areaplot-package

Plot Stacked Areas and Confidence Bands as Filled Polygons

Description
Plot stacked areas and confidence bands as filled polygons, or add polygons to existing plots. A variety of input formats are supported, including vectors, matrices, data frames, formulas, etc.

Details
Plot:

\[
\begin{align*}
\texttt{areaplot} & \quad \text{stacked area} \\
\texttt{confplot} & \quad \text{confidence bands}
\end{align*}
\]

Author(s)
Arni Magnusson.

areaplot

Area Plot

Description
Produce a stacked area plot, or add polygons to an existing plot.

Usage
\[
\texttt{areaplot}(x, \ldots)
\]

Default S3 method:
\[
\texttt{areaplot}(x, y = \text{NULL}, \text{prop} = \text{FALSE}, \text{rev} = \text{FALSE},
\quad \text{add} = \text{FALSE}, \text{xlab} = \text{NULL}, \text{ylab} = \text{NULL}, \text{col} = \text{NULL}, \text{legend} = \text{FALSE},
\quad \text{args.legend} = \text{NULL}, \ldots)
\]

S3 method for class 'formula'
\[
\texttt{areaplot}(\text{formula}, \text{data}, \text{subset}, \text{na.action}, \text{xlab} = \text{NULL},
\quad \text{ylab} = \text{NULL}, \ldots)
\]

Arguments
\begin{itemize}
\item \texttt{x} \quad \text{a numeric vector of x values, or if y=\text{NULL} a numeric vector of y values. Can also be a 1-dimensional table (x values in names, y values in array), matrix or 2-dimensional table (x values in row names and y values in columns), a data frame (x values in first column and y values in subsequent columns), or a time-series object of class tsmts.}
\end{itemize}
Further arguments passed to `areaplot.default`, `matplot`, and `polygon`.

- **y**
 - A numeric vector of y values, or a matrix containing y values in columns.

- **prop**
 - Whether data should be plotted as proportions, so stacked areas equal 1.

- **rev**
 - Whether to plot the stacked areas from bottom to top, instead of top to bottom.

- **add**
 - Whether polygons should be added to an existing plot.

- **xlab**
 - A label for x axis.

- **ylab**
 - A label for y axis.

- **col**
 - Fill color of polygon(s). The default is a vector of gray colors.

- **legend**
 - A logical indicating whether a legend should be added, or a vector of strings for the legend. This only applies when more than one series is plotted.

- **args.legend**
 - A list of additional arguments to pass to the `legend` function.

- **formula**
 - A formula, such as `y~x`, `cbind(y1,y2)~x`, or `y~x+group`, specifying x and y values. A dot on the left-hand side, `~x`, means all variables except the one specified on the right-hand side.

- **data**
 - A data frame (or list) from which the variables in formula should be taken.

- **subset**
 - An optional vector specifying a subset of observations to be used.

- **na.action**
 - A function which indicates what should happen when the data contain NA values. The default is to ignore missing values in the given variables.

Value

Matrix of cumulative sums that was used for plotting.

See Also

- `polygon` is the underlying function used to draw polygons.
- `confplot` plots confidence bands as a filled area.
- `areaplot-package` gives an overview of the package.

Examples

```r
areaplot(rpois(10,40))
areaplot(rnorm(10))
# formula
areaplot(Armed.Forces~Year, data=longley)
areaplot(cbind(Armed.Forces,Unemployed)~Year, data=longley)
areaplot(.~Year, data=longley)
areaplot(circumference~age+Tree, Orange)
# add=TRUE
plot(1940:1970, 500*runif(31), ylim=c(0,500))
areaplot(Armed.Forces~Year, data=longley, add=TRUE)
# data frame
mydata <- longley[c("Year","GNP")]
```
areaplot(mydata)

matrix
areaplot(WorldPhones)
areaplot(WorldPhones, prop=TRUE)

table
require(MASS)
areaplot(table(Aids2$age))
areaplot(table(Aids2$age, Aids2$sex))

ts/mts
areaplot(austres)
areaplot(Seatbelts[,c("drivers","front","rear")],
 ylab="Killed or seriously injured")
abline(v=1983+1/12, lty=3)

legend
require(MASS)
areaplot(table(Aids2$age, Aids2$sex), legend=TRUE, col=c(2,4))
areaplot(table(Aids2$age, Aids2$sex), legend=TRUE, col=c(2,4), rev=TRUE)
wp <- WorldPhones[,order(colnames(WorldPhones))]
areaplot(wp, col=2:8, legend=TRUE, args.legend=list(x="topleft"))
areaplot(wp, col=2:8, legend=TRUE, args.legend=list(x="topleft"), rev=TRUE)

confplot

confplot
Plot Confidence Bands

Description

Plot confidence bands of lower and upper y values as a filled area, or add polygon to an existing plot.

Usage

confplot(x, ...)

Default S3 method:
confplot(x, y1 = NULL, y2 = NULL, add = FALSE,
 xlab = NULL, ylab = NULL, border = NA, col = "lightgray", ...)

S3 method for class 'formula'
confplot(formula, data, subset, na.action = NULL, ...)

Arguments

x a numeric vector of x values. Alternatively, x can be a matrix or data frame containing x values in the first column and lower and upper y values in the next two columns.
... further arguments passed to `confplot.default`, `matplot`, and `polygon`.

`y1` a numeric vector of lower y values. Alternatively, `y1` can be a matrix or data frame containing lower and upper y values in two columns.

`y2` a numeric vector of upper y values, if not already supplied in `x` or `y1`.

`add` whether confidence bands should be added to an existing plot.

`xlab` a label for x axis.

`ylab` a label for y axis.

`border` border color of polygon. The default `NA` is to omit borders.

`col` fill color of polygon.

`formula` a formula, such as `cbind(y1,y2)`~`x`, specifying x and y values.

`data` a data frame (or list) from which the variables in formula should be taken.

`subset` an optional vector specifying a subset of observations to be used.

`na.action` a function which indicates what should happen when the data contain `NA` values. The default is to ignore missing values in the given variables.

Value
Data frame of coordinates that were used for plotting.

See Also

`polygon` is the underlying function used to draw polygons.

`areaplot` produces a stacked area plot.

`areaplot-package` gives an overview of the package.

The `gplots` and `plotrix` packages provide functions to plot error bars.

Examples

```r
model <- lm(log(dist)~log(speed), cars)
ci95 <- predict(model, data.frame(speed=4:25), interval="confidence")
ci50 <- predict(model, data.frame(speed=4:25), interval="confidence", level=0.5)
x <- log(4:25)
y1 <- ci95[ , "lwr"]
y2 <- ci95[ , "upr"]
mydata <- data.frame(x, y1, y2)

# Input format
confplot(x, y1, y2) # vectors
confplot(x, cbind(y1,y2)) # y values in 2 columns
confplot(mydata) # data in 3 columns
confplot(cbind(y1,y2)~x, mydata) # formula

# Overlay
plot(log(dist)~log(speed), cars, type="n")
confplot(x, ci95[,2:3], add=TRUE)
confplot(x, ci50[,2:3], add=TRUE, col="darkgray")
```
lines(x, ci95[,1])
points(log(dist)-log(speed), cars)
Index

areaplot, 2, 2, 5
areaplot-package, 2
confplot, 2, 3, 4
formula, 3, 5
legend, 3
polygon, 3, 5