the heterogeneity within groups. Implements anticlustering algorithms as described in Papenberg and Klau (2020; <doi:10.1037/met0000301>).

Usage

anticlustering(
 x,
 K,
 objective = "diversity",
 method = "exchange",
 preclustering = FALSE,
 categories = NULL,
 repetitions = NULL,
 standardize = FALSE
)
Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows correspond to elements and columns correspond to variables (a single numeric variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix; can be an object of class dist (e.g., returned by dist or as.dist) or a matrix where the entries of the upper and lower triangular matrix represent pairwise dissimilarities.

K How many anticlusters should be created. Alternatively: (a) A vector describing the size of each group, or (b) a vector of length nrow(x) describing how elements are assigned to anticlusters before the optimization starts.

objective The objective to be maximized. The options "diversity" (default; previously called "distance", which is still supported), "variance", "kplus" and "dispersion" are natively supported. May also be a user-defined function object that computes an objective value given a clustering. See Details.

method One of "exchange" (default), "local-maximum", or "ilp". See Details.

preclustering Boolean. Should a preclustering be conducted before anticlusters are created? Defaults to FALSE. See Details.

categories A vector, data.frame or matrix representing one or several categorical constraints. See Details.

repetitions The number of times a new exchange procedure is initiated when method = "exchange" or method = "local-maximum". In the end, the best objective found across the repetitions is returned. If this argument is not passed, only one repetition is conducted.

standardize Boolean. If TRUE and x is a feature matrix, the data is standardized through a call to scale before the optimization starts. This argument is silently ignored if x is a distance matrix.

Details

This function is used to solve anticlustering. That is, K groups are created in such a way that all groups are as similar as possible (this usually corresponds to creating groups with high within-group heterogeneity). This is accomplished by maximizing instead of minimizing a clustering objective function. The maximization of four clustering objective functions is natively supported (other functions can also be defined by the user as described below):

- cluster editing ‘diversity’ objective, setting objective = "diversity" (default)
- k-means ‘variance’ objective, setting objective = "variance"
- k-plus objective, an extension of the k-means variance criterion, setting objective = “kplus"
- ‘dispersion’ objective, the minimum distance between any two elements within the same cluster.

The k-means objective is the within-group variance—that is, the sum of the squared distances between each element and its cluster center (see variance_objective). K-means anticlustering focuses on minimizing differences with regard to the means of the input variables x; k-plus objective = “kplus” anticlustering is an extension of this criterion that also tries to minimize differences with regard to the standard deviations between groups (see kplus_objective).
The cluster editing "diversity" objective is the sum of pairwise distances within groups (see `diversity_objective`). Anticlustering editing is also known as the »maximum diverse grouping problem« because it maximizes group diversity as measured by the sum of pairwise distances. Hence, anticlustering maximizes between-group similarity by maximizing within-group heterogeneity. In previous versions of this package, method = "distance" was used (and is still supported) to request anticluster editing, but now method = "diversity" is preferred because there are several clustering objectives based on pairwise distances (e.g., see `dispersion_objective`).

The "dispersion" is the minimum distance between any two elements within the same cluster; applications that require high within-group heterogeneity often require to maximize the dispersion. If the data input x is a feature matrix (that is: each row is a "case" and each column is a "variable") and the option objective = "diversity" is used, the Euclidean distance is computed as the basic unit of the anticluster editing objective. If a different measure of dissimilarity is preferred, you may pass a self-generated dissimiliarity matrix via the argument x.

In the standard case, groups of equal size are generated. Adjust the argument K to create groups of different size (see examples).

Heuristic anticlustering

By default, a heuristic method is employed for anticlustering: the exchange method (method = "exchange"). Building on an initial assignment of elements to anticlusters, elements are sequentially swapped between anticlusters in such a way that each swap improves set similarity by the largest amount that is possible. In the default case, elements are randomly assigned to anticlusters before the exchange procedure starts; however, it is also possible to explicitly specify the initial assignment using the argument K (in this case, K has length nrow(x)). The exchange procedure is repeated for each element. Because each possible swap is investigated for each element, the total number of exchanges grows quadratically with input size, rendering the exchange method unsuitable for large N. When using method = "local-maximum", the exchange method is repeated until an local maximum is reached. That means after the exchange process has been conducted once for each data point, the algorithm restarts with the first element and proceeds to conduct exchanges until the objective cannot be improved.

When setting preclustering = TRUE, only the K - 1 most similar elements serve as exchange partners, which can dramatically speed up the optimization (more information on the preclustering option is included below). This option is recommended for larger N. For very large N, check out the function `fast_anticlustering` that was specifically implemented to process very large data sets.

Exact anticlustering

An optimal anticluster editing objective can be found via integer linear programming (the integer linear program implemented here can be found in Papenberg & Klau, 2020, (8) - (12)). To this end, set method = "ilp". To obtain an optimal solution, the open source GNU linear programming kit (available from https://www.gnu.org/software/glpk/glpk.html) and the R package `Rglpk` must be installed. The optimal solution is retrieved by setting objective = "diversity", method = "ilp" and preclustering = FALSE. Use this combination of arguments only for small problem sizes.

To relax the optimality requirement, it is possible to set the argument preclustering = TRUE. In this case, the anticluster editing objective is still optimized using integer linear programming, but a preprocessing forbids very similar elements to be assigned to the same anticluster. The preclustering reduces the size of the solution space, making the integer linear programming approach applicable for larger problem instances. With preclustering, optimality is no longer guaranteed, but the solution is usually optimal or very close to optimal.
The variance criterion cannot be optimized to optimality using integer linear programming because the k-means objective function is not linear. However, it is possible to employ the function `generate_partitions` to obtain optimal solutions for small problem instances.

Preclustering

A useful heuristic for anticlustering is to form small groups of very similar elements and assign these to different groups. This logic is used as a preprocessing when setting `preclustering = TRUE`. That is, before the anticlustering objective is optimized, a cluster analysis identifies small groups of similar elements (pairs if $K = 2$, triplets if $K = 3$, and so forth). The optimization of the anticlustering objective is then conducted under the constraint that these matched elements cannot be assigned to the same group. When using the exchange algorithm, preclustering is conducted using a call to `matching`. When using `method = "ilp"`, the preclustering optimally finds groups of minimum pairwise distance by solving the integer linear program described in Papenberg and Klau (2020; (8) - (10), (12) - (13)).

Categorical constraints

The argument `categories` may induce categorical constraints. The grouping variables indicated by categories will be balanced out across anticlusters. Currently, this functionality is only available in combination with the heuristic methods, but not with the exact integer linear programming approach.

Optimize a custom objective function

It is possible to pass a function to the argument `objective`. See `dispersion_objective` for an example. If `objective` is a function, the exchange method assigns elements to anticlusters in such a way that the return value of the custom function is maximized (hence, the function should return larger values when the between-group similarity is higher). The custom function has to take two arguments: the first is the data argument, the second is the clustering assignment. That is, the argument `x` will be passed down to the user-defined function as first argument. However, only after `as.matrix` has been called on `x`. This implies that in the function body, columns of the data set cannot be accessed using `data.frame` operations such as `$`. Objects of class `dist` will be converted to matrix as well.

Value

A vector of length N that assigns a group (i.e., a number between 1 and K) to each input element.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

anticlustering

See Also

fast_anticlustering
variance_objective
diversity_objective

Examples

Optimize the cluster editing (diversity) criterion
anticlusters <- anticlustering(
 schaper2019[, 3:6],
 K = 3,
 categories = schaper2019$room
)
Compare feature means by anticluster
by(schaper2019[, 3:6], anticlusters, function(x) round(colMeans(x), 2))
Compare standard deviations by anticluster
by(schaper2019[, 3:6], anticlusters, function(x) round(apply(x, 2, sd), 2))
check that the "room" is balanced across anticlusters:
table(anticlusters, schaper2019$room)

Use multiple starts of the algorithm to improve the objective and
optimize the k-means criterion ("variance")
anticlusters <- anticlustering(
 schaper2019[, 3:6],
 objective = "variance",
 K = 3,
 categories = schaper2019$room,
 method = "local-maximum",
 repetitions = 2
)
Compare means and standard deviations by anticluster
by(schaper2019[, 3:6], anticlusters, function(x) round(colMeans(x), 2))
by(schaper2019[, 3:6], anticlusters, function(x) round(apply(x, 2, sd), 2))

Use different group sizes and optimize the extended k-means
criterion ("kplus")
anticlusters <- anticlustering(
 schaper2019[, 3:6],
 objective = "kplus",
 K = c(24, 24, 48),
 categories = schaper2019$room,
 repetitions = 10,
 method = "local-maximum",
 standardize = TRUE
)
table(anticlusters, schaper2019$room)
Compare means and standard deviations by anticluster
by(schaper2019[, 3:6], anticlusters, function(x) round(colMeans(x), 2))
by(schaper2019[, 3:6], anticlusters, function(x) round(apply(x, 2, sd), 2))
Use preclustering and variance (k-means) criterion on large data set

```r
N <- 1000
K = 2
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
ac <- anticlustering(
  lds,
  K = K,
  objective = "variance",
  preclustering = TRUE
)
```

The following is equivalent to setting `preclustering = TRUE`

```r
c1 <- balanced_clustering(lds, K = N / K)
ac <- anticlustering(
  lds,
  K = K,
  objective = "variance",
  categories = c1
)
```

balanced_clustering

Create balanced clusters of equal size

Description

Create balanced clusters of equal size

Usage

`balanced_clustering(x, K, method = "centroid")`

Arguments

- **x**: The data input. Can be one of two structures: (1) A feature matrix where rows correspond to elements and columns correspond to variables (a single numeric variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix; can be an object of class `dist` (e.g., returned by `dist` or `as.dist`) or a matrix where the entries of the upper and lower triangular matrix represent pairwise dissimilarities.

- **K**: How many clusters should be created.

- **method**: One of "centroid" or "ilp". See Details.
Details

This function partitions a set of elements into K equal-sized clusters. The function offers two methods: a heuristic and an exact method. The heuristic (`method = "centroid"`) first computes the centroid of all data points. If the input is a feature matrix, the centroid is defined as the mean vector of all columns. If the input is a dissimilarity matrix, the most central element acts as the centroid; the most central element is defined as the element having the minimum maximal distance to all other elements. After identifying the centroid, the algorithm proceeds as follows: The element having the highest distance from the centroid is clustered with its $(N/K) - 1$ nearest neighbours (neighbourhood is defined according to the Euclidean distance if the data input is a feature matrix). From the remaining elements, again the element farthest to the centroid is selected and clustered with its $(N/K) - 1$ neighbours; the procedure is repeated until all elements are part of a cluster.

An exact method (`method = "ilp"`) can be used to solve equal-sized weighted cluster editing optimally (implements the integer linear program described in Papenberg and Klau, 2020; (8) - (10), (12) - (13)). The cluster editing objective is the sum of pairwise distances within clusters; clustering is accomplished by minimizing this objective. If the argument `x` is a feature matrix, the Euclidean distance is computed as the basic unit of the cluster editing objective. If another distance measure is preferred, users may pass a self-computed dissimilarity matrix via the argument `x`. The optimal cluster editing objective can be found via integer linear programming. To obtain an optimal solution, the open source GNU linear programming kit (available from https://www.gnu.org/software/glpk/glpk.html) and the R package `Rglpk` must be installed.

Value

An integer vector representing the cluster affiliation of each data point

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>
Meik Michalke <meik.michalke@hhu.de>

Source

The centroid method was originally developed and contributed by Meik Michalke. It was later rewritten by Martin Papenberg, who also implemented the integer linear programming method.

References

Examples

```r
# Cluster a data set and visualize results
N <- 1000
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
```
categorical_sampling

Random sampling employing a categorical constraint

Description

This function can be used to obtain a stratified split of a data set.

Usage

categorical_sampling(categories, K)

Arguments

- **categories**: A matrix or vector of one or more categorical variables.
- **K**: The number of groups that are returned.

Details

This function can be used to obtain a stratified split of a data set. Using this function is like calling `anticlustering` with argument `categories`, but without optimizing a clustering objective. The categories are just evenly split between samples. Apart from the restriction that categories are balanced between samples, the split is random.

Value

A vector representing the sample each element was assigned to.

Examples

data(schaper2019)
categories <- schaper2019$room
groups <- categorical_sampling(categories, K = 6)
table(groups, categories)

Unequal sized groups
groups <- categorical_sampling(categories, K = c(24, 24, 48))
table(groups, categories)

Heavily unequal sized groups, is harder to balance the groups
groups <- categorical_sampling(categories, K = c(51, 19, 26))
dispersion_objective Cluster dispersion

Description

Compute the dispersion objective for a given clustering (i.e., the minimum distance between two elements within the same cluster).

Usage

dispersion_objective(x, clusters)

Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows correspond to elements and columns correspond to variables (a single numeric variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix; can be an object of class \textit{dist} (e.g., returned by \textit{dist} or \textit{as.dist}) or a matrix where the entries of the upper and lower triangular matrix represent pairwise dissimilarities.

clusters A vector representing (anti)clusters (e.g., returned by \textit{anticlustering}).

Details

The dispersion is the minimum distance between two elements within the same cluster. When the input \textit{x} is a feature matrix, the Euclidean distance is used as the distance unit. Maximizing the dispersion maximizes the minimum heterogeneity within clusters and is an anticlustering task.

References

Examples

N <- 50 # number of elements
M <- 2 # number of variables per element
K <- 5 # number of clusters
random_data <- matrix(rnorm(N * M), ncol = M)
random_clusters <- sample(rep_len(1:K, N))
dispersion_objective(random_data, random_clusters)

Maximize the dispersion
diversity_objective <- anticlustering(
 random_data,
 K = random_clusters,
 objective = dispersion_objective
)
dispersion_objective(random_data, optimized_clusters)

diversity_objective (Anti)cluster editing "diversity" objective

Description
Compute the diversity for a given clustering.

Usage
diversity_objective(x, clusters)

Arguments
x
The data input. Can be one of two structures: (1) A data matrix where rows correspond to elements and columns correspond to features (a single numeric feature can be passed as a vector). (2) An N x N matrix dissimilarity matrix; can be an object of class dist (e.g., returned by dist or as.dist) or a matrix where the entries of the upper and lower triangular matrix represent the pairwise dissimilarities.

clusters
A vector representing (anti)clusters (e.g., returned by anticlustering).

Details
The objective function used in (anti)cluster editing is the diversity, i.e., the sum of the pairwise distances between elements within the same groups. When the input x is a feature matrix, the Euclidean distance is computed as the basic distance unit of this objective.

Value
The cluster editing objective

Author(s)
Martin Papenberg <martin.papenberg@hhu.de>

References

Examples

data(iris)
distances <- dist(iris[1:60, -5])
Clustering
clusters <- balanced_clustering(distances, K = 3)
This is low:
diversity_objective(distances, clusters)
Anticlustering
anticlusters <- anticlustering(distances, K = 3)
This is higher:
diversity_objective(distances, anticlusters)

Description

The most efficient way to solve anticlustering optimizing the k-means variance criterion with an exchange method. Can be used for very large data sets.

Usage

fast_anticlustering(x, K, k_neighbours = Inf, categories = NULL)

Arguments

x A numeric vector, matrix or data.frame of data points. Rows correspond to elements and columns correspond to features. A vector represents a single numeric feature.
K How many anticlusters should be created.
k_neighbours The number of neighbours that serve as exchange partner for each element. Defaults to Inf, i.e., each element is exchanged with each element in other groups.
categories A vector, data.frame or matrix representing one or several categorical constraints.

Details

This function was created to make anticlustering applicable to large data sets (e.g., 100,000 elements). It optimizes the k-means variance objective because computing all pairwise distances is not feasible for many elements. Additionally, this function employs a speed-optimized exchange method. For each element, the potential exchange partners are generated using a nearest neighbor search with the function nn2 from the RANN package. The nearest neighbors then serve as exchange partners. This approach is inspired by the preclustering heuristic according to which good solutions are found when similar elements are in different sets—by swapping nearest neighbors, this will often be the case. The number of exchange partners per element has to be set using the argument k_neighbours; by default, it is set to Inf, meaning that all possible swaps are tested. This default
must be changed by the user for large data sets. More exchange partners generally improve the output, but also increase run time.

When setting the categories argument, exchange partners will be generated from the same category. Note that when categories has multiple columns (i.e., each element is assigned to multiple columns), each combination of categories is treated as a distinct category by the exchange method.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

See Also

anticlustering

variance_objective

Examples

features <- iris[, - 5]
start <- Sys.time()
ac_exchange <- fast_anticlustering(features, K = 3)
Sys.time() - start

The following call is equivalent to the call above:
start <- Sys.time()
ac_exchange <- anticlustering(features, K = 3, objective = "variance")
Sys.time() - start

Improve run time by using fewer exchange partners:
start <- Sys.time()
ac_fast <- fast_anticlustering(features, K = 3, k_neighbours = 10)
Sys.time() - start

by(features, ac_exchange, function(x) round(colMeans(x), 2))
by(features, ac_fast, function(x) round(colMeans(x), 2))

generate_partitions Generate all partitions of same cardinality

Description

Generate all partitions of same cardinality

Usage

generate_partitions(N, K, generate_permutations = FALSE)
generate_partitions

Arguments

N
The total N. K has to be dividle by N.

K
How many partitions

generate_permutations
If TRUE, all permutations are returned, resulting in duplicate partitions.

Details

In principle, anticlustering can be solved to optimality by generating all possible partitions of N items into K groups. The example code below illustrates how to do this. However, this approach only works for small N because the number of partitions grows exponentially with N.

The partition c(1, 2, 2, 1) is the same as the partition c(2, 1, 1, 2) but they correspond to different permutations of the elements [1, 1, 2, 2]. If the argument generate_permutations is TRUE, all permutations are returned. To solve balanced anticlustering exactly, it is sufficient to inspect all partitions while ignoring duplicated permutations.

Value

A list of all partitions (or permutations if generate_permutations is TRUE).

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Examples

```r
## Generate all partitions to solve k-means anticlustering
## to optimality.

N <- 14
K <- 2
features <- matrix(sample(N * 2, replace = TRUE), ncol = 2)
partitions <- generate_partitions(N, K)
length(partitions) # number of possible partitions

## Create an objective function that takes the partition
## as first argument (then, we can use sapply to compute
## the objective for each partition)
var_obj <- function(clusters, features) {
  variance_objective(features, clusters)
}
all_objectives <- sapply(partitions,
  var_obj)
```
kplus_objective

Objective value for the k-plus criterion

Description

Objective value for the k-plus criterion

Usage

kplus_objective(x, clusters)
Arguments

- **x** A vector, matrix or data.frame of data points. Rows correspond to elements and columns correspond to features. A vector represents a single feature.
- **clusters** A vector representing (anti)clusters (e.g., returned by `anticlustering` or `balanced_clustering`).

Details

The k-plus criterion is an extension of the k-means criterion (i.e., the "variance", see `variance_objective`). The standard k-means objective is high if the means of the input variables are similar between clusters, but there is no guarantee that the standard deviations will also be similar (in fact, maximizing the k-means objective tends to decrease similarity in standard deviations in comparison to a completely random assignment). However, to achieve overall between-group similarity, it is desirable that the spread of the data is also similar between groups—and not just the means. This is accomplished by maximizing the k-plus criterion that also incorporates the standard deviations of the input variables.

Equalizing means and standard deviations simultaneously is accomplished by internally appending new variables to the data input `x`, one new variable for each column in `x`. These new variables contain the squared difference of each data point to the mean of the respective column, and are then included—in addition to the original data—in standard k-means anticlustering. This way, the average squared deviation of the data points to the means becomes similar between groups, which is the variance. Hence, the k-plus criterion simultaneously represents similarity in means and variance (and thus, the standard deviation), and can be used to simultaneously equalize the mean and the spread of the data.

Value

The value of the k-plus criterion.

Note

K-plus anticlustering has newly been implemented in the package anticlust (available since version 0.5.2). The author is currently working on a paper detailing the objective’s background, but has already made the methodology available as its results have been very convincing thus far (e.g., check out the examples below). When using k-plus anticlustering in your research, it would be courteous to cite Papenberg and Klau (2020) as the primary anticlust reference, even though the criterion has not been described in that paper. In doubt, contact the author to inquire whether a new reference is available, or check out the package website (https://github.com/m-Py/anticlust).

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Examples

data(schaper2019)
features <- schaper2019[, 3:6]

Optimize k-plus criterion
kplus_groups <- anticlustering(
 features,
 K = 3,
 objective = "kplus"
)

Optimize normal k-means criterion
kmeans_groups <- anticlustering(
 features,
 K = 3,
 objective = "variance"
)

Compute k-plus criterion (k-plus is much better here)
kplus_objective(features, kplus_groups)
kplus_objective(features, kmeans_groups)

Compare to k-means criterion (k-plus not much worse here)
variance_objective(features, kplus_groups)
variance_objective(features, kmeans_groups)

Compare means and standard deviations after k-means and k-plus
anticlustering (the standard deviations are usually much closer
after k-plus anticlustering, but there is only little to no
difference with regard to the means)
mean_sd_tab(features, kplus_groups)
mean_sd_tab(features, kmeans_groups)

matching Matching

Description

Conduct K-partite or unrestricted (minimum distance) matching to find pairs or groups of similar elements. By default, finding matches is based on the Euclidean distance between data points, but a custom dissimilarity measure can also be employed.

Usage

matching(
 x,
\(p = 2, \\
m\text{match_between} = \text{NULL}, \\
m\text{match_within} = \text{NULL}, \\
m\text{match_extreme_first} = \text{TRUE}, \\
t\text{target_group} = \text{NULL}, \\
s\text{sort_output} = \text{TRUE} \\
)

Arguments

- **x**
 - The data input. Can be one of two structures: (1) A feature matrix where rows correspond to elements and columns correspond to variables (a single numeric variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix; can be an object of class `dist` (e.g., returned by `dist` or `as.dist`) or a matrix where the entries of the upper and lower triangular matrix represent pairwise dissimilarities.

- **p**
 - The size of the groups; the default is 2, in which case the function returns pairs.

- **match_between**
 - An optional vector, `data.frame` or matrix representing one or several categorical constraints. If passed, the argument `p` is ignored and matches are sought between elements of different categories.

- **match_within**
 - An optional vector, `data.frame` or matrix representing one or several categorical constraints. If passed, matches are sought between elements of the same category.

- **match_extreme_first**
 - Logical: Determines if matches are first sought for extreme elements first or for central elements. Defaults to `TRUE`.

- **target_group**
 - Currently, the options "none", smallest" and "diverse" are supported. See Details.

- **sort_output**
 - Boolean. If `TRUE` (default), the output clusters are sorted by similarity. See Details.

Details

If the data input `x` is a feature matrix, matching is based on the Euclidean distance between data points. If the argument `x` is a dissimilarity matrix, matching is based on the user-specified dissimilarities. To find matches, the algorithm proceeds by selecting a target element and then searching its nearest neighbours. Critical to the behaviour of the algorithm is the order in which target elements are selected. By default, the most extreme elements are selected first, i.e., elements with the highest distance to the centroid of the data set (see `balanced_clustering` that relies on the same algorithm). Set the argument `match_extreme_first` to `FALSE`, to enforce that elements close to the centroid are first selected as targets.

If the argument `match_between` is passed and the groups specified via this argument are of different size, target elements are selected from the smallest group by default (because in this group, all elements can be matched). However, it is also possible to specify how matches are selected through the option `target_group`. When specifying "none", matches are always selected from extreme elements, irregardless of the group sizes (or from central elements first if `match_extreme_first = FALSE`). With option "smallest", matches are selected from the smallest group. With option...
"diverse", matches are selected from the most heterogenous group according to the sum of pair-
wise distances within groups.

The output is an integer vector encoding which elements have been matched. The grouping numbers
are sorted by similarity. That is, elements with the grouping number »1« have the highest intra-
group similarity, followed by 2 etc (groups having the same similarity index are still assigned a
different grouping number, though). Similarity is measured as the sum of pairwise (Euclidean)
distances within groups (see diversity_objective). To prevent sorting by similarity (this is some
extra computational burden), set sort_output = FALSE. Some unmatched elements may be NA.
This happens if it is not possible to evenly split the item pool evenly into groups of size p or if the
categories described by the argument match_between are of different size.

Value
An integer vector encoding the matches. See Details for more information.

Note
It is possible to specify grouping restrictions via match_between and match_within at the same
time.

Author(s)
Martin Papenberg <martin.papenberg@hhu.de>

Examples

Find triplets
N <- 120
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
triplets <- matching(lds, p = 3)
plot_clusters(
 lds,
 clusters = triplets,
 within_connection = TRUE
)

Bipartite matching with unequal-sized groups:
Only selects matches for some elements
N <- 100
data <- matrix(rnorm(N), ncol = 1)
groups <- sample(1:2, size = N, replace = TRUE, prob = c(0.8, 0.2))
mixed <- matching(data[, 1], match_between = groups)
plot_clusters(
 cbind(groups, data),
 clusters = mixed,
 within_connection = TRUE
)

Match objects from the same category only
matched <- matching(}
schaper2019[, 3:6],
p = 3,
match_within = schaper2019$room
)
head(table(matched, schaper2019$room))

Match between different plant species in the »iris« data set
species <- iris$Species != "versicolor"
matched <- matching(
 iris[species, 1],
 match_between = iris[species, 5]
)

Adjust 'match_extreme_first' argument
matched2 <- matching(
 iris[species, 1],
 match_between = iris[species, 5],
 match_extreme_first = FALSE
)

Plot the matching results
user_par <- par("mfrow")
par(mfrow = c(1, 2))
data <- data.frame(
 Species = as.numeric(iris[species, 5]),
 Sepal.Length = iris[species, 1]
)
plot_clusters(
 data,
 clusters = matched,
 within_connection = TRUE,
 main = "Extreme elements matched first"
)
plot_clusters(
 data,
 clusters = matched2,
 within_connection = TRUE,
 main = "Central elements matched first"
)
par(mfrow = user_par)

mean_sd_obj

An objective function measuring similarity of sets

Description

Compute the discrepancy in means and standard deviations between clusters.

Usage

```r
mean_sd_obj(features, clusters)
```
Arguments

- features: A matrix or data.frame of data points. Rows correspond to elements and columns correspond to features.
- clusters: A clustering vector

Details

This function can be passed as the argument `objective` to the function `anticlustering` to minimize differences in means and standard deviations between anticlusters.

Value

A value quantifying similarity in means and standard deviations. Higher values indicate that means and standard deviations are more similar.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

Examples

data(schaper2019)
ac <- anticlustering(
 features,
 K = 3,
 categories = schaper2019$room[1:48],
 objective = mean_sd_obj
)
by(features, ac, function(x) round(colMeans(x), 2))
by(features, ac, function(x) round(apply(x, 2, sd), 2))

```
mean_sd_tab Mean and standard deviations by group variable formatted in table
```

Description

Means and standard deviations by group variable formatted in table

Usage

```r
mean_sd_tab(features, groups, decimals = 2, na.rm = FALSE, return_diff = FALSE)
```
The provided document contains the source code for two R functions: `n_partitions` and `mean_sd_tab`. Here is the detailed explanation of each function:

n_partitions

Description
Number of equal sized partitions

Usage
```r
n_partitions(N, K)
```

Arguments
- `N`: How many elements
- `K`: How many partitions

Value
The number of partitions

Examples
```r
n_partitions(20, 2)
```

mean_sd_tab

Arguments
- `features`: A data frame of features
- `groups`: A grouping vector
- `decimals`: The number of decimals
- `na.rm`: Should NAs be removed prior to computing stats (Default = FALSE)
- `return_diff`: Boolean. Should an additional row be printed that contains the difference between minimum and maximum

Value
A table that illustrates means and standard deviations (in brackets)

Examples
```r
data(iris)
mean_sd_tab(iris[, -5], iris[, 5])
```

The documentation for both functions is self-contained and provides clear, concise explanations of their usage, arguments, and examples. The `n_partitions` function is used to calculate the number of equal-sized partitions, while `mean_sd_tab` is used to compute and display means and standard deviations with customizable parameters.
plot_clusters

Visualize a cluster analysis

Description

Visualize a cluster analysis

Usage

plot_clusters(
 features,
 clusters,
 within_connection = FALSE,
 between_connection = FALSE,
 illustrate_variance = FALSE,
 show_axes = FALSE,
 xlab = NULL,
 ylab = NULL,
 xlim = NULL,
 ylim = NULL,
 main = "",
 cex = 1.2,
 cex.axis = 1.2,
 cex.lab = 1.2,
 lwd = 1.5,
 lty = 2,
 frame.plot = FALSE,
 cex_centroid = 2
)

Arguments

features A data.frame or matrix representing the features that are plotted. Must have two columns.
clusters A vector representing the clustering
within_connection Boolean. Connect the elements within each clusters through lines? Useful to illustrate a graph structure.
between_connection Boolean. Connect the elements between each clusters through lines? Useful to illustrate a graph structure. (This argument only works for two clusters).
illustrate_variance Boolean. Illustrate the variance criterion in the plot?
show_axes Boolean, display values on the x and y-axis? Defaults to ‘FALSE’.
xlab The label for the x-axis
plot_clusters

ylab The label for the y-axis
xlim The limits for the x-axis
ylim The limits for the y-axis
main The title of the plot
cex The size of the plotting symbols, see par
cex.axis The size of the values on the axes
cex.lab The size of the labels of the axes
lwd The width of the lines connecting elements.
lty The line type of the lines connecting elements (see par).
frame.plot a logical indicating whether a box should be drawn around the plot.
cex_centroid The size of the cluster center symbol (has an effect only if illustrate_variance is TRUE)

Details

In most cases, the argument clusters is a vector returned by one of the functions anticlustering, balanced_clustering or matching. However, the plotting function can also be used to plot the results of other cluster functions such as kmeans. This function is usually just used to get a fast impression of the results of an (anti)clustering assignment, but limited in its functionality. It is useful for depicting the intra-cluster connections using argument within_connection.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

Examples

N <- 15
features <- matrix(runif(N * 2), ncol = 2)
K <- 3
clusters <- balanced_clustering(features, K = K)
anticlusters <- anticlustering(features, K = K)
user_par <- par("mrow")
par(mfrow = c(1, 2))
plot_clusters(features, clusters, main = "Cluster editing", within_connection = TRUE)
plot_clusters(features, anticlusters, main = "Anticluster editing", within_connection = TRUE)
par(mfrow = user_par)
plot_similarity

Plot similarity objective by cluster

Description
Plot similarity objective by cluster

Usage
plot_similarity(x, groups)

Arguments
x
The data input. Can be one of two structures: (1) A data matrix where rows correspond to elements and columns correspond to features (a single numeric feature can be passed as a vector). (2) An N x N matrix dissimilarity matrix; can be an object of class dist (e.g., returned by dist or as.dist) or a matrix where the entries of the upper and lower triangular matrix represent the pairwise dissimilarities.

groups
A grouping vector of length N, usually the output of matching.

Details
Plots the sum of pairwise distances by group.

Value
The diversity (sum of distances) by group.

Author(s)
Martin Papenberg <martin.papenberg@hhu.de>

See Also
diversity_objective

Examples
Match elements and plot similarity by match
N <- 100
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
pairs <- matching(lds, p = 2)
plot_similarity(lds, pairs)
Description

A stimulus set that was used in experiments by Schaper, Kuhlmann and Bayen (2019a; 2019b). The item pool consists of 96 German words. Each word represents an object that is either typically found in a bathroom or in a kitchen.

Usage

schaper2019

Format

A data frame with 96 rows and 7 variables

- **item**: The name of an object (in German)
- **room**: The room in which the item is typically found; can be 'kitchen' or 'bathroom'
- **rating_consistent**: How expected would it be to find the item in the typical room
- **rating_inconsistent**: How expected would it be to find the item in the atypical room
- **syllables**: The number of syllables in the object name
- **frequency**: A value indicating the relative frequency of the object name in German language (lower values indicate higher frequency)
- **list**: Represents the set affiliation of the item as realized in experiments by Schaper et al.

Source

Courteously provided by Marie Lusia Schaper and Ute Bayen.

References

Examples

```r
head(schaper2019)
features <- schaper2019[, 3:6]

# Optimize the variance criterion`
# (tends to maximize similarity in feature means)
anticlusters <- anticlustering(
  features,
  K = 3,
  objective = "variance",
  categories = schaper2019$room,
  method = "exchange"
)

# Means are quite similar across sets:
by(features, anticlusters, function(x) round(colMeans(x), 2))
# Check differences in standard deviations:
by(features, anticlusters, function(x) round(apply(x, 2, sd), 2))
# Room is balanced between the three sets:
table(Room = schaper2019$room, Set = anticlusters)

# Maximize the diversity criterion
ac_dist <- anticlustering(
  features,
  K = 3,
  objective = "diversity",
  categories = schaper2019$room,
  method = "exchange"
)

# With the distance criterion, means tend to be less similar,
# but standard deviations tend to be more similar:
by(features, ac_dist, function(x) round(colMeans(x), 2))
by(features, ac_dist, function(x) round(apply(x, 2, sd), 2))

---

### variance_objective

**Objective value for the variance criterion**

**Description**

Compute the k-means variance objective for a given clustering.

**Usage**

`variance_objective(x, clusters)`

**Arguments**

- `x` A vector, matrix or data.frame of data points. Rows correspond to elements and columns correspond to features. A vector represents a single feature.
- `clusters` A vector representing (anti)clusters (e.g., returned by `anticlustering` or `balanced_clustering`)
Details

The variance objective is given by the sum of the squared errors between cluster centers and individual data points. It is the objective function used in k-means clustering, see \texttt{kmeans}.

Value

The total within-cluster variance

Author(s)

Martin Papenberg \texttt{<martin.papenberg@hhu.de>}

References


Examples

```r
data(iris)
Clustering
clusters <- balanced_clustering(
 iris[, -5],
 K = 3
)
This is low:
variance_objective(
 iris[, -5],
 clusters
)
Anticlustering
anticlusters <- anticlustering(
 iris[, -5],
 K = 3,
 objective = "variance"
)
This is higher:
variance_objective(
 iris[, -5],
 anticlusters
)
Illustrate variance objective
N <- 18
data <- matrix(rnorm(N * 2), ncol = 2)
```
cl <- balanced_clustering(data, K = 3)
plot_clusters(data, cl, illustrate_variance = TRUE)

---

### Description

Optimally solves weighted cluster editing (also known as »correlation clustering« or »clique partitioning problem«).

### Usage

```r
wce(x)
```

### Arguments

- **x**: A N x N similarity matrix. Larger values indicate stronger agreement/similarity between a pair of data points.

### Details

Finds the clustering that maximizes the sum of pairwise similarities within clusters. In the input some similarities should be negative (indicating dissimilarity) because otherwise the maximum sum of similarities is obtained by simply joining all elements within a single big cluster.

### Value

An integer vector representing the cluster affiliation of each data point.

### Note

This function requires the R package `Rglpk` and the GNU linear programming kit.

### Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

### References

Examples

```r
features <- swiss
distances <- dist(scale(swiss))
hist(distances)
Define agreement as being close enough to each other.
By defining low agreement as -1 and high agreement as +1, we
solve *unweighted* cluster editing
agreements <- ifelse(as.matrix(distances) < 3, 1, -1)
clusters <- wce(agreements)
plot(swiss, col = clusters, pch = 19)
```
Index

* datasets
  schaper2019, 27

anticlust, 3
anticlustering, 3, 3, 10–12, 14, 17, 22, 25, 28
as.dist, 4, 8, 11, 12, 19, 26
as.matrix, 6

balanced_clustering, 3, 8, 17, 19, 25, 28

categorical_sampling, 3, 10

dispersion_objective, 5, 6, 11
dist, 4, 8, 11, 12, 19, 26
diversity_objective, 5, 7, 12, 20, 26

fast_anticlustering, 5, 7, 13

generate_partitions, 6, 14

kmeans, 25, 29
kplus_objective, 4, 16

matching, 3, 6, 18, 25, 26
mean_sd_obj, 21
mean_sd_tab, 22

n_partitions, 23

nn2, 13

par, 25
plot_clusters, 24
plot_similarity, 26

scale, 4
schaper2019, 27

variance_objective, 4, 7, 14, 17, 28

wce, 3, 30