| Name | Last modified | Size | Description | |
|---|---|---|---|---|
| Parent Directory | - | |||
| README.html | 2020-04-20 15:50 | 13K | ||
The R package arulesCBA (Hahsler et al, 2020) is an extension of the package arules to perform association rule-based classification. The package implements the following algorithms:
The package also provides the infrastructure for associative classification (supervised discetization, mining class association rules (CARs)), and implements various association rule-based classification strategies (first match, majority voting, weighted voting, etc.).
Stable CRAN version: install from within R with
Current development version:
library("arulesCBA")
data("iris")
# learn a classifier
classifier <- CBA(Species ~ ., data = iris)
classifier
CBA Classifier Object
Class: Species=setosa, Species=versicolor, Species=virginica
Default Class: Species=versicolor
Number of rules: 6
Classification method: first
Description: CBA algorithm (Liu et al., 1998)
# inspect the rulebase
inspect(rules(classifier), linebreak = TRUE)
lhs rhs support conf lift count
[1] {Petal.Length=[-Inf,2.45)} => {Species=setosa} 0.33 1.00 3.0 50
[2] {Sepal.Length=[6.15, Inf],
Petal.Width=[1.75, Inf]} => {Species=virginica} 0.25 1.00 3.0 37
[3] {Sepal.Length=[5.55,6.15),
Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.14 1.00 3.0 21
[4] {Sepal.Width=[-Inf,2.95),
Petal.Width=[1.75, Inf]} => {Species=virginica} 0.11 1.00 3.0 17
[5] {Petal.Width=[1.75, Inf]} => {Species=virginica} 0.30 0.98 2.9 45
[6] {} => {Species=versicolor} 0.33 0.33 1.0 150
# make predictions for the first few instances of iris
predict(classifier, head(iris))
[1] setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica