Package ‘armada’

April 4, 2019

Type Package

Title A Statistical Methodology to Select Covariates in
High-Dimensional Data under Dependence

Version 0.1.0

Description Two steps variable selection procedure in a context of high-dimensional dependent data
but few observations. First step is dedicated to eliminate dependence between variables (clustering
of variables, followed by factor analysis inside each cluster).
Second step is a variable selection using by aggregation of adapted methods.
Bastien B., Chakir H., Gegout-Petit A., Muller-Gueudin A., Shi Y.
A statistical methodology to select covariates in high-dimensional data under dependence.
Application to the classification of genetic profiles associated with outcome of a non-small-cell

License GPL-3

LazyData true

RoxygenNote 6.1.1

Imports stats, mvtnorm, ClustOfVar, FAMT, graphics, VSURF, glmnet,
anapuce, qvalue, parallel, doParallel, impute, ComplexHeatmap,
circlize

NeedsCompilation no

Author Aurelie Gueudin [aut, cre],
Anne Gegout-Petit [aut]

Maintainer Aurelie Gueudin <aurelie.gueudin@univ-lorraine.fr>

Repository CRAN

Date/Publication 2019-04-04 16:00:06 UTC

R topics documented:

ARMADA ... 2
ARMADA.heatmap .. 3
ARMADA.select .. 4
ARMADA.summary .. 6
clustering ... 6
Scores of all the covariates present in X, given the vector Y of the response.

Usage

ARMADA(X, Y, nclust = NULL, clusterType = c("PSOCK", "FORK"),
 parallel = FALSE)

Arguments

X the matrix (or data.frame) of covariates, dimension n*p (n is the sample size, p
the number of covariates). X must have rownames, which are the names of the
n subjects (i.e. the user ID of the n subjects). X must have colnames, which are
the names of the p covariates.

Y the vector of the response, length n.

nclust the number of clusters in the covariates dataset X.

clusterType to precise the type of cluster of the machine. Possible choices: "PSOCK", or
"FORK" (for UNIX or MAC systems, but not for WINDOWS).

parallel = TRUE if the calculus are made in parallel (default choice is FALSE).

Value

a 3-list with: "tree" which is the dendrogram of the data X, "nclust" which is a proposition of the
number of clusters in the data X, "result" which is a data.frame with p rows and 2 columns, the first
column gives the names of the covariates, the second column is the scores of the covariates.

Examples

library(ClustOfVar)
library(impute)
library(FAMT)
library(VSURF)
library(glmnet)
library(anapuce)
library(qvalue)
set.seed(1)
p <- 40
n <- 30
indexRow <- paste0("patient",1:n)
indexCol <- paste0("G",1:p)
X <- matrix(rnorm(p*n),ncol=p)
colnames(X) <- indexCol
rownames(X) <- indexRow
Y <- c(rep(-1,n/2), rep(1,n/2))
Y<-as.factor(Y)
resultat <- ARMADA(X,Y, nclust=1)
Not run:
X<-toys.data$x
Y<-toys.data$y
result<-ARMADA(X,Y, nclust=2)
End(Not run)

ARMADA.heatmap

Heatmap of the selected covariates.

Description

Heatmap of the selected covariates.

Usage

ARMADA.heatmap(X, Y, res.ARMADA.summary, threshold = 5)

Arguments

X
the matrix (or data.frame) of covariates, dimension n*p (n is the sample size, p
the number of covariates). X must have rownames, which are the names of the
n subjects (i.e. the user ID of the n subjects). X must have colnames, which are
the names of the p covariates.

Y
the vector of the response, length n.

res.ARMADA.summary
the result of the function ARMADA, or output of the function ARMADA.summary.

threshold
an integer between 0 and 8: the selected covariates are those which have a score
greater or equal to "threshold."

Details

This function plots the heatmap of the covariates which have a score higher than some threshold
chosen by the user, with respect to the values of Y.
Value

the plot of the heatmap, and a data.frame of the selected covariables.

Examples

library(ClustOfVar)
library(impute)
library(FAMT)
library(VSURF)
library(glmnet)
library(anapuce)
library(qvalue)
library(ComplexHeatmap)
library(circlize)
set.seed(1)
p <- 40
n <- 30
indexRow <- paste0("patient",1:n)
indexCol <- paste0("G",1:p)
X <- matrix(rnorm(p*n),ncol=p)
colnames(X) <- indexCol
rownames(X) <- indexRow
Y <- c(rep(-1,n/2), rep(1,n/2))
Y<-as.factor(Y)
resultat <- ARMADA(X,Y, nclust=1)
tracer <- ARMADA.heatmap(X, Y, resultat[[3]], threshold=5)
Not run:
X<-toys.data$x
Y<-toys.data$y
result<-ARMADA(X,Y, nclust=2)
select<-ARMADA.heatmap(X, Y, result[[3]], threshold=5)

End(Not run)
Arguments

X
the matrix (or data.frame) of covariates, dimension n*p (n is the sample size, p the number of covariates). X must have rownames and colnames.

X.decorrele
the matrix of decorrelated covariates, dimension n*p (n is the sample size, p the number of covariates). X.decorrele has been obtained by the function X_decor.

Y
the vector of the response, length n.

test
the type of test to apply ("wilox.test" or "t.test" if Y is a binary variable; "kruskal.test" or "anova" if Y is a factor with more than 2 levels; "cor.test" if Y is a continuous variable).

type.cor.test
if test="cor.test", precise the type of test (possible choices: "pearson","kendall", "spearman"). Default value is NULL, which corresponds to "pearson".

type.measure_glmnet
argument for the lasso regression. The lasso regression is done with the function cv.glmnet (package glmnet), and you can precise the type of data in cv.glmnet. Possible choices for type.measure.glmnet: "deviance" (for gaussian models, logistic, regression and Cox), "class" (for binomial or multinomial regression).

family_glmnet
argument for the lasso regression. The lasso regression is done with the function glmnet. Possible choices for family_glmnet: "gaussian" (if Y is quantitative), "binomial" (if Y is a factor with two levels), "multinomial" (if Y is a factor with more than two levels).

clusterType
to precise the type of cluster of the machine. Possible choices: "PSOCK" or "FORK" (for UNIX or MAC systems, but not for WINDOWS).

parallel
TRUE if the calculus are made in parallel.

Details

The function ARMADA.select applies 8 selection methods on the decorrelated covariates (named X.decorrele), given the variable of interest Y. It returns a list of 8 vectors of the selected covariates, each vector correspond to one selection method. The methods are (in the order): Random forest (threshold step), Random forest (interpretation step), Lasso, multiple testing with Bonferroni, multiple testing with Benjamini-Hochberg, multiple testing with qvalues, multiple testing with localfdr, FAMT.

Value

a list with 8 vectors, called: genes_rf_thres, genes_rf_interp, genes_lasso, genes_bonferroni, genes_BH, genes_qvalues, genes_localfdr, genes_FAMT. The 8 vectors are the selected covariates by the corresponding selection methods.
ARMADA.summary

Scores of the covariates X

Description

Scores of the covariates X

Usage

ARMADA.summary(X, resultat.ARMADA.select)

Arguments

- **X**
 - the matrix (or data.frame) of covariates, dimension n*p (n is the sample size, p the number of covariates). X must have colnames.

- **resultat.ARMADA.select**
 - the output of the ARMADA.select function: a list with 8 vectors, called: genes_rf_thres, genes_rf_interp, genes_lasso, genes_bonferroni, genes_BH, genes_qvalues, genes_localfdr, genes_FAMT. The 8 vectors are the selected covariates by the corresponding selection methods.

Details

The function ARMADA.summary gives the scores of all the covariates. The score of a variable is an integer between 0 and 8, and represents the number of selections of this variable by the 8 selection methods.

Value

gene_list: data.frame with p rows and 2 columns, the first column gives the names of the covariates, the second column is the scores of the covariates.

clustering

To obtain the dendrogram of the covariates contained in the data.frame X, and a proposition for the number of clusters of covariates in X.

Description

To obtain the dendrogram of the covariates contained in the data.frame X, and a proposition for the number of clusters of covariates in X.

Usage

clustering(X, plot = TRUE)
covariables

Arguments

 X the matrix (or data.frame) of covariates, dimension n*p (n is the sample size, p the number of covariates).
 plot if plot = TRUE" (default value): it gives the dendrogram and the plot of the height versus the number of clusters, for the 30 first clusters.

Value

a 2-list composed by: "tree" (the dendrogram of X), and "nclust" which is a proposition of the number of clusters. The proposed number of clusters is calculated as following: in the graph of the decreasing height versus the number of clusters, we define variation_height = (height[1:29]-height[2:30])/height[2:30], and our proposition is nclust=min(which(variation_height<0.05)). It is preferable that the user chooses its own number of clusters. Warning: nclust must be not too high. Indeed, if nclust is too high, the clusters contain a small number of covariates, and it is then possible that all the covariates of one or several cluster(s) are included in H0. In that case, the FAMT procedure will have a dysfunction.

Examples

toysNdata
x<toysNdata$X
covariables(x)

covariables concatenation of the rownames of X and of the response vector Y.

Description

covariables concatenation of the rownames of X and of the response vector Y.

Usage

covariables(X, Y)

Arguments

 X the matrix (or data.frame) of covariates, dimension n*p (n is the sample size, p the number of covariates). X must have rownames, which are the names of the n subjects (i.e. the user ID of the n subjects).
 Y the vector of the response, length n.

Details

internal function. Concatenation of the rownames of X (X is the matrix n*p of the covariates), and of the response vector Y. X must have rownames, which are the names of the n subjects (i.e. the user ID of the n subjects).
Value

a data.frame with dimension n*2: the first column gives the names of the subjects, and the second column is Y.

Examples

```r
X <- matrix(rnorm(50), nrow=10)
rownames(X) <- letters[1:10]
covariables(X, 1:10)
```

toys.data

Description

toys.data is a simple simulated dataset of a binary classification problem, introduced by Weston et al..

Usage

toys.data

Format

An object of class list of length 2.

Details

- `Y`: output variable: a factor with 2 levels "-1" and "1";
- `x`: a data-frame containing input variables: with 30 obs. of 50 variables.

The data-frame x is composed by 2 independent clusters, each cluster contains 25 correlated variables. It is an equiprobable two class problem, Y belongs to -1,1, with 12 true variables (6 true variables in each cluster), the others being noise. The simulation model is defined through the conditional distribution of the X^j for $Y=y$. In the first cluster, the X^j are simulated in the following way:

- with probability 0.7, $X^j \sim N(y,2)$ for $j=1,2,3$, and $X^j \sim N(0,2)$ for $j=4,5,6$;
- with probability 0.3, $X^j \sim N(0,2)$ for $j=1,2,3$, and $X^j \sim N(y(j-3),2)$ for $j=4,5,6$;
- the other variables are noise, $X^j \sim N(0,1)$ for $j=7, \ldots, 25$.

The second cluster of 25 variables is simulated in a similar way.

Source

toys.data.multi

Examples

library(ClustOfVar)
library(impute)
library(FAMT)
library(VSURF)
library(glmnet)
library(anapuce)
library(qvalue)
X<-toys.data$x
Y<-toys.data$y
scoreX<-data.frame(c(rep(8,6),rep(0,19),rep(8,6),rep(0,19)))
rownames(scoreX)<-colnames(X)
select<-ARMADA.heatmap(X, Y, scoreX, threshold=1)
 ## Not run:
 result<-ARMADA(X,Y, nclust=2)
 select<-ARMADA.heatmap(X, Y, result[[3]], threshold=5)
 ## End(Not run)

Description

toys.data.multi is a simple simulated dataset of a multinomial classification problem.

Usage

toys.data.multi

Format

An object of class list of length 2.

Details

- Y: output variable: a factor with 3 levels "-1", "0", and "2";
- x A data-frame containing input variables: with 60 obs. of 50 variables.

The data-frame x is composed by 2 independent clusters, each cluster contains 25 correlated variables. It is an equiprobable three class problem, Y belongs to -1,0,1. There is only 6 true variables, that are in the first cluster, the others being noise. The simulation model is defined through the conditional distribution of the X^j for $Y=y$. In the first cluster, the X^j are simulated in the following way:

- $X^j \sim N(2*y,2)$ for $j=1,2,3,4,5,6$;
- the other variables are noise, $X^j \sim N(0,1)$ for $j=7, \ldots, 25$.

The second cluster of 25 variables contains only noise variables.
Examples

```r
library(ClustOfVar)
library(impute)
library(FAMT)
library(VSURF)
library(glmnet)
library(anapuce)
library(qvalue)

X <- toys.data.multi$x
Y <- toys.data.multi$Y
scoreX <- data.frame(c(rep(8, 6), rep(0, 44)))
rownames(scoreX) <- colnames(X)

select <- ARMADA.heatmap(X, Y, scoreX, threshold = 1)

## Not run:
result <- ARMADA(X, Y, nclust = 2)
select <- ARMADA.heatmap(X, Y, result[[3]], threshold = 5)

## End(Not run)
```

Description

`toys.data.reg` is a simple simulated dataset of a regression problem.

Usage

`toys.data.reg`

Format

An object of class `list` of length 2.

Details

- `Y`: output variable;
- `x`: A data-frame containing input variables: with 30 obs. of 50 variables.

The data-frame `x` is composed by 2 independent clusters, each cluster contains 25 correlated variables. There is only 5 true variables, that are in the first cluster: \(Y = 50^*(x[.1] + x[.2] + x[.3] + x[.4] + x[.5]) \). The other variables are noise.
library(glmnet)
library(anapuce)
library(qvalue)
X<-toys.data.reg$x
Y<-toys.data.reg$Y
scoreX<-data.frame(c(rep(8,5),rep(8,45)))
rownames(scoreX)<-colnames(X)
select<-ARMADA.heatmap(X, Y, scoreX, threshold=1)
Not run:
result<-ARMADA(X,Y, nclust=2)
select<-ARMADA.heatmap(X, Y, result[[3]], threshold=5)
End(Not run)

X_decor

Decorrelation of a matrix X, given a response variable Y.

Description

Decorrelation of a matrix X, given a response variable Y.

Usage

```r
X_decor(X, Y, tree = NULL, nclust = 1, maxnbfactors = 10)
```

Arguments

- **X**: the matrix (or data.frame) of covariates, dimension n*p (n is the sample size, p the number of covariates). X must have colnames and rownames.
- **Y**: the vector of the response, length n.
- **tree**: the dendrogram of the covariates (object obtained before by the function clustering). By default, tree=NULL.
- **nclust**: integer, the number of clusters in the covariates (1 by default).
- **maxnbfactors**: integer, the maximum number of factors in the clusters. By default: maxnbfactors=10.

Details

The function X_decor applies the factor analysis method FAMT in the different clusters of variables. The clusters must have been defined before (with the function "clustering").

Value

A matrix X.decorrele, with the same dimension, same rownames and same colnames than X.
Examples

```r
toys.data
X<-toys.data$x
Y<-toys.data$Y
Tree <- clustering(X,plot=FALSE)
nclust <- Tree[[2]]
tree <- Tree[[1]]
library(ClustOfVar)
library(FAMT)
X.deco<- X_decor(X, Y, tree, nclust, maxnbfactors=10)
```
Index

*Topic **datasets**
 toys.data, 8
 toys.data.multi, 9
 toys.data.reg, 10

ARMADA, 2
ARMADA.heatmap, 3
ARMADA.select, 4
ARMADA.summary, 6

clustering, 6
covariables, 7

toys.data, 8
toys.data.multi, 9
toys.data.reg, 10

X_decor, 11