Package ‘aods3’

October 12, 2022

Version 0.4-1.2
Title Analysis of Overdispersed Data using S3 Methods
Author Matthieu Lesnoff <matthieu.lesnoff@cirad.fr> and Renaud Lancelot <renaud.lancelot@cirad.fr>
Maintainer Renaud Lancelot <renaud.lancelot@cirad.fr>
Depends R (>= 3.0.0), stats
Suggests boot, lme4
Description Provides functions to analyse overdispersed counts or proportions. These functions should be considered as complements to more sophisticated methods such as generalized estimating equations (GEE) or generalized linear mixed effect models (GLMM). aods3 is an S3 re-implementation of the deprecated S4 package aod.
License GPL (>= 2)
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2022-07-08 09:25:25 UTC

R topics documented:

antibio ... 2
aodml ... 3
aodql ... 11
aods3-pkg .. 15
cohorts ... 16
dja .. 17
drs .. 18
gof ... 20
iccbin .. 21
invlink .. 23
link .. 24
Antibiotics against Shipping Fever in Calves

Description

Hypothetical drug trial to compare the effect of four antibiotics against Shipping fever in calves (Shoukri and Pause, 1999, Table 3.11).

Usage

data(antibio)

Format

A data frame with 24 observations on the following 3 variables.

- treatment A factor with levels 1, 2, 3 and 4
- n A numeric vector: the number of treated animals within a two-week period.
- m A numeric vector: the number of deaths at the end of the two weeks.

References

Description

The function fits a beta-binomial (BB) or a negative binomial (NB) generalized linear model from clustered data.

For the BB model, data have the form \(\{(n_1, m_1), (n_2, m_2), \ldots, (n_N, m_N)\} \), where \(n_i \) is the size of cluster \(i \), \(m_i \) the number of “successes”, and \(N \) the number of clusters. The response is the proportion \(y = m/n \).

For the NB model, data can be of two types. When modeling simple counts, data have the form \(\{m_1, m_2, \ldots, m_N\} \), where \(m_i \) is the number of occurrences of the event under study. When modeling rates (e.g. hazard rates), data have the same form as for the BB model, where \(n_i \) is the denominator of the rate for cluster \(i \) (considered as an “offset”, i.e. a constant known value) and \(m_i \) the number of occurrences of the event. For both types of data, the response is the count \(y = m \).

Usage

```r
aodml(formula, 
data, 
family = c("bb", "nb"), 
link = c("logit", "cloglog", "probit"), 
phi.formula = ~ 1, 
phi.scale = c("identity", "log", "inverse"), 
phi.start = NULL, 
fixpar = list(), 
hessian = TRUE, 
method = c("BFGS", "Nelder-Mead", "CG", "SANN"), 
control = list(maxit = 3000, trace = 0), ...)
```

S3 method for class 'aodml'

```r
print(x, ...)
```

S3 method for class 'aodml'

```r
print(x, digits, ...)
```

S3 method for class 'aodml'

```r
anova(object, ...)
```

S3 method for class 'aodml'

```r
fitted(object, ..., what = c("mu", "nu", "eta", "phi"))
```

S3 method for class 'aodml'

```r
residuals(object, ..., type = c("deviance", "pearson", "response"))
```

S3 method for class 'aodml'

```r
coef(object, ...)
```
S3 method for class 'aodml'
df.residual(object, ...)
S3 method for class 'aodml'
logLik(object, ...)
S3 method for class 'aodml'
deviance(object, ...)
S3 method for class 'aodml'
AIC(object, ..., k = 2)
S3 method for class 'aodml'
vcov(object, ...)
S3 method for class 'aodml'
predict(object, ..., type = c("link", "response"), se.fit = FALSE, newdata = NULL)

Arguments

- **formula**: A formula for the mean \(\mu \), defining the parameter vector \(b \) (see details).
 - For the BB model, the left-hand side of the formula must be of the form \(\text{cbind}(m, n-m) \sim \ldots \)
 - where the fitted proportion is \(m/n \).
 - For the NB model, the left-hand side of the formula must be of the form \(m \sim \ldots \)
 - where the fitted count is \(m \). To fit a rate, argument **offset** must be used in the right-hand side of the formula (see examples).

- **data**: A data frame containing the response \(m \) and, optionally, \(n \) and the explanatory variable(s).

- **family**: Define the model which is fitted: “bb” for the BB model and “nb” for the NB model.

- **link**: For the BB model only. Define the link function \(g \) for the mean \(\mu \): “cloglog”, “logit” (default) or “probit”. For the NB model, **link** is automatically set to “log”.

- **phi.formula**: A right-hand side formula to model optional heterogeneity for the over-dispersion parameter \(\Phi \) (see details). Only one single factor is allowed.
 - Default to formula(~ 1) (i.e. no heterogeneity).

- **phi.scale**: Scale on which \(\Phi \) is estimated (see details): “identity” (default), “log” or “inverse”.

- **phi.start**: Optional starting values for \(\Phi \). Default to 0.1.

- **fixpar**: An optional list of 2 vectors of same length \((\geq 1) \) to set some parameters as constant in the model.
 - The first vector indicates which parameters are set as constant (i.e., not optimized) in the global parameter vector \((b, \Phi) \).
 - The second vector indicates the corresponding values. For instance,
 - \(\text{fixpar} = \text{list}(c(4, 5), c(0, 0.1)) \)
 - means that the 4th and 5th components of vector \((b, \Phi) \) are set to 0 and 0.1. Argument **fixpar** can be usefull, for instance, to calculate profiled log-likelihoods.
hessian

A logical (default to `TRUE`). If `FALSE`, the hessian and the variances-covariances matrices of the parameters are not calculated.

method

Define the method used for the optimization (see `optim`).

control

A list to control the optimization parameters. See `optim`. By default, the maximum number of iterations is set to 3000, and trace is set to 0 to avoid spurious warnings.

object

An object of class `aodml`

x

An object of class `aodml`

digits

Number of digits to print in `print.summary.aodml` and `print.anova.aodml`. Default to `max(3,getOption("digits") - 3)`

... Further arguments passed to `optim` (e.g. argument `method` if using function `aodml`), or further objects of class `aodml` (function `anova.aodml`), or further arguments passed to `print.aodml` and `print.anova.aodml`.

what

For function `fitted`, a character string indicating the type of fitted values to be returned: legal values are “mu” for the fitted response; “nu” for the fitted linear predictor without offset (link scale); “eta” for the fitted linear predictor with offset (link scale); “phi” for the fitted overdispersion coefficient.

type

For function `residuals`, a character string indicating the type of residuals to be computed; legal values are “deviance” for the deviance’s residuals, “pearson” for the Pearson’s residuals, and “response” for the response. For function `predict`, a character string indicating the type of prediction to be computed; legal values are “link” and “response”.

k

Numeric scalar for the penalty parameter used to compute the information criterion. The default value ($k = 2$) is the regular AIC = -2 * logLik + 2 * p, where p is the number of model coefficients. NB: for AICc, k is set to 2, and AICc = AIC + 2 * p * $(p + 1)$ / $(n - p - 1)$, with n the number of observations.

se.fit

Logical scalar indicating whether standard errors should be computed for the predicted values. Default to `FALSE`.

newdata

A data.frame containing the explanatory variables - and possibly the offset - for the values of which predictions are to be made.

Details

Beta-binomial model (BB)

For a given cluster (n, m), the model is

\[m|\lambda, n \sim \text{Binomial}(n, \lambda) \]

where λ follows a Beta distribution $\text{Beta}(a_1, a_2)$. Noting B the beta function, the marginal (beta-binomial) distribution of m is

\[P(m|n) = C(n, m) * B(a_1 + m, a_2 + n - m)/B(a_1, a_2) \]
Using the re-parameterization $\mu = a_1/(a_1 + a_2)$ and $\Phi = 1/(a_1 + a_2 + 1)$, the marginal mean and variance are

$$E[m] = n \ast \mu$$

$$Var[m] = n \ast \mu \ast (1 - \mu) \ast (1 + (n - 1) \ast \Phi)$$

The response in aodm\L is \(y = m/n\). The mean is \(E[y] = \mu\), defined such as \(\mu = g^{-1}(X \ast b) = g^{-1}(\nu)\), where \(g\) is the link function, \(X\) is a design-matrix, \(b\) a vector of fixed effects and \(\nu = X \ast b\) is the corresponding linear predictor. The variance is \(Var[y] = (1/n) \ast \mu \ast (1 - \mu) \ast (1 + (n - 1) \ast \Phi)\).

Negative binomial model (NB)

--- **Simple counts (model with no offset)**

For a given cluster \((m)\), the model is

\[y|\lambda \sim \text{Poisson}(\lambda) \]

where \(\lambda\) follows a Gamma distribution of mean \(\mu\) and shape \(k\) \((Var[\lambda] = \mu^2/k)\). Noting \(G\) the gamma function, the marginal (negative binomial) distribution of \(m\) is

\[P(m) = G(m+k)/(m! \ast G(k)) \ast (k/(k+\mu))^k \ast (\mu/(k+\mu))^m \]

Using the re-parameterization \(\Phi = 1/k\), the marginal mean and variance are

\[E[m] = \mu \]

\[Var[m] = \mu + \Phi \ast \mu^2 \]

The response in aodm\L is \(y = m\). The mean is \(E[y] = \mu\), defined such as \(\mu = \exp(X \ast b) = \exp(\nu)\). The variance is \(Var[y] = \mu + \Phi \ast \mu^2\).

--- **Rates (model with offset)**

For a given cluster \((n,m)\), the model is

\[m|\lambda, n \sim \text{Poisson}(\lambda) \]

The marginal (negative binomial) distribution \(P(m|n)\) is the same as for the case with no offset \((= P(m))\). The response in aodm\L is \(y = m\). The mean is \(E[y] = \mu\), defined such as \(\mu = \exp(X \ast b + \log(n)) = \exp(\nu + \log(n)) = \exp(\eta)\), where \(\log(n)\) is the offset. The variance
is $\text{Var}[y] = \mu + \Phi \cdot \mu^2$.

Other details

Argument `phi.scale` of function `aodml` enables to estimate the over-dispersion parameter under different scales.

If `phi.scale = "identity"` (Default), the function estimates Φ.

If `phi.scale = "log"`, the function estimates $\log(\Phi)$.

If `phi.scale = "inverse"`, the function estimates $1/\Phi$.

The full parameter vector returned by `aodml`, say `param`, is equal to (b, Φ). This vector is estimated by maximizing the log-likelihood of the marginal model using function `optim`. The estimated variances-covariances matrix of `param` is calculated by the inverse of the observed hessian matrix returned by `optim`, and is referred to as `varparam`.

Value

An object of class `aodml`, printed and summarized by various functions. Function `deviance.aodml` returns the value $-2 \times (\log L - \log L_{\text{max}})$. The “deviance” used in function `AIC.aodml` to calculate AIC and AICc is $-2 \times \log L$.

References

See Also

`glm` and `optim`

Examples

```r
#------ Beta-binomial model

data(orob2)
fml <- aodml(cbind(m, n - m) ~ seed, data = orob2, family = "bb")
```
summaries
summary(fm1)
coef(fm1)
vcov(fm1)
logLik(fm1)
deviance(fm1)
AIC(fm1)
gof(fm1)

predictions
cbind(fitted(fm1), fitted(fm1, what = "nu"), fitted(fm1, what = "eta"), fitted(fm1, what = "phi")
predict(fm1, type = "response", se.fit = TRUE)
newdat <- data.frame(seed = c("O73", "O75"))
predict(fm1, type = "response", se.fit = TRUE, newdata = newdat)

model with heterogeneity in phi
fm <- aodml(cbind(m, n - m) ~ seed, data = orob2,
 family = "bb", phi.formula = ~ seed)
summary(fm)
AIC(fm1, fm)

various phi scales
fm <- aodml(cbind(m, n - m) ~ seed, data = orob2, family = "bb")
fm$phi
fm$phi.scale
fm <- aodml(cbind(m, n - m) ~ seed, data = orob2, family = "bb",
 phi.scale = "log")
fm$phi
fm$phi.scale
fm <- aodml(cbind(m, n - m) ~ seed, data = orob2, family = "bb",
 phi.scale = "inverse")
fm$phi
fm$phi.scale

Models with coefficient(s) set as constant

model with 1 phi coefficient, set as constant "0.02"
fm <- aodml(formula = cbind(m, n - m) ~ seed * root, data = orob2,
 family = "bb", fixpar = list(5, 0.02))
fm$param
fm$varparam

model with 2 phi coefficients, with the first set as constant ~ "0"
fm <- aodml(formula = cbind(m, n - m) ~ seed * root, data = orob2,
 family = "bb", phi.formula = ~ seed, fixpar = list(5, 1e-15))
fm$param
fm$varparam
model with 2 phi coefficients, with the first set as constant ~ "0",
and the mu intercept (1st coef of vector b) set as as constant ~"-0.5"
fm <- aodml(formula = cbind(m, n - m) ~ seed * root, data = orob2,
 family = "bb", phi.formula = ~ seed,
 fixpar = list(c(1, 5), c(-0.5, 1e-15)))
fm$param
fm$varparam

Model tests

LR tests - non-constant phi
fm0 <- aodml(cbind(m, n - m) ~ 1, data = orob2, family = "bb")
fm2 <- aodml(cbind(m, n - m) ~ seed + root, data = orob2, family = "bb")
fm3 <- aodml(cbind(m, n - m) ~ seed * root, data = orob2, family = "bb")
anova(fm0, fm1, fm2, fm3)

LR tests - constant phi
phi is assumed to be estimated from fm3
fm2.bis <- aodml(cbind(m, n - m) ~ seed + root, data = orob2,
 family = "bb", fixpar = list(4, fm3$phi))
LRstat <- 2 * (logLik(fm3) - logLik(fm2.bis))
pchisq(LRstat, df = 1, lower.tail = FALSE)

Wald test of the seed factor in fm1
wald.test(b = coef(fm3), varb = vcov(fm3), Terms = 4)

#------ Negative binomial model

Modelling counts

data(salmonella)
fm1 <- aodml(m ~ log(dose + 10) + dose, data = salmonella, family = "nb")
fm1 <- aodml(m ~ log(dose + 10) + dose, data = salmonella, family = "nb",
method = "Nelder-Mead")

summaries
fm1
summary(fm1)
coef(fm1)
vcov(fm1)
logLik(fm1)
deviance(fm1)
AIC(fm1)
gof(fm1)

predictions
cbind(
 fitted(fm1),
 fitted(fm1, what = "nu"),
 fitted(fm1, what = "eta"),
 fitted(fm1, what = "phi")
)
predict(fm1, type = "response", se.fit = TRUE)
newdat <- data.frame(dose = c(20, 40))
predict(fm1, type = "response", se.fit = TRUE, newdata = newdat)

various phi scales
fm <- aodml(m ~ log(dose + 10) + dose, data = salmonella, family = "nb")
fm$phi
fm$phi.scale
fm <- aodml(m ~ log(dose + 10) + dose, data = salmonella, family = "nb", phi.scale = "log")
fm$phi
fm$phi.scale
fm <- aodml(m ~ log(dose + 10) + dose, data = salmonella, family = "nb", phi.scale = "inverse")
fm$phi
fm$phi.scale

LR and Wald tests of the "log(dose + 10) + dose" factors
fm0 <- aodml(m ~ 1, data = salmonella, family = "nb")
anova(fm0, fm1)
fm0.bis <- aodml(m ~ 1, data = salmonella, family = "nb", fixpar = list(2, fm1$phi))
LRstat <- -2 * (logLik(fm1) - logLik(fm0.bis))
pchisq(LRstat, df = 2, lower.tail = FALSE)
wald.test(b = coef(fm1), varb = vcov(fm1), Terms = 2:3)

Modelling a rate

data(dja)
rate "m / trisk"
fm <- aodml(formula = m ~ group + offset(log(trisk)), data = dja, family = "nb")
summary(fm)
fm <- aodml(formula = m ~ group + offset(log(trisk)), phi.formula = ~ group, data = dja, family = "nb", phi.scale = "log")
summary(fm)

model with 1 phi coefficient, set as constant "0.8"
fm <- aodml(formula = m ~ group + offset(log(trisk)), data = dja, family = "nb", phi.formula = ~1, fixpar = list(3, 0.8))
fm$param
fm$vparam

model with 2 phi coefficients, with the first set as constant ~ "0" in the identity scale
fm <- aodml(formula = m ~ group + offset(log(trisk)), data = dja, family = "nb", phi.formula = ~ group, phi.scale = "log", fixpar = list(4, -15))
fm$param
fm$vparam

model with 2 phi coefficients, with the first set as constant "0" in the identity scale,
and the mu intercept coefficient (1st coef of vector b) set as as constant "-0.5"
fm <- aodml(formula = m ~ group + offset(log(trisk)), data = dja,
 family = "nb", phi.formula = ~ group, phi.scale = "log",
 fixpar = list(c(1, 4), c(-0.5, -15)))
fm$param
fm$varparam

Data

Description

From clustered data, the function fits generalized linear models containing an over-dispersion parameter Φ using quasi-likelihood estimating equations for the mean μ and a moment estimator for Φ.

For binomial-type models, data have the form \(\{(n_1, m_1), (n_2, m_2), \ldots, (n_N, m_N)\} \), where \(n_i \) is the size of cluster \(i \), \(m_i \) the number of “successes”, and \(N \) the number of clusters. The response is the proportion \(y = m/n \).

For Poisson-type models, data can be of two forms. When modeling “simple counts”, data have the form \(\{m_1, m_2, \ldots, m_N\} \), where \(m_i \) is the number of occurrences of the event under study. When modeling rates (e.g. hazard rates), data have the same form as for the BB model, where \(n_i \) is the denominator of the rate for cluster \(i \) (considered as an “offset”, i.e. a constant known value) and \(m_i \) the number of occurrences of the event. For both forms of data, the response is the count \(y = m \).

Usage

```r
aodml(formula, data,
    family = c("qbin", "qpois"),
    link = c("logit", "cloglog", "probit"),
    method = c("chisq", "dev"),
    phi = NULL,
    tol = 1e-5, ...)
```

Methods

- `anova(object, ...)`
- `coef(object, ...)`
- `deviance(object, ...)`
- `df.residual(object, ...)`
- `fitted(object, ...)`
- `formula(object, ...)`
- `logLik(object, ...)`
- `null.deviance(object, ...)`
- `print(object, min = TRUE, level = TRUE, ...)`
- `residuals(object, type = "pearson", ...)"`
logLik(object, ...)
S3 method for class 'aodql'
predict(object, ...)
S3 method for class 'aodql'
print(x, ...)
S3 method for class 'aodql'
residuals(object, ...)
S3 method for class 'aodql'
summary(object, ...)
S3 method for class 'aodql'
vcov(object, ...)

Arguments

formula A formula for the mean \(\mu \), defining the parameter vector \(b \) (see details). For binomial-type models, the left-hand side of the formula must be of the form \(\text{cbind}(m, n - m) \sim \ldots \) where the fitted proportion is \(m/n \). For Poisson-type models, the left-hand side of the formula must be of the form \(m \sim \ldots \) where the fitted count is \(m \). To fit a rate, argument offset must be used in the right-hand side of the formula (see examples).
data A data frame containing the response (\(m \) and, optionally, \(n \)) and the explanatory variable(s).
family Define the model which is fitted: “qbin” for binomial-type models and “qpois” for Poisson-type models.
link For binomial-type models only. Define the link function \(g \) for the mean \(\mu \): “cloglog”, “logit” (default) or “probit”. For Poisson-type models, \(\text{link} \) is automatically set to “log”.
method For function \text{aodql}, define the statistics used for the moment estimation of \(\phi \); legal values are “chisq” (default) for the chi-squared statistics or “dev” for the deviance statistics.
phi An optional value defining the over-dispersion parameter \(\Phi \) if it is set as constant. Default to NULL (in that case, \(\Phi \) is estimated).
tol A positive scalar (default to 0.001). The algorithm stops at iteration \(r + 1 \) when the condition \(\chi^2[r + 1] - \chi^2[r] \leq tol \) is met by the \(\chi^2 \) statistics .
... Further arguments to passed to the appropriate functions.
object An object of class “aodql”.
x An object of class “aodql”.

Details

Binomial-type models

For a given cluster \((n, m)\), the model is

\[m|\lambda, n \sim \text{Binomial}(n, \lambda) \]
where λ follows a random variable of mean $E[\lambda] = \mu$ and variance $Var[\lambda] = \Phi \mu (1 - \mu)$. The marginal mean and variance of m are

$$E[m] = n \mu$$

$$Var[m] = n \mu (1 - \mu) (1 + (n - 1) \Phi)$$

The response in aodql is $y = m/n$. The mean is $E[y] = \mu$, defined such as $\mu = g^{-1}(X \ast b) = g^{-1}(\nu)$, where g is the link function, X is a design-matrix, b a vector of fixed effects and $\nu = X \ast b$ is the corresponding linear predictor. The variance is $Var[y] = (1/n) \mu (1 - \mu) (1 + (n - 1) \Phi)$.

Poisson-type models

—— **Simple counts (model with no offset)**

For a given cluster (m), the model is

$$y | \lambda \sim \text{Poisson}(\lambda)$$

where λ follows a random distribution of mean μ and variance $\Phi \mu^2$. The mean and variance of the marginal distribution of m are

$$E[m] = \mu$$

$$Var[m] = \mu + \Phi \mu^2$$

The response in aodql is $y = m$. The mean is $E[y] = \mu$, defined such as $\mu = \exp(X \ast b) = \exp(\nu)$. The variance is $Var[y] = \mu + \Phi \mu^2$.

—— **Rates (model with offset)**

For a given cluster (n, m), the model is

$$m | \lambda, n \sim \text{Poisson}(\lambda)$$

where λ follows the same random distribution as for the case with no offset. The marginal mean and variance are

$$E[m | n] = \mu$$

$$Var[m | n] = \mu + \Phi \mu^2$$
The response in aodql is $y = m$. The mean is $E[y] = \mu$, defined such as $\mu = \exp(X^*b + \log(n)) = \exp(\nu + \log(n)) = \exp(\eta)$, where $\log(n)$ is the offset. The variance is $\text{Var}[y] = \mu + \Phi \mu^2$.

Other details

Vector b and parameter Φ are estimated iteratively, using procedures referred to as "Model I" in Williams (1982) for binomial-type models, and "Procedure II" in Breslow (1984) for Poisson-type models.

Iterations are as follows. Quasi-likelihood estimating equations (McCullagh & Nelder, 1989) are used to estimate b (using function glm and its weights argument), Φ being set to a constant value. Then, Φ is calculated by the moment estimator, obtained by equalizing the goodness-of-fit statistic (chi-squared X^2 or deviance D) of the model to its degrees of freedom. Parameter Φ can be set as constant, using argument phi. In that case, only b is estimated.

Value

An object of class aodql, printed and summarized by various functions.

References

See Also

glm

Examples

#------ Binomial-type models
data(orob2)
fm <- aodql(cbind(m, n - m) ~ seed, data = orob2, family = "qbin")
coef(fm)
vcov(fm)
summary(fm)
chi2 tests of the seed factor in fm
wald.test(b = coef(fm), varb = vcov(fm), Terms = 2)

chi-2 vs. deviance statistic to estimate phi
fm1 <- aodql(cbind(m, n - m) ~ seed + root, data = orob2, family = "qbin")
fm2 <- aodql(cbind(m, n - m) ~ seed + root, data = orob2, family = "qbin", method = "dev")
coef(fm1)
coef(fm2)
fml$phi
fm2$phi
vcov(fm1)
vcov(fm2)
gof(fm1)
gof(fm2)

estimate with fixed phi
fm <- aodql(cbind(m, n - m) ~ seed, data = orob2, family = "qbin", phi = 0.05)
coef(fm)
vcov(fm)
summary(fm)

#------ Poisson-type models

data(salmonella)
fm <- aodql(m ~ log(dose + 10) + dose, data = salmonella, family = "qpois")
coef(fm)
vcov(fm)
summary(fm)

chi2 tests of the "log(dose + 10) + dose" factors
wald.test(b = coef(fm), varb = vcov(fm), Terms = 2:3)

chi-2 vs. deviance statistic to estimate phi
fm1 <- aodql(m ~ log(dose + 10) + dose, data = salmonella, family = "qpois")
fm2 <- aodql(m ~ log(dose + 10) + dose, data = salmonella, family = "qpois", method = "dev")
coef(fm1)
coef(fm2)
fml$phi
fm2$phi
vcov(fm1)
vcov(fm2)
gof(fm1)
gof(fm2)

estimate with fixed phi
fm <- aodql(m ~ log(dose + 10) + dose, data = salmonella, family = "qpois", phi = 0.05)
coef(fm)
vcov(fm)
summary(fm)

modelling a rate
data(dja)
rate "m / trisk"
fm <- aodql(formula = m ~ group + offset(log(trisk)), data = dja, family = "qpois")
summary(fm)
Description

This package provides functions to analyse overdispersed counts or proportions. The functions should be considered as complements to more sophisticated methods such as generalized estimating equations (GEE) or generalized linear mixed effect models (GLMM).

Details

Functions Index:

- aodml: ML Estimation of Generalized Linear Models for Overdispersed Count Data
- aodql: QL/MM Estimation of Generalized Linear Models for Overdispersed Count Data
- drs: Test of Proportion Homogeneity between Groups using Donner’s and Rao-Scott’s Adjustments
- gof: Test of Goodness-of-Fit of Models for Count data
- iccbin: Intra-Cluster Correlation for Clustered Binomial data
- invlink: Transformation from the Link Scale to the Observation Scale
- link: Transformation from the Observation Scale to the Link Scale
- splitbin: Split Grouped Data Into Individual Data
- varbin: Estimate of a Probability from Clustered Binomial Data
- wald.test: Wald Test for Model Coefficients

Data sets Index:

- antibio: Antibiotics against Shipping Fever in Calves
- cohorts: Data set: Age, Period and Cohort Effects for Vital Rates
- dja: Mortality of Djallonke Lambs in Senegal
- lizards: A Comparison of Site Preferences of Two Species of Lizard
- mice: Pregnant Female Mice Experiment
- orob1: Germination Data
- orob2: Germination Data
- rabbits: Rabbits Foetuses Survival Experiment
- rats: Rats Diet Experiment
- salmonella: Salmonella Reverse Mutagenicity Assay

Author(s)

Matthieu Lesnoff <matthieu.lesnoff@cirad.fr> and Renaud Lancelot <renaud.lancelot@cirad.fr>
Maintainer: Renaud Lancelot <renaud.lancelot@cirad.fr>

cohorts

Age, Period and Cohort Effects for Vital Rates

Description

Number of prostate cancer deaths and midperiod population for nonwhites in the USA by age and period. The cohort index k is related to age and period indices (i and j, respectively) by $k = j + I - i$, where $I = \max(i)$ (Holford, 1983, Table 2).
Usage
data(cohorts)

Format
A data frame with 49 observations on the following 4 variables.

period A factor with levels 1935-, 1940-, . . . , 1965-.
age A factor with levels 50-, 55-, . . . , 80-.
m Numeric: the number of prostate cancer deaths.
n Numeric: the midperiod population size.

References

Description
Field trial to assess the effect of ewes deworming (prevention of gastro-intestinal parasitism) on the mortality of their offspring (age < 1 year). This data set is extracted from a large database on small ruminants production and health in Senegal (Lancelot et al., 1998). Data were collected in a sample of herds in Kolda (Upper Casamance, Senegal) during a multi-site survey (Faugère et al., 1992). See also the references below for a presentation of the follow-up survey (Faugère and Faugère, 1986) and a description of the farming systems (Faugère et al., 1990).

Usage
data(dja)

Format
A data frame with 21 observations on the following 4 variables.

group a factor with 2 levels: CTRL and TREAT, indicating the treatment.
village a factor indicating the village of the herd.
herd a factor indicating the herd.
n a numeric vector: the number of animals exposed to mortality.
trisk a numeric vector: the exposition time to mortality (in year).
m a numeric vector: the number of deaths.
References

drs

Test of Proportion Homogeneity between Groups using Donner’s and Rao-Scott’s Adjustments

Description

The function tests the homogeneity of probabilities between J groups ($H_0: \mu_1 = \mu_2 = ... = \mu_J$) from clustered binomial data $\{(n_1, m_1), (n_2, m_2), ..., (n_N, m_N)\}$, where n_i is the size of cluster i, m_i the number of “successes” (proportions are $y = m/n$), and N the number of clusters. The function uses adjusted chi-squared statistics, with either the correction proposed by Donner (1989) or the correction proposed by Rao and Scott (1993).

Usage

drs(formula, data, type = c("d", "rs"), C = NULL, pooled = FALSE)

S3 method for class 'drs'
print(x, ...)
\textbf{C} An optional vector of a priori \(J \) cluster correction factors used for the Donner’s test or design effects factors used for the Rao-Scott’s test. If \(C \) is set no NULL (default), it is calculated internally (see details).

\textbf{pooled} Logical indicating if a pooled design effect is estimated over the \(J \) groups for the Rao-Scott’s test (see details). Default to FALSE.

\textbf{x} An object of class “drf”.

\ldots Further arguments to be passed to \texttt{print}.

\textbf{Details}

\textbf{Donner’s test}

The chi-squared statistic is adjusted with the correction factor \(C_j \) computed in each group \(j \). The test statistic is given by:

\[
X^2 = \sum_j \left(\frac{(m_j - n_j \mu)^2}{(C_j n_j \mu (1 - \mu))} \right)
\]

where \(\mu = \frac{\sum_j (m_j)}{\sum_j (n_j)} \) and \(C_j = 1 + (n_{A,j} - 1) \rho \). \(n_{A,j} \) is a scalar depending on the cluster sizes, and \(\rho \) is the ANOVA estimate of the intra-cluster correlation assumed common across groups (see Donner, 1989 or Donner et al., 1994). The statistic is compared to a chi-squared distribution with \(J - 1 \) degrees of freedom. Fixed correction factors \(C_j \) can be specified with the argument \(C \).

\textbf{Rao ans Scott’s test}

The method uses design effects and “effective” sample sizes. The design effect \(C_j \) in each group \(j \) is estimated by \(C_j = v_{\text{ratio},j}/v_{\text{bin},j} \), where \(v_{\text{ratio},j} \) is the variance of the ratio estimate of the probability in group \(i \) (Cochran, 1999, p. 32 and p. 66) and \(v_{\text{bin},j} \) is the standard binomial variance. The \(C_j \) are used to compute the effective sample sizes \(n_{adj,j} = n_j/C_j \), the effective numbers of successes \(m_{adj,j} = m_j/C_j \) in each group \(j \), and the overall effective proportion \(\mu_{adj} = \frac{\sum_j m_{adj,j}}{\sum_j C_j} \). The test statistic is obtained by substituting these quantities in the usual chi-squared statistic, yielding:

\[
X^2 = \sum_j \left(\frac{(m_{adj,j} - n_{adj,j} \mu_{adj})^2}{(n_{adj,j} \mu_{adj} (1 - \mu_{adj}))} \right)
\]

which is compared to a chi-squared distribution with \(J - 1 \) degrees of freedom.

A pooled design effect over the \(J \) groups is estimated if argument \texttt{pooled} = TRUE (see Rao and Scott, 1993, Eq. 6). Fixed design effects \(C_j \) can be specified with the argument \(C \).

\textbf{Value}

An object of class \texttt{drs}, printed with \texttt{print.drs}.

\textbf{References}

See Also

chisq.test

Examples

data(dja)
Donner
drs(formula = cbind(m, n - m) ~ group, data = dja, type = "d")
Rao and Scott
drs(formula = cbind(m, n - m) ~ group, type = "rs", data = dja)
drs(formula = cbind(m, n - m) ~ group, type = "rs", data = dja, pooled = TRUE)
standard chi2 test
drs(formula = cbind(m, n - m) ~ group, data = dja, type = "d", C = c(1:1))
drs(formula = cbind(m, n - m) ~ group, data = dja, type = "rs", C = c(1:1))

gof Test of Goodness-of-Fit of Models for Count data

Description

The function returns a chi-squared test of goodness of fit for models of class glm, aodml or aodql.

Usage

gof(object)
gof.default(object)

S3 method for class 'gof'
print(x, ..., digits = max(3, getOption("digits") - 3))

Arguments

object An object of class glm, aodml or aodquasi.
x An object of class gof.
digits A numerical scalar indicating the number of digits to be printed after the decimal place.
... Further arguments passed to print.

Details

Function gof calculates the deviance \(D \) and the Pearson chi-squared \(X^2 \) statistics for the model under consideration. Let \(y \) be the observed response, and \(E[y] = \mu \) and \(Var[y] \) its mean and variance estimated from the model, statistic \(X^2 \) is calculated by:

\[
X^2 = \sum_i ((y_i - \mu)^2 / Var[y_i])
\]

Assuming that the data length is \(N \) and the number of the parameters in the model is \(p \), eqnD and eqnX^2 are compared to a chi-squared distribution with \(N - p \) degrees of freedom.
iccbjn

Value
An object of class gof, printed with print.gof.

References

See Also
residuals, chisq.test

Examples

data(orob2)
fm1 <- glm(cbind(m, n - m) ~ seed, data = orob2, family = binomial)
fm2 <- aodml(cbind(m, n - m) ~ seed, data = orob2, family = "bb")
gof(fm1)
gof(fm2)

iccbjn

Intra-Cluster Correlation for Clustered Binomial data

Description
The function estimates the intraclass correlation ρ from clustered binomial data:
$\{(n_1, m_1), (n_2, m_2), ..., (n_N, m_N)\}$,
where n_i is the size of cluster i, m_i the number of “successes” (proportions are $y = m/n$), and
N the number of clusters. The function uses a one-way random effect model. Three estimates,
corresponding to methods referred to as “A”, “B” and “C” in Goldstein et al. (2002), can be returned.

Usage

iccbjn(n, m, method = c("A", "B", "C"), nAGQ = 1, M = 1000)

S3 method for class 'iccbjn'
print(x, ...)

Arguments

- n: A vector of the sizes of the clusters.
- m: A vector of the numbers of successes (proportions are $y = m/n$).
- method: A character (“A”, “B” or “C”) defining the calculation method. See Details.
- nAGQ: Same as in function glmer of package lme4. Only for methods “A” and “B”. Default to 1.
- M: Number of Monte Carlo (MC) replicates used in method “B”. Default to 1000.
- x: An object of class “iccbjn”.
- ...: Further arguments to be passed to “print".
Details

Before computations, the clustered data are split to binary “0/1” observations \(y_{ij} \) (observation \(j \) in cluster \(i \)). The methods of calculation are described in Goldstein et al. (2002).

Methods "A" and "B" use the 1-way logistic binomial-Gaussian model

\[
y_{ij}|\mu_{ij} \sim \text{Bernoulli}(\mu_{ij})
\]

\[
\text{logit}(\mu_{ij}) = b_0 + u_i,
\]

where \(b_0 \) is a constant and \(u_i \) a cluster random effect with \(u_i \sim N(0, s^2_u) \). The ML estimate of the variance component \(s^2_u \) is calculated with the function \text{glmer} of package \text{lme4}. The intraclass correlation \(\rho = \text{Corr}[y_{ij}, y_{ik}] \) is then calculated from a first-order model linearization around \(E[u_i] = 0 \) in method “A”, and with Monte Carlo simulations in method “B”.

Method "C" provides the common ANOVA (moment) estimate of \(\rho \). For details, see for instance Donner (1986), Searle et al. (1992) or Ukoumunne (2002).

Value

An object of class iccbin, printed with \text{print.iccbin}.

References

See Also

\text{glmer}

Examples

data(rats)
\n\text{z} <- \text{rats[rats$group == "TREAT",]}
\n# A: glmm (model linearization)
\text{iccbin} (\text{z$n}, \text{z$m}, \text{method = "A"})
\text{iccbin} (\text{z$n}, \text{z$m}, \text{method = "A"}, \text{nAGQ = 10})
\n# B: glmm (Monte Carlo)
```r
iccbin(z$n, z$m, method = "B")
iccbin(z$n, z$m, method = "B", nAGQ = 10, M = 1500)
# C: lmm (ANOVA moments)
iccbin(z$n, z$m, method = "C")

## Not run:
# Example of CI calculation with nonparametric bootstrap
require(boot)
foo <- function(X, ind) {
  n <- X$n[ind]
  m <- X$m[ind]
  iccbin(n = n, m = m, method = "C")$rho
}
res <- boot(data = z[, c("n", "m")], statistic = foo, R = 500, sim = "ordinary", stype = "i")
res
boot.ci(res, conf = 0.95, type = "basic")
## End(Not run)
```

invlink

Transformation from the Link Scale to the Observation Scale

Description

The function transforms a variable from the link scale to the observation scale (probability or count).

Usage

```r
invlink(x, type = c("cloglog", "log", "logit", "probit"))
```

Arguments

- `x`: A vector of real numbers.
- `type`: A character string: “cloglog”, “log”, “logit” or “probit”.

Value

- **clog-log**: \(1 - \exp(-\exp(x))\)
- **log**: \(\exp(x)\)
- **logit**: \(\exp(x)/(1 + \exp(x))\)
- **probit**: \(\text{pnorm}(x)\)

See Also

- `link`

invlink

Transformation from the Link Scale to the Observation Scale

Description

The function transforms a variable from the link scale to the observation scale (probability or count).

Usage

```r
invlink(x, type = c("cloglog", "log", "logit", "probit"))
```

Arguments

- `x`: A vector of real numbers.
- `type`: A character string: “cloglog”, “log”, “logit” or “probit”.

Value

- **clog-log**: \(1 - \exp(-\exp(x))\)
- **log**: \(\exp(x)\)
- **logit**: \(\exp(x)/(1 + \exp(x))\)
- **probit**: \(\text{pnorm}(x)\)

See Also

- `link`
Examples

```r
x <- seq(-5, 5, length = 100)
plot(x, invlink(x, type = "logit"), type = "l", lwd = 2, ylab = "Probability")
lines(x, invlink(x, type = "cloglog"), lty = 2, lwd = 2)
grid(col = "black")
legend(-5, 1, legend = c("a\text{logit}(x)", "ac\text{loglog}(x)"), lty = c(1, 2), bg = "white")
```

link

Transformation from the Observation Scale to the Link Scale

Description

The function transforms a variable from the observation scale (probability or count) to the link scale.

Usage

```r
link(x, type = c("cloglog", "log", "logit", "probit"))
```

Arguments

- **x**: A vector of real numbers.
- **type**: A character string: "cloglog", "log", "logit" or "probit".

Value

- clog-log: \(\log(-\log(1 - x)) \)
- log: \(\log(x) \)
- logit: \(\log(x/(1 - x)) \)
- probit: \(\text{qnorm}(x) \)

See Also

invlink

Examples

```r
x <- seq(.001, .999, length = 100)
plot(x, link(x, type = "logit"), type = "l", lwd = 2, ylab = "link(proba.)")
lines(x, link(x, type = "cloglog"), lty = 2, lwd = 2)
grid(col = "black")
legend(0, 6, legend = c("\text{logit}(x)", "\text{cloglog}(x)"), lty = c(1, 2), bg = "white")
```
A Comparison of Site Preferences of Two Species of Lizard

Description

“These data describe the daytime habits of two species of lizards, *grahami* and *opalinus*. They were collected by observing occupied sites or perches and recording the appropriate description, namely species involved, time of the day, height and diameter of the perch and whether the site was sunny or shaded. Time of the day is recorded as early, mid-day or late.” (McCullagh and Nelder, 1989, p.129).

Usage

data(lizards)

Format

A data frame with 24 observations on the following 6 variables.

- **Site** A factor with levels Sun and Shade.
- **Diameter** A factor with levels D <= 2 and D > 2 (inches).
- **Height** A factor with levels H < 5 and H >= 5 (feet).
- **Time** A factor with levels Early, Mid-day and Late.
- **grahami** A numeric vector giving the observed sample size for *grahami* lizards.
- **opalinus** A numeric vector giving the observed sample size for *opalinus* lizards.

Details

The data were originally published in Fienberg (1970).

Source

References

mice
Pregnant Female Mice Experiment

Description

Unpublished laboratory data on the proportion of affected foetuses in two groups (control and treatment) of 10 pregnant female mice (Kupper and Haseman, 1978, p. 75).

Usage

```r
data(mice)
```

Format

A data frame with 20 observations on the following 3 variables.

- **group** a factor with levels `CTRL` and `TREAT`
- **n** a numeric vector: the total number of foetuses.
- **m** a numeric vector: the number of affected foetuses.

References

orob1
Germination Data

Description

Data describing the germination for seed *Orobanche cernua* cultivated in three dilutions of a bean root extract (Crowder, 1978, Table 1). The mean proportions of the three groups are 0.142, 0.872 and 0.842, and the overall mean is 0.614.

Usage

```r
data(orob1)
```

Format

A data frame with 16 observations on the following 3 variables.

- **dilution** a factor with 3 levels: 1/1, 1/25 and 1/625.
- **n** a numeric vector: the number of seeds exposed to germination.
- **m** a numeric vector: the number of seeds which actually germinated.
References

Germination Data

Description

A 2 x 2 factorial experiment comparing 2 types of seed and 2 root extracts (Crowder, 1978, Table 3). There are 5 or 6 replicates in each of the 4 treatment groups, and each replicate comprises a number of seeds varying between 4 and 81. The response variable is the proportion of seeds germinating in each replicate.

Usage

data(orob2)

Format

A data frame with 21 observations on the following 4 variables.

- **seed**: a factor with 2 levels: 073 and 075.
- **root**: a factor with 2 levels BEAN and CUCUMBER.
- **n**: a numeric vector: the number of seeds exposed to germination.
- **m**: a numeric vector: the number of seeds which actually germinated.

References

Rabbits Foetuses Survival Experiment

Description

Experimental data for analyzing the effect of an increasing dose of a compound on the proportion of live foetuses affected (Paul, 1982, Table 1). Four treatment-groups were considered: control “C”, low dose “L”, medium dose “M” and high dose “H”. The animal species used in the experiment was banded Dutch rabbit.

Usage

data(rabbits)
Format

A data frame with 84 observations on the following 3 variables.

- **group** a factor with levels C, H, L and M
- **n** a numeric vector: the total number of foetuses.
- **m** a numeric vector: the number of affected foetuses.

References

Description

“Weil (1970) in Table 1 gives the results from an experiment comprising two treatments. One group of 16 pregnant female rats was fed a control diet during pregnancy and lactation, the diet of a second group of 16 pregnant females was treated with a chemical. For each litter the number \(n \) of pups alive at 4 days and the number \(x \) of pups that survived the 21 day lactation period were recorded.” (Williams, 1975, p. 951).

Usage

`data(rats)`

Format

A data frame with 32 observations on the following 3 variables.

- **group** A factor with levels CTRL and TREAT
- **n** A numeric vector: the number of pups alive at 4 days.
- **m** A numeric vector: the number of pups that survived the 21 day lactation.

Source

References

Weil, C.S., 1970. *Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis*. Fd. Cosmet. Toxicol. 8, 177-182.
Salmonella

Salmonella Reverse Mutagenicity Assay

Description

“Data for our third example were compiled by Margolin et al. (1981) from an Ames *Salmonella* reverse mutagenicity assay. Table 1 shows the number of revertant colonies observed on each of 3 replicate plates tested at each of 6 dose levels of quinoline.” (Breslow, 1984, Table 1).

Usage

```r
data(salmonella)
```

Format

A data frame with 18 observations on the following 2 variables.

- **dose** a numeric vector: the dose level of quinoline (microgram per plate).
- **m** a numeric vector: the number of revertant colonies of TA98 *Salmonella*.

Source

References

Split bin

Split Grouped Data Into Individual Data

Description

The function splits grouped binomial data and optional covariates to individual binary data. Two types of grouped data are managed by `splitbin`:

- Grouped data with weights;
- Grouped data of form `cbind(success, failure)`.

When weights, successes or failures involve non-integer numbers, these numbers are rounded (using `round()`) before splitting.

Usage

```r
splitbin(formula, data, id = "idbin")
```
Arguments

- **formula**: A formula. The left-hand side describes the grouped data. The right-hand side describes the covariates. See examples for syntax.
- **data**: A data frame where all the variables described in formula are found.
- **id**: An optional character string naming the identifier (= grouping factor). Default to "idbin".

Value

A data frame built according to the formula and function used in the call.

Examples

```r
# grouped data with weights
z <- data.frame(m = c(0, 1, 0, 1),
                f1 = c("A", "A", "B", "B"),
                f2 = c("C", "D", "C", "D"),
                n = c(4, 2, 1, 3))
z
splitbin(formula = n ~ f1, data = z)$tab
splitbin(formula = n ~ f1 + f2 + m, data = z)$tab

# grouped data of form "cbind(success, failure)"
z <- data.frame(m = c(4, 1),
                n = c(5, 3),
                f1 = c("A", "B"),
                f2 = c("C", "D"))
z
splitbin(formula = cbind(m, n - m) ~ 1, data = z)$tab
splitbin(formula = cbind(m, n - m) ~ f1 + f2, data = z)$tab
```

varbin

Estimate of a Probability from Clustered Binomial Data

Description

The function estimates a probability and its variance from clustered binomial data

\{(n_1, m_1), (n_2, m_2), ..., (n_N, m_N)\},

where \(n_i\) is the size of cluster \(i\), \(m_i\) the number of “successes” (proportions are \(y = m/n\)), and \(N\) the number of clusters. Confidence intervals are calculated using a normal approximation, which might be inappropriate when the probability is close to 0 or 1.
Usage

```r
varbin(n, m, alpha = 0.05, R = 5000)
```

S3 method for class 'varbin'

```r
print(x, ...)
```

Arguments

- **n**: A vector of the sizes of the clusters.
- **m**: A vector of the numbers of successes (proportions are given by \(m / n \)).
- **alpha**: The significance level for the confidence intervals. Default to 0.05, providing 95% CI’s.
- **R**: The number of bootstrap replicates to compute bootstrap mean and variance. Default to 5000.
- **x**: An object of class “varbin”.
- **...**: Further arguments to be passed to “print”.

Details

Five methods are used for the estimations. Let us consider \(N \) clusters of sizes \(n_1, \ldots, n_N \) with observed count responses \(m_1, \ldots, m_N \). We note \(y_i = m_i/n_i \) \((i = 1, \ldots, N)\) the observed proportions. The underlying assumption is that the probability, say \(\mu \), is homogeneous across the clusters.

Binomial method: the probability estimate and its variance are calculated by

\[
\mu = \frac{\text{sum}_i(m_i)}{\text{sum}_i(n_i)} \quad \text{(ratio estimate)}
\]

\[
\mu \times (1 - \mu) / (\text{sum}_i(n_i) - 1), \quad \text{respectively.}
\]

Ratio method: the probability \(\mu \) is estimated as for the binomial method (ratio estimate). The one-stage cluster sampling formula is used to calculate the variance of \(\mu \) (see Cochran, 1999, p. 32 and p. 66).

Arithmetic method: the probability is estimated by \(\mu = \text{sum}_i(y_i) / N \). The variance of \(\mu \) is estimated by \(\text{sum}_i(y_i - \mu)^2 / (N \times (N - 1)) \).

Jackknife method: the probability is estimated by \(\mu \) defined by the arithmetic mean of the pseudo-values \(y_{v,i} \). The variance is estimated by \(\text{sum}_i(y_{v,i} - \mu)^2 / (N \times (N - 1)) \) (Gladen, 1977, Paul, 1982).

Bootstrap method: \(R \) samples of clusters of size \(N \) are drawn with equal probability from the initial sample \((y_1, \ldots, y_N)\) (Efron and Tibshirani, 1993). The bootstrap estimate \(\mu \) and its estimated variance are the arithmetic mean and the empirical variance (computed with denominator \(R - 1 \)) of the \(R \) binomial ratio estimates, respectively.

Value

An object of class varbin, printed with print.varbin.
wald.test

Wald Test for Model Coefficients

Description

The function returns a Wald chi-squared test or a F test for a vector of model coefficients (possibly of length one), given its variance-covariance matrix.

Usage

wald.test(b, varb, Terms = NULL, L = NULL, H0 = NULL, df = NULL, verbose = FALSE, ...)

S3 method for class 'wald.test'
print(x, ..., digits = max(3,getOption("digits") - 3))

Arguments

b
A vector of coefficients with their var-cov matrix varb. Coefficients b and var-cov matrix are usually extracted using appropriate coef and vcov functions.

varb
A var-cov matrix of coefficients b (see above).

Terms
An optional integer vector specifying which coefficients should be jointly tested, using a Wald chi-squared test or a F test. The elements of varb correspond to the columns or rows of the var-cov matrix given in varb. Default is NULL.

L
An optional matrix conformable to b, such as its product with b i.e., L %*% b gives the linear combinations of the coefficients to be tested. Default is NULL.
wald.test

H0 A numeric vector giving the null hypothesis H_0 for the test. It must be as long as Terms or must have the same number of columns as L. Default to 0 for all the coefficients to be tested.

df A numeric vector giving the degrees of freedom to be used in an F test, i.e. the degrees of freedom of the residuals of the model from which b and varb were fitted. Default to NULL, for no F test. See the section Details for more information.

verbose A logical scalar controlling the amount of output information. The default is FALSE, providing minimum output.

x An object of class “wald.test”

digits A numeric scalar indicating the number of digits to be kept after the decimal place.

... Additional arguments to print.

Details

The assumption is that the coefficients follow asymptotically a multivariate normal distribution with mean equal to the model coefficients b and variance equal to their var-cov matrix varb.

One (and only one) of Terms or L must be given. When L is given, it must have the same number of columns as the length of b, and the same number of rows as the number of linear combinations of coefficients.

When df is given, the chi-squared Wald statistic is divided by m, the number of linear combinations of coefficients to be tested (i.e., length(Terms) or nrow(L)). Under the null hypothesis H_0, this new statistic follows an $F(m, df)$ distribution.

Value

An object of class wald.test, printed with print.wald.test.

References

Examples

data(orob2)
fm <- aodql(cbind(m, n - m) ~ seed * root, data = orob2, family = "qbin")
Wald chi2 test for the effect of root
wald.test(b = coef(fm), varb = vcov(fm), Terms = 3:4)
L <- matrix(c(0, 0, 1, 0, 0, 0, 0, 1), nrow = 2, byrow = TRUE)
wald.test(b = coef(fm), varb = vcov(fm), L = L)
Index

* datagen
 drs, 18
gof, 20
iccbin, 21
splitbin, 29
varbin, 30

* datasets
 antibio, 2
cohorts, 16
dja, 17
lizards, 25
mice, 26
orob1, 26
orob2, 27
rabbits, 27
rats, 28
salmonella, 29

* htest
 wald.test, 32

* math
 invlink, 23
 link, 24

* package
 aods3-pkg, 16

* regression
 aodml, 3
 aodql, 11

AIC.aodml (aodml), 3
anova.aodml (aodml), 3
anova.aodql (aodql), 11
antibio, 2
aodml, 3
aodql, 11
aods3 (aods3-pkg), 16
aods3-pkg, 15
boot, 32
chisq.test, 20, 21

coef.aodml (aodml), 3
coef.aodql (aodql), 11
cohorts, 16
deviance.aodml (aodml), 3
deviance.aodql (aodql), 11
df.residual.aodml (aodml), 3
df.residual.aodql (aodql), 11
dja, 17
drs, 18
fitted.aodml (aodml), 3
fitted.aodql (aodql), 11
glm, 7, 14
glmer, 22
gof, 20
iccbin, 21
invlink, 23, 24
link, 23, 24
lizards, 25
logLik.aodml (aodml), 3
logLik.aodql (aodql), 11
mice, 26
optim, 5, 7
orob1, 26
orob2, 27
predict.aodml (aodml), 3
predict.aodql (aodql), 11
print.anova.aodml (aodml), 3
print.aodml (aodml), 3
print.aodql (aodql), 11
print.drs (drs), 18
print.gof (gof), 20
print.iccbin (iccbin), 21
print.summary.aodml (aodml), 3

34
INDEX

print.varbin(varbin), 30
print.wald.test(wald.test), 32

rabbits, 27
rats, 28
residuals, 21
residuals.aodml(aodml), 3
residuals.aodql(aodql), 11

salmonella, 29
splitbin, 29
summary.aodml(aodml), 3
summary.aodql(aodql), 11

varbin, 30
vcov.aodml(aodml), 3
vcov.aodql(aodql), 11

wald.test, 32