Package ‘aoos’

May 7, 2017

Type Package
Title Another Object Orientation System
Version 0.5.0
Date 2017-05-06
BugReports https://github.com/wahani/aoos/issues
URL https://wahani.github.io/aoos
Description Another implementation of object-orientation in R. It provides syntactic sugar for the S4 class system and two alternative new implementations. One is an experimental version built around S4 and the other one makes it more convenient to work with lists as objects.
Depends methods, R(>= 3.2.0)
Imports magrittr, utils, roxygen2
License MIT + file LICENSE
Suggests testthat, knitr, rbenchmark, R6, rmarkdown
Encoding UTF-8
VignetteBuilder knitr
ByteCompile TRUE
Collate 'DC-Binary.R' 'DC-Show.R' 'DC-aoos.R' 'DC-defineClass.R'
 'DC-public-interfaces.R' 'NAMESPACE.R' 'RL-Infix.R'
 'RL-envHelper.R' 'RL-retList.R' 'S4-expressions.R'
 'S4-generics.R' 'S4-generics-test.R' 'S4-roxygen-parser.R'
 'S4-types.R' 'S4RC-Accessor.R' 'S4RC-Private.R'
 'S4RC-defineRefClass.R'
RoxygenNote 6.0.1
NeedsCompilation no
Author Sebastian Warnholz [aut, cre]
Maintainer Sebastian Warnholz <wahani@gmail.com>
Repository CRAN
Date/Publication 2017-05-07 05:33:32 UTC
R topics documented:

- .genericTest ... 2
- Accessor-class .. 3
- aoos-class ... 3
- Binary-class ... 4
- defineClass ... 5
- defineRefClass ... 7
- envCopy .. 8
- parser_%m% ... 9
- print.Print .. 9
- Private-class ... 11
- publicFunction ... 12
- retList ... 12
- Show-class ... 14
- %g% ... 15
- %type% ... 16

Index 19

| .genericTest | Generic Test |

Description
This generic function only exists to test that the rexygen2 parser work correctly. Just ignore it.

Usage
.genericTest(x, ...)

S4 method for signature 'numeric'
genericTest(x, ..., methodParam = function() 1)

Arguments
- x Object
- ... Object
- methodParam Object
Description

This is a virtual class to be contained in other class definitions. It overrides the default accessor $ and is intended to be used with the aoss class system (defineClass). Inherit from this class if you want to access public fields in the same way you access lists.

Usage

```r
## S4 method for signature 'Accessor'
x$name

## S4 replacement method for signature 'Accessor'
x$name <- value
```

Arguments

- `x` object
- `name` member name
- `value` value to assign to.

Description

This is an environment with some methods. Every class defined by defineClass will inherit from aoss. Summary will show a list of public and private members with approximated memory usage.

Usage

```r
## S4 method for signature 'aoss'
show(object)

## S4 method for signature 'aoss'
x$name

## S4 replacement method for signature 'aoss'
x$name <- value

## S3 method for class 'aoss'
summary(object, ...)

## S4 method for signature 'aoss'
as.environment(x)
```
Arguments

object object
x object
name member name
value value to assign to. Will throw an error.
... arguments passed to method (not used).

Description

This is a virtual class to be contained in other class definitions. It can be used to define binary operators, e.g. + or -, inside an aoos class definition (defineClass).

Details

At the moment you can define binary operators as methods by naming them as .<binaryOperator> (see the example). This is implemented for the following operators: +, -, *, /, %% , ^, <, >, ==, >=, <=, &.

Examples

Rational <- defineClass("Rational", contains = c("Show", "Binary"), {
 numer <- 0
 denom <- 1
 .g <- 1

 .gcd <- function(a, b) if(b == 0) a else Recall(b, a %% b)

 init <- function(numer, denom) {
 .self$.g <- .gcd(numer, denom)
 .self$numer <- numer / .g
 .self$denom <- denom / .g
 }

 show <- function() {
 cat(paste0(.self$numer, "/", .self$denom, "\n"))
 }

 ".+" <- function(that) {
 Rational(numer = numer * that$denom + that$numer * denom,
 denom = denom * that$denom)
 }

 neg <- function() {
 Rational(numer = -.self$numer,
 denom = .self$denom)
 }
})
defineClass

 denom = .self$denom)

 "." <- function(that) {
 .self + that$neg()
 }

})

rational <- Rational(2, 3)
rational + rational
rational$neg()
rational - rational

- Define a new class

Description

This is an experimental implementation of reference classes. Use defineRefClass or retList instead. defineClass has side effects. The constructor is the return value of defineClass.

Usage

defineClass(name, expr, contains = NULL)

private(x)

S4 method for signature 'public'
private(x)

public(x = NULL, validity = function(x) TRUE)

S4 method for signature `function`
public(x = NULL, validity = function(x) TRUE)

S4 method for signature 'private'
public(x = NULL, validity = function(x) TRUE)

S4 method for signature 'public'
public(x = NULL, validity = function(x) TRUE)

Arguments

name character name of the class
expr expression
contains character name of class from which to inherit
x an object made public
validity function to check the validity of an object
defineClass

Details

defineClass creates a S4-Class which can be used for standard S4 method dispatch. It will also set
the method 'initialize' which need not to be changed. If you want to have some operations carried
out on initialization use a function definition named init as part of expr. The return value from
defineClass is the constructor function. It has the argument ... which will be passed to init.
All classes defined with defineClass inherit from class "aoos" which is a S4-class containing an
environment. In that environment expr is evaluated; for inheritance, all expr from all parents will
be evaluated first.

Everything in expr will be part of the new class definition. A leading dot in a name will be inter-
preted as private. You can use public and private to declare private and public members explicitly.
If x in a call to public is a function it will be a public member function (method). For any other
class the return value of public is a get and set method. If called without argument it will get the
value, if called with argument it will set the value. You can define a validity function which will
be called whenever the set method is called. Objects which inherit from class environment can be
accessed directly, i.e. not via get/set methods. If you want to access fields without get/set methods,
you can use the class Accessor-class.

See Also

Accessor-class, Binary-class, Show-class

Examples

test <- defineClass("test", {
 x <- "Working ..."
 .y <- 0
 doSomething <- public(function() {
 self$.y <- .y + 1
 cat(x(), "\n")
 invisible(self)
 })
})
instance <- test()
Not run:
instance$.y # error

Not run
instance$doSomething()$doSomething()
instance$x()
instance$x(2)
instance$x()

Example for reference classes as field
MoreTesting <- defineClass("MoreTesting", {
 refObj <- test()
})
instance <- MoreTesting()
instance$refObj$x()
Define a Reference Class

Description

This is a wrapper around setRefClass. All arguments are defined in an expression (instead of lists) which improves readability of the code. Besides that, no additional features are added.

Usage

defineRefClass(expr)

Arguments

expr an expression

See Also

Private-class

Examples

Not run:
vignette("Introduction", "aoos")

End(Not run)

Minimal example:
Test <- defineRefClass({
 Class <- "Test" # this is passed as argument to setRefClass
 x <- "character" # all objects which are not functions are fields
 do <- function() cat("Yes, Yes, I'm working...") # a method
})

test <- Test()
test$x <- "a"
test$do()

Inheritance and privacy:
pTest <- defineRefClass{
 Class <- "pTest"
 # Privacy is solved by inheriting from a class 'Private' which redefines
 # the methods for access.
 contains <- c("Test", "Private") # passed as argument to setRefClass
 .y <- "numeric" # this is going to be 'private'

doSomething <- function() {
 .self$.y <- 42
 cat(x, .y, "\n")
invisible(.self)
})
)

instance <- pTest()
instance$x <- "Value of .y:"
instance$doSomething()

A notion of privacy:
stopifnot(inherits(try(instance$y), "try-error"))
stopifnot(inherits(try(instance$y <- 2), "try-error"))

envCopy

* Helpers for environments

Description

Functions to help working with environments.

Usage

```
envCopy(from, to)
```

```
envMerge(x, with)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>environment</td>
</tr>
<tr>
<td>to</td>
<td>environment</td>
</tr>
<tr>
<td>x</td>
<td>environment</td>
</tr>
<tr>
<td>with</td>
<td>environment</td>
</tr>
</tbody>
</table>

Details

envCopy tries to copy all objects in a given environment into the environment 'to'. Returns the names of copied objects.

envMerge will merge x and with. Merge will copy all objects from x to with. Prior to that, the environment of functions are changed to be with iff functions in x have environment x; else the environment of functions are preserved.

See Also

`retList` where these are relevant.
Parser for roxygen documentation

Description

These functions are used by roxygen2 for generating documentation.

Usage

"parser_%m%"(call, env, block)

"parser_%g%"(call, env, block)

"parser_%type%"(call, env, block)

Arguments

call a call
env an environment
block is ignored

print.Print S3 helper classes

Description

There is no formal class definition for S3. Simply add 'Infix' or 'Print' to the class attribute and it inherits the methods. It is the same as Binary-class or Show-class just for S3. This is inteded to be used with retList.

Usage

S3 method for class 'Print'
print(x, ...)

S3 method for class 'Infix'
e1 + e2

e1 - e2

e1 / e2

S3 method for class 'Infix'
e1 %% e2

S3 method for class 'Infix'
e1 ^ e2

S3 method for class 'Infix'
e1 < e2

S3 method for class 'Infix'
e1 > e2

S3 method for class 'Infix'
e1 == e2

S3 method for class 'Infix'
e1 >= e2

S3 method for class 'Infix'
e1 <= e2

S3 method for class 'Infix'
e1 & e2

S3 method for class 'Infix'
!x

S3 method for class 'Infix'
as.environment(x)

Arguments

x an object

... arguments passed to the local print method.
e1 lhs operand
e2 rhs operand

Details

The lhs is coerced with as.environment and in that environment the binary operators must be found and named as .<binaryOperator> (see the example for retList). This is implemented for the following operators: +, -, *, /, %%, ^, <, >, ==, >=, <=, &. Also part of the operators you can implement with Infix is !, although it is unary.

See Also

Binary-class, retList
Description

This is a virtual class to be contained in other class definitions. It overrides the default subset functions $ and [[such that private member of a class can not be accessed. Private is every object which has a name with a leading "." (grepl("\." , name)). After this check the standard method for class 'envRefClass' is called or an error is reported.

Usage

```r
## S4 method for signature 'Private'
x$name

## S4 replacement method for signature 'Private'
x$name <- value

## S4 method for signature 'Private'
x[i, j, ...]

## S4 replacement method for signature 'Private'
x[i, j, ...] <- value
```

Arguments

- `x` the object
- `name` name of field or method
- `value` any object
- `i` like name
- `j` ignored
- `...` ignored

See Also

- `defineRefClass`

Examples

```r
ClassWithPrivateField <- defineRefClass({
  Class <- "ClassWithPrivateField"
  contains <- "Private"

  .p <- "numeric"

  getP <- function() .p
  setP <- function(v) .self$.p <- v
})
```


```r
retList <- ClassWithPrivateField()
stopifnot(inherits(test$., "try-error"))
stopifnot(inherits(test$.p <- 2), "try-error")
stopifnot(inherits(test[["p"]]), "try-error")
stopifnot(inherits(test[["p"]]] <- 2), "try-error")
```

publicFunction

Constructors for public members

Description

These functions are used internally. You should not rely on them. Use `public` instead.

Usage

```
publicFunction(fun)
```

```
publicValue(x = NULL, validity = function(x) TRUE)
```

```r
## S4 method for signature 'publicEnv'

x$name
```

Arguments

- **fun**: function definition
- **x**: a default value
- **validity**: an optional validity function for the set method. Returns TRUE or FALSE.
- **name**: name of member in reference object

retList

Generic constructor function

Description

This functions can be used to construct a list with class attribute and merged with another list called `super`. The constructed list will contain (by default) all visible objects from the environment from which `retList` is called.
Usage
retList(class = NULL, public = ls(envir), super = list(),
 superEnv = asEnv(super), mergeFun = envMerge, envir = parent.frame())

funNames(envir = parent.frame())

asEnv(x)

stripSelf(x)

Arguments
class character giving the class name.
public character with the names to include.
super a list/object to be extended.
superEnv environment where new methods will live in.
mergeFun function with two arguments. Knows how to join/merge environments - mergeFun(envir, superEnv).
 Default: envMerge.
envir this is the environment you want to convert into the list. Default is the environment from which the function is called.
x a list

Details
funNames returns the names of functions in the environment from which it is called.
asEnv tries to find an environment for x. If x is NULL or an empty list, the function returns NULL. (Else) If x has an attribute called .self it is this attribute which is returned. (Else) If x is a list it is converted to an environment.

See Also
ls, +.Infix, print.Print

Examples
To get a quick overview of the package:
vignette("Introduction", "aoos")

To get more infos about retList:
vignette("retListClasses", "aoos")

To get some infos about performance:
vignette("performance", "aoos")

A simple class with one method:
Test <- function(x) {
 getX <- function() .x
 retList("Test")}
Show-class

```r
}
stopifnot(Test2$getX() == 2)

# A second example inheriting from Test
Test2 <- function(.x, .y) {
  getX2 <- function() .x * 2
  retList("Test2", super = Test(.y))
}
stopifnot(Test2$getX() == 2)
stopifnot(Test2$getX2() == 4)

### Rational numbers example with infix operators and print method

Rational <- function(numer, denom) {
  gcd <- function(a, b) if(b == 0) a else Recall(b, a %% b)
  g <- gcd(numer, denom)
  numer <- numer / g
  denom <- denom / g

  print <- function(x, ...) cat(paste0(numer, "/", denom, "\n"))

  ".+" <- function(that) {
    Rational(numer = numer * that$denom + that$numer * denom,
             denom = denom * that$denom)
  }

  ".-" <- function(that) {
    if (missing(that)) {
      Rational(-numer, denom)
    } else {
      .self + (-that)
    }
  }
}

# Return only what should be visible from this scope:
retList(c("Rational", "Infix", "Print"),
        c("numer", "denom", "neg", "print"))

rational <- Rational(2, 3)
rational + rational
rational - rational
```

Show-class

Show class
Description

This is a virtual class to be contained in other class definitions. It overrides the default show method and is intended to be used with the aoos class system (defineClass). The show method will simply look for a method show defined as member of a class definition.

Usage

```r
## S4 method for signature 'Show'
show(object)
```

Arguments

- `object` an object inheriting from Show

See Also

defineClass

Examples

```r
classWithShowMethod <- defineClass("ClassWithShowMethod", contains = "Show", {
  show <- function() print(summary(.self))
})

classWithShowMethod()
```

%g% Wrapper for writing S4 generics and methods

Description

These are two wrappers around setGeneric and setMethod. A relevant difference is that generics and methods are stored in the environment in which %g% and %m% are called and not in the top-environment. Furthermore both functions have side effects in that they will call globalVariables for the arguments and name of the generic.

Usage

```r
lhs %g% rhs
```

```r
lhs %m% rhs
```

Arguments

- `lhs` see details
- `rhs` the body as an expression
Details

The Syntax for the left hand side:

\[
\langle\text{valueCLASS}\rangle^{:}\langle\text{genericNAME}\rangle\langle\text{argLIST}\rangle
\]
- valueCLASS optional, is the class of the return value (see \texttt{setGeneric})
- genericNAME the name of the generic function
- argLIST are \texttt{name = value} or \texttt{name ~ type} expressions. Name-Value expressions are just like in a function definition. Name-Type expressions are used to define the signature of a method (see \texttt{setMethod}). See \%type\% and the examples how to work with them.

Examples

```
# A new generic function and a method:
numeric : generic(x) %g% standardGeneric("generic")
generic(x ~ numeric) %m% x
generic(1)

# Polymorphic methods in an object:
Object <- function() {
  numeric : generic(x) %g% standardGeneric("generic")
generic(x ~ numeric) %m% x
  retList("Object")
}
Object()$generic(1)

# Class Unions:
## This generic allows for return values of type numeric or character:
'numeric | character' : generic(x) %g% standardGeneric("generic")

## This method also allows for numeric or character as argument:
generic(x ~ character | numeric) %m% x
generic(1)
generic("")
```

Description

This function can be used to define new S4-classes which are called Type. They have an initialize method and in the introduced syntax init-method and S4-class definition build a unit, hence a type. This simply captures a typical \texttt{setClass} then \texttt{setMethod("initialize", ...)} pattern where often some redundancy is introduced. The function has side effects due to calling \texttt{setClass}, \texttt{setMethod} and assigning the constructor function to the types name.

Usage

\texttt{lhs %type% rhs}
Arguments

lhs

an expression of the form:

\[<\text{parent-name}>:\text{type-name}>([<\text{slots}>])\]

- `<parent-name>` optional, the name of the S4-class/type to inherit from, separated by `:`.
- `<type-name>` the name for the new type and constructor function.
- `<slots>` optional, name = value or name ~ type expressions. Name-Value expressions are used to construct a prototype. From the prototype the class of the slot will be inferred. They are also the defaults in the type constructor. Name-Type expressions define the classes of the slots. If no value (or type) is supplied, ANY is assumed.

rhs

the body of the initialize method as expression. It will be called with `\.Object` and `...` as arguments. `.Object` should be the return value. With `.Object` there is an instance of the type on which assertions can be formulated. Prior to the body (rhs) `.Object <- callNextMethod()` will be evaluated which enables proper initialization of your type and its inherited fields. See `initialize` for details.

Details

Name-Type expressions are also used in `%m%`. Besides this you can formulate type unions in type expressions or the inheritance structure. This has a side effect in that `setClassUnion` is called. Whenever you write a type you can replace the name by an expression of the form: `type1 | type2`. Outside the slots or argument list of a method these expressions have to be quoted. In this example the following expression is evaluated for you: `setClassUnion("\text{type1}\text{ORtype2}", \text{c("type1", "type2")})`.

Examples

```
# This will create an S4-class named 'Test' with two slots; x = "numeric"
# and y = "list"; prototype: list(x = 1, y = list()); and an initialize
# method where some checks are performed.

Test(x = 1, y = list()) %type% {
  stopifnot(\.Object@x > 0)
  \.Object
}

# This will create an S4-class named 'Numeric' with a slot and some tests.

numeric : Numeric(metaInfo = character()) %type% {
  stopifnot(length(\.Object) > 0)
  stopifnot(all(\.Object > 0))
  \.Object
}

# This will create an S4-class with slots, where the constructor function has
# no defaults. All slots will allow for ANY type.

Anything(x, y ~ ANY, z = NULL) %type% .Object
```

Not run:
Anything() # error because x and y are missing

End(Not run)

Type Unions:
'character | numeric' : Either(either ~ character | numeric) %type% .Object
Either("", 1)
Index

! .Infix (print.Print), 9
defineClass, 3, 4, 5, 15
+ .Infix, 13
defineRefClass, 5, 7, 11
+.Infix (print.Print), 9
eenvCopy, 8
-.Infix (print.Print), 9
eenvMerge, 13
genericTest, 2
eenvMerge (eenvCopy), 8
genericTest (genericTest), 2
funNames (retList), 12
genericTest (numeric-method (genericTest)), 2
initialize, 17
genericTest (print.Print), 9
ls, 13
[[.Private-method (Private-class), 11
}.public-function (publicFunction), 12
\ .Infix (print.Print), 9
parser_%g% (parser_%m%), 9
< .Infix (print.Print), 9
parser_%type% (parser_%m%), 9
<= .Infix (print.Print), 9
parser_%m%, 9
== .Infix (print.Print), 9
parser (defineClass), 5
>= .Infix (print.Print), 9
private (defineClass), 5
eInfix (print.Print), 9
public (defineClass), 5
% .Infix (print.Print), 9
parser (defineClass), 5
%% (%%), 15
parser (defineClass), 5
& .Infix (print.Print), 9
public (defineClass), 5
%g%, 15
public (defineClass), 5
%m%, 17
private (defineClass), 5
%type%, 16, 16
^ .Infix (print.Print), 9
public (defineClass), 5
Accessor-class, 3
parser (defineClass), 5
aoos-class, 3
private (defineClass), 5
as.environment, aoos-method
setClassUnion, 17
(aoos-class), 3
setGeneric, 16
as.environment .Infix (print.Print), 9
setMethod, 16
as.env (retList), 12
setRefClass, 7
asEnv (retList), 12
show, aoos-method (aoos-class), 3
as.environment (Show-class), 14
show, Show-method (Show-class), 14
Binary-class, 4, 10
Show-class, 14
defineClass, 3
stripSelf (retList), 12
definerefclass, 5, 7, 11
summary.aoos (aoos-class), 3
retList, 5, 8–10, 12
setclassunion, 17