Package ‘apa’

October 6, 2023

Type Package
Title Format Outputs of Statistical Tests According to APA Guidelines
Version 0.3.4
Description Formatter functions in the 'apa' package take the return value of a statistical test function, e.g. a call to chisq.test() and return a string formatted according to the guidelines of the APA (American Psychological Association).

URL https://github.com/dgromer/apa

BugReports https://github.com/dgromer/apa/issues
License GPL (>= 3)
Depends R (>= 3.1.0)
Imports dplyr (>= 0.4), magrittr, MBESS, purrr, rmarkdown, stringr, tibble
Suggests afex (>= 0.14), ez, testthat, knitr
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no
Author Daniel Gromer [aut, cre]
Maintainer Daniel Gromer <dgromer@mailbox.org>
Repository CRAN
Date/Publication 2023-10-06 15:00:02 UTC

R topics documented:

anova_apa ... 2
apa ... 3
chisq_apa .. 4
cohens_d .. 5
anova_apa

Report ANOVA in APA style

Description

Report ANOVA in APA style

Usage

anova_apa(
 x,
 effect = NULL,
 sph_corr = c("greenhouse-geisser", "gg", "huynh-feldt", "hf", "none"),
 force_sph_corr = FALSE,
 es = c("petasq", "pes", "getasq", "ges"),
 format = c("text", "markdown", "rmarkdown", "html", "latex", "latex_math", "docx", "plotmath"),
 info = FALSE,
 print = TRUE
)

Arguments

x
 A call to aov, ez::ezANOVA, or afex::afex_ez, afex::afex_car or afex::afex_4

effect
 Character string indicating the name of the effect to display. If is NULL, all effects are reported (default).

sph_corr
 Character string indicating the method used for correction if the assumption of sphericity is violated (only applies to repeated-measures and mixed design ANOVA). Can be one of "greenhouse-geisser" (default), "huynh-feldt" or "none" (you may also use the abbreviations "gg" or "hf").

force_sph_corr
 Logical indicating if sphericity correction should be applied to all within factors regardless of what the result of Mauchly’s test of sphericity is (default is FALSE).

es
 Character string indicating the effect size to display in the output, one of "petasq" (partial eta squared) or "getasq" (generalized eta squared) (you may also use the abbreviations "pes" or "ges").

format
 Character string specifying the output format. One of "text", "markdown", "rmarkdown", html, "latex", "latex_math", "docx" or "plotmath".
APA Formatting for RMarkdown Reports

Description
A wrapper around the *.apa functions, providing a convenient way to use the formatters in inline code in RMarkdown documents.

Usage
apa(x, effect = NULL, format = "rmarkdown", print = FALSE, ...)

Arguments
x An R object. Must be a call to one of afex::aov_4, afex::aov_car, afex::aov_ez, chisq.test, cor.test, ez::ezANOVA or t.test.
effect (only applicable if x is an ANOVA) Character string indicating the name of the effect to display. If is NULL, all effects are reported (default).
format Character string specifying the output format. One of "text", "markdown", "rmarkdown", html, "latex" or "docx".
print Logical indicating whether to return the result as an R object (FALSE) or print using cat (TRUE).
...

Further arguments passed to other methods
chisq_apa

Report Chi-squared test in APA style

Description

Report Chi-squared test in APA style

Usage

chisq_apa(
 x,
 print_n = FALSE,
 format = c("text", "markdown", "rmarkdown", "html", "latex", "latex_math", "docx", "plotmath"),
 info = FALSE,
 print = TRUE
)

Arguments

x A call to chisq.test
print_n Logical indicating whether to show sample size in text
format Character string specifying the output format. One of "text", "markdown", "rmarkdown", html, "latex", "latex_math", "docx" or "plotmath".
info Logical indicating whether to print a message on the used test (default is FALSE)
print Logical indicating whether to print the formatted output via cat (TRUE, default) or return as character string.

Examples

Example data from ?chisq.test
m <- rbind(c(762, 327, 468), c(484, 239, 477))
chisq_apa(chisq.test(m))

See Also

anova_apa, chisq_apa, cor_apa, t_apa
cohens_d

Cohen's d

Description

Calculate Cohen's d from raw data or a call to `t_test/t.test`.

Usage

```r
cohens_d(...)
```

Default S3 method:
```r
cohens_d(
  x,
  y = NULL,
  paired = FALSE,
  corr = c("none", "hedges_g", "glass_delta"),
  na.rm = FALSE,
  ...
)
```

S3 method for class 'data.frame'
```r
cohens_d(
  data,
  dv,
  iv,
  paired = FALSE,
  corr = c("none", "hedges_g", "glass_delta"),
  na.rm = FALSE,
  ...
)
```

S3 method for class 'formula'
```r
cohens_d(
  formula,
  data,
  corr = c("none", "hedges_g", "glass_delta"),
  na.rm = FALSE,
  ...
)
```

S3 method for class 'htest'
```r
cohens_d(ttest, corr = c("none", "hedges_g", "glass_delta"), ...)
```

Arguments

... Further arguments passed to methods.
cohens_d

x A (non-empty) numeric vector of data values.
y An optional (non-empty) numeric vector of data values.
paired A logical indicating whether Cohen’s d should be calculated for a paired sample or two independent samples (default). Ignored when calculating Cohen’s for one sample.
corr Character specifying the correction applied to calculation of the effect size: “none” (default) returns Cohen’s d, “hedges_g” applies Hedges correction and “glass_delta” calculates Glass’ Δ (uses the standard deviation of the second group).
na.rm Logical. Should missing values be removed?
data A data frame containing either the variables in the formula formula or the variables specified by dv and iv.
dv Character indicating the name of the column in data for the dependent variable
iv Character indicating the name of the column in data for the independent variable
formula A formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs either 1 for one sample or paired data or a factor with two levels giving the corresponding groups. If lhs is of class “Pair” and rhs is 1, Cohen’s d for paired data will be calculated.
ttest An object of class htest (a call to either t_test (preferred) or t.test).

Details

To calculate Cohen’s d from summary statistics (M, SD, ..) use cohens_d_.

References

Examples

Calculate from raw data
cohens_d(c(10, 15, 11, 14, 17), c(22, 18, 23, 25, 20))

Methods when working with data frames
cohens_d(sleep, dv = extra, iv = group, paired = TRUE)
or
cohens_d(sleep, dv = "extra", iv = "group", paired = TRUE)
formula interface
sleep2 <- reshape(sleep, direction = "wide", idvar = "ID", timevar = "group")
cohens_d(Pair(extra.1, extra.2) ~ 1, sleep2, paired = TRUE)

Or pass a call to t_test or t.test
cohens_d(t_test(Pair(extra.1, extra.2) ~ 1, sleep2))
cohens_d

Cohen’s d

Description

Calculate Cohens’ d from different statistics (see Details).

Usage

cohens_d(
 m1 = NULL,
 m2 = NULL,
 sd1 = NULL,
 sd2 = NULL,
 n1 = NULL,
 n2 = NULL,
 t = NULL,
 n = NULL,
 paired = FALSE,
 corr = c("none", "hedges_g", "glass_delta")
)

Arguments

m1 Numeric, mean of the first group
m2 Numeric, mean of the second group
sd1 Numeric, standard deviation of the first group
sd2 Numeric, standard deviation of the second group
n1 Numeric, size of the first group
n2 Numeric, size of the second group
t Numeric, t-test statistic
n Numeric, total sample size
paired Logical indicating whether to calculate Cohen’s for independent samples or one sample (FALSE, default) or for dependent samples (TRUE).
corr Character specifying the correction applied to calculation of the effect size: "none" (default) returns Cohen’s d, "hedges_g" applies Hedges correction and "glass_delta" calculates Glass’ Δ (uses the standard deviation of the second group).

Details

The following combinations of statistics are possible:

- m1, m2, sd1, sd2, n1 and n2
- t, n1 and n2
- t and n
Correlation in APA Style

Description

Report Correlation in APA style

Usage

cor_apa(
 x,
 r_ci = FALSE,
 format = c("text", "markdown", "rmarkdown", "html", "latex", "latex_math", "docx", "plotmath"),
 info = FALSE,
 print = TRUE
)

Arguments

x A call to cor.test
r_ci Logical indicating whether to display the confidence interval for the correlation coefficient (default is FALSE). Only available for Pearson’s product moment correlation (with n >= 4).
format Character string specifying the output format. One of "text", "markdown", "rmarkdown", html", "latex", "latex_math", "docx" or "plotmath".
info Logical indicating whether to print a message on the used test (default is FALSE)
print Logical indicating whether to print the formatted output via cat (TRUE, default) or return as character string.

Examples

Example data from cor.test
x <- c(44.4, 45.9, 41.9, 53.3, 44.1, 50.7, 45.2, 60.1)
y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
cor_apa(cor.test(x, y))

Spearman’s rho
cor_apa(cor.test(x, y, method = "spearman"))

Kendall’s tau
cor_apa(cor.test(x, y, method = "kendall"))
petasq

Description

Partial Eta Squared

Usage

```r
petasq(x, effect)
```

Arguments

- **x**
 - A call to `aov`, `ez::ezANOVA` or `afex::aov_ez`, `afex::aov_car` or `afex::aov_4`

- **effect**
 - Character string indicating the name of the effect for which the partial eta squared should be returned.

petasq_

Description

Calculate the partial eta squared effect size from sum of squares.

\[
\eta_p^2 = \frac{SS_{effect}}{SS_{effect} + SS_{error}}
\]

Usage

```r
petasq_(ss_effect, ss_error)
```

Arguments

- **ss_effect**
 - numeric, sum of squares of the effect

- **ss_error**
 - numeric, sum of squares of the corresponding error
Report t-Test in APA style

Description

Report t-Test in APA style

Usage

```r
t_apa(
  x,
  es = "cohens_d",
  es_ci = FALSE,
  format = c("text", "markdown", "rmarkdown", "html", "latex", "latex_math", "docx",
             "plotmath"),
  info = FALSE,
  print = TRUE
)
```

Arguments

- `x` A call to `t_test` or `t.test`
- `es` Character specifying the effect size to report. One of "cohens_d" (default), "hedges_g" or "glass_delta" if `x` is an independent samples t-test. Ignored if `x` is a paired samples or one sample t-test (cohen's d is reported for these test).
- `es_ci` Logical indicating whether to add the 95 for Cohen's d (experimental; default is FALSE).
- `format` Character string specifying the output format. One of "text", "markdown", "rmarkdown", html, "latex", "latex_math", "docx" or "plotmath".
- `info` Logical indicating whether to print a message on the used test (default is FALSE)
- `print` Logical indicating whether to print the formatted output via `cat` (TRUE, default) or return as character string.

Examples

```r
# Two independent samples t-test
t_apa(t_test(1:10, y = c(7:20)))

# Two dependent samples t-test
sleep2 <- reshape(sleep, direction = "wide", idvar = "ID", timevar = "group")
t_apa(t_test(Pair(extra.1, extra.2) ~ 1, sleep2))
```
Description

A wrapper for \texttt{t.test} which includes the original data in the returned object.

Usage

\begin{verbatim}
t_test(x, ...)

Default S3 method:
t_test(
 x,
 y = NULL,
 alternative = c("two.sided", "less", "greater"),
 mu = 0,
 paired = FALSE,
 var.equal = FALSE,
 conf.level = 0.95,
 ...
)

S3 method for class 'formula'
t_test(formula, data, subset, na.action, ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x} \hspace{1cm} a (non-empty) numeric vector of data values.
 \item \texttt{...} \hspace{1cm} further arguments to be passed to or from methods.
 \item \texttt{y} \hspace{1cm} an optional (non-empty) numeric vector of data values.
 \item \texttt{alternative} \hspace{1cm} a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
 \item \texttt{mu} \hspace{1cm} a number indicating the true value of the mean (or difference in means if you are performing a two sample test).
 \item \texttt{paired} \hspace{1cm} a logical indicating whether you want a paired t-test.
 \item \texttt{var.equal} \hspace{1cm} a logical variable indicating whether to treat the two variances as being equal. If \texttt{TRUE} then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
 \item \texttt{conf.level} \hspace{1cm} confidence level of the interval.
 \item \texttt{formula} \hspace{1cm} a formula of the form \texttt{lhs ~ rhs} where \texttt{lhs} is a numeric variable giving the data values and \texttt{rhs} either 1 for a one-sample or paired test or a factor with two levels giving the corresponding groups. If \texttt{lhs} is of class \texttt{"Pair"} and \texttt{rhs} is 1, a paired test is done.
\end{itemize}
data an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

See Also

t.test
Index

anova_apa, 2, 4
apa, 3

chisq_apa, 4, 4
cohens_d, 5
cohens_d_, 6, 7
cor_apa, 4, 8

model.frame, 12

Pair, 11
petasq, 9
petasq_, 9

t.test, 12
t_apa, 4, 10
t_test, 11