Package ‘apyramid’

March 11, 2020

Title Visualize Population Pyramids Aggregated by Age
Version 0.1.1
Description Provides a quick method for visualizing non-aggregated line-list or aggregated census data stratified by age and one or two categorical variables (e.g. gender and health status) with any number of values. It returns a ‘ggplot’ object, allowing the user to further customize the output. This package is part of the ‘R4Epis’ project <https://r4epis.netlify.com>.
License GPL-3
Depends R (>= 3.2.0)
BugReports https://github.com/R4EPI/apyramid/issues
Imports ggplot2 (>= 3.0.0), tidyselect, rlang, forcats, dplyr, scales, glue
Suggests testthat (>= 2.1.0), survey, srvyr, vdiffr, covr, outbreaks, knitr, rmarkdown
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
VignetteBuilder knitr
NeedsCompilation no
Author Zhian N. Kamvar [aut, cre] (<https://orcid.org/0000-0003-1458-7108>), Alex Spina [ctb]
Maintainer Zhian N. Kamvar <zkamvar@gmail.com>
Repository CRAN
Date/Publication 2020-03-11 20:00:02 UTC

R topics documented:

 age_pyramid ... 2
 us_2018 ... 5
Plot a population pyramid (age-sex) from a dataframe.

Description

Plot a population pyramid (age-sex) from a dataframe.

Usage

```r
age_pyramid(
  data,
  age_group = "age_group",
  split_by = "sex",
  stack_by = NULL,
  count = NULL,
  proportional = FALSE,
  na.rm = TRUE,
  show_midpoint = TRUE,
  vertical_lines = FALSE,
  horizontal_lines = TRUE,
  pyramid = TRUE,
  pal = NULL
)
```

Arguments

- `data` Your dataframe (e.g. linelist)
- `age_group` the name of a column in the data frame that defines the age group categories. Defaults to "age_group"
- `split_by` the name of a column in the data frame that defines the the bivariate column. Defaults to "sex". See NOTE
- `stack_by` the name of the column in the data frame to use for shading the bars. Defaults to NULL which will shade the bars by the split_by variable.
- `count` **for pre-computed data** the name of the column in the data frame for the values of the bars. If this represents proportions, the values should be within [0, 1].
- `proportional` If TRUE, bars will represent proportions of cases out of the entire population. Otherwise (FALSE, default), bars represent case counts
- `na.rm` If TRUE, this removes NA counts from the age groups. Defaults to TRUE.
- `show_midpoint` When TRUE (default), a dashed vertical line will be added to each of the age bars showing the halfway point for the un-stratified age group. When FALSE, no halfway point is marked.
- `vertical_lines` If you would like to add dashed vertical lines to help visual interpretation of numbers. Default is to not show (FALSE), to turn on write TRUE.
horizontal_lines

If TRUE (default), horizontal dashed lines will appear behind the bars of the pyramid.

pyramid

If TRUE, then binary split_by variables will result in a population pyramid (non-binary variables cannot form a pyramid). If FALSE, a pyramid will not form.

pal

A color palette function or vector of colors to be passed to `ggplot2::scale_fill_manual()`. Defaults to the first "qual" palette from `ggplot2::scale_fill_brewer()`.

Note

If the split_by variable is bivariate (e.g. an indicator for a specific symptom), then the result will show up as a pyramid, otherwise, it will be presented as a faceted barplot with with empty bars in the background indicating the range of the un-faceted data set. Values of split_by will show up as labels at top of each facet.

Examples

```r
library(ggplot2)
old <- theme_set(theme_classic(base_size = 18))

# with pre-computed data -----------------------------------------------
# 2018/2008 US census data by age and gender
data(us_2018)
data(us_2008)
age_pyramid(us_2018, age_group = age, split_by = gender, count = count)
age_pyramid(us_2008, age_group = age, split_by = gender, count = count)

# 2018 US census data by age, gender, and insurance status
data(us_ins_2018)
age_pyramid(us_ins_2018, 
age_group = age,
split_by = gender,
stack_by = insured,
count = count)

us_ins_2018$prop <- us_ins_2018$percent/100
age_pyramid(us_ins_2018, 
age_group = age,
split_by = gender,
stack_by = insured,
count = prop,
proportion = TRUE)

# from linelist data ---------------------------------------------------
set.seed(2018 - 01 - 15)
ages <- cut(sample(80, 150, replace = TRUE),
breaks = c(0, 5, 10, 30, 90), right = FALSE)
sex <- sample(c("Female", "Male"), 150, replace = TRUE)
```
gender <- sex
gender[sample(5)] <- "NB"
ill <- sample(c("case", "non-case"), 150, replace = TRUE)
dat <- data.frame(
 AGE = ages,
 sex = factor(sex, c("Male", "Female")),
 gender = factor(gender, c("Male", "NB", "Female")),
 ill = ill,
 stringsAsFactors = FALSE
)

Create the age pyramid, stratifying by sex
print(ap <- age_pyramid(dat, age_group = AGE))

Create the age pyramid, stratifying by gender, which can include non-binary
print(apg <- age_pyramid(dat, age_group = AGE, split_by = gender))

Remove NA categories with na.rm = TRUE
dat2 <- dat
dat2[1, 1] <- NA
dat2[2, 2] <- NA
dat2[3, 3] <- NA
print(ap <- age_pyramid(dat2, age_group = AGE))
print(ap <- age_pyramid(dat2, age_group = AGE, na.rm = TRUE))

Stratify by case definition and customize with ggplot2
ap <- age_pyramid(dat, age_group = AGE, split_by = ill) +
 theme_bw(base_size = 16) +
 labs(title = "Age groups by case definition")
print(ap)

Stratify by multiple factors
ap <- age_pyramid(dat,
 age_group = AGE,
 split_by = sex,
 stack_by = ill,
 vertical_lines = TRUE
) +
 labs(title = "Age groups by case definition and sex")
print(ap)

Display proportions
ap <- age_pyramid(dat,
 age_group = AGE,
 split_by = sex,
 stack_by = ill,
 proportional = TRUE,
 vertical_lines = TRUE
) +
 labs(title = "Age groups by case definition and sex")
print(ap)

empty group levels will still be displayed
us_2018 <- dat2
dat3[dat$AGE == "[0,5)", "sex"] <- NA
age_pyramid(dat3, age_group = AGE)
theme_set(old)

us_2018

US Census data for population, age, and gender

Description
All of these tables were read directly from the excel sources via custom script located at https://github.com/R4EPI/apyramid/blob/master/scripts/read-us-pyramid.R.

Usage
us_2018
us_2008
us_ins_2018
us_ins_2008
us_gen_2018
us_gen_2008

Format
All tables are in long tibble format. There are three columns common to all of the tables:

- **age** [factor] 18 ordered age groups in increments of five years from "<5" to "85+
- **gender** [factor] 2 reported genders (male, female).
- **count** [integer] Numbers in thousands. Civilian noninstitutionalized and military population.

Below are specifics of each table beyond the stated three columns with names as reported on the US census website:

Additional columns:

- **percent** [numeric] percent of the total US population rounded to the nearest 0.1%

Additional columns:
- **insured** [factor] Either “Insured” or “Not insured” indicating insured status
- **percent** [numeric] percent of each age and gender category insured rounded to the nearest 0.1%

Additional columns:
- **generation** [factor] Three categories of generations in the US: First, Second, Third and higher (see note)
- **percent** [numeric] percent of the total US population rounded to the nearest 0.1%

Note: from the US Census Bureau: The foreign born are considered first generation. Natives with at least one foreign-born parent are considered second generation. Natives with two native parents are considered third-and-higher generation.

Source

*Topic **datasets**
 us_2018, 5

age_pyramid, 2

ggplot2::scale_fill_brewer(), 3
ggplot2::scale_fill_manual(), 3

tibble, 5

us_2008 (us_2018), 5
us_2018, 5
us_gen_2008 (us_2018), 5
us_gen_2018 (us_2018), 5
us_ins_2008 (us_2018), 5
us_ins_2018 (us_2018), 5