The wheat example from section 7.6 of the asreml reference manual (Butler et al. 2018)

Chris Brien
06 April, 2019

```r
library(asreml, quietly=TRUE)
library(asremlPlus)
suppressMessages(library(QTLRel, quietly=TRUE))
options(width = 100)
```

Get data available in asremlPlus

```r
data(Wheat.dat)
```

Fit the initial model

In the following a model is fitted that has the terms that would be included for a balanced lattice. In addition, a term WithinColPairs has been included to allow for extraneous variation arising between pairs of adjacent lanes. Also, separable ar1 residual autocorrelation has been included. This model represents the maximal anticipated model,

```r
current.asr <- asreml(yield ~ WithinColPairs + Variety,
  random = ~ Rep/(Row + Column) + units,
  residual = ~ ar1(Row):ar1(Column),
  data=Wheat.dat)
```

```r
## Model fitted using the gamma parameterization.
## ASReml 4.1.0 Sat Apr 6 15:23:15 2019
## LogLik Sigma2 DF wall cpu
## 1 -724.121 23034.14 124 15:23:15 0.0
## 2 -717.415 9206.93 124 15:23:15 0.0 (2 restrained)
## 3 -694.875 26492.99 124 15:23:15 0.0 (2 restrained)
## 4 -694.160 33101.80 124 15:23:15 0.0 (1 restrained)
## 5 -692.002 36912.26 124 15:23:15 0.0 (1 restrained)
## 6 -691.789 46701.51 124 15:23:15 0.0 (2 restrained)
## 7 -691.834 46208.51 124 15:23:15 0.0 (1 restrained)
## 8 -691.775 47698.26 124 15:23:15 0.0
## 9 -691.771 47041.85 124 15:23:15 0.0
```

```r
## Warning in asreml(yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Some components changed
## by more than 1% on the last iteration.

The warning from `asreml` is probably due to a bound term.

Initialize a testing sequence by loading the current fit into an asrtests object

```r
current.asrt <- as.asrtests(current.asr, NULL, NULL)
```
## Calculating denominator DF

Check for and remove any boundary terms

```r
current.asrt <- rboundary(current.asrt)
summary(current.asrt$asreml.obj)$varcomp
```

### component std.error z.ratio bound %ch
---
## Rep:Row 4.293282e+03 3.199458e+03 1.3418779 P 0.0
## Rep:Column 1.575689e+02 1.480357e+03 0.1064398 P 0.7
## units 5.742689e+03 1.652457e+03 3.4752438 P 0.0
## Row:Column!R 4.706787e+04 2.515832e+04 1.8708669 P 0.0
## Row:Column!Row!cor 7.920301e-01 1.014691e-01 7.8056280 U 0.0
## Row:Column!Column!cor 8.799559e-01 7.370402e-02 11.9390486 U 0.0

```r
print(current.asrt, which = "testsummary")
```

## Sequence of model terms whose status in the model has been investigated

```r
terms DF denDF p action
1 Rep 1 NA NA Boundary
```

Rep has been removed because it has been constrained to zero. Following the recommendation of Littel et al. (2006, p. 150), the bound on all variance components is set to unconstrained (U) so as to avoid bias in the estimate of the residual variance.

### Unbind Rep, Row and Column components and reload into an asrtests object

```r
current.asr <- setvarianceterms(current.asr$call,
 terms = c("Rep", "Rep:Row", "Rep:Column"),
 bounds = "U")
```

## Model fitted using the gamma parameterization.

```r
ASReml 4.1.0 Sat Apr 6 15:23:16 2019
LogLik Sigma2 DF wall cpu
1 -724.121 23034.14 124 15:23:16 0.0
2 -717.415 9206.93 124 15:23:16 0.0 (2 restrained)
3 -717.415 26492.99 124 15:23:16 0.0 (2 restrained)
4 -717.415 3129.65 124 15:23:16 0.0 (1 restrained)
5 -722.886 39662.12 124 15:23:16 0.0
6 -717.415 53103.83 124 15:23:16 0.0
7 -717.415 48092.17 124 15:23:16 0.0
8 -717.415 47278.94 124 15:23:16 0.0
9 -717.415 46850.98 124 15:23:16 0.0
10 -717.415 46890.46 124 15:23:16 0.0
```

## Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Some components changed by more than 1% on the last iteration.

```r
current.asrt <- as.asrtests(current.asr, NULL, NULL)
```

## Calculating denominator DF
current.asrt <- rmboundary(current.asrt)
summary(current.asrt$asreml.obj)$varcomp

## component std.error z.ratio bound %ch
## Rep -2462.3785859 1.191435e+03 -2.066734 U 0.2
## Rep:Row 5012.4021416 3.396848e+03 1.475604 U 0.1
## Rep:Column 920.5936392 1.704008e+03 0.540252 U 1.1
## units 5964.9099379 1.608792e+03 3.707695 P 0.1
## Row:Column!R 46690.4620404 2.731906e+04 1.709080 P 0.0
## Row:Column!Row!cor 0.8152180 9.988929e-02 8.161216 U 0.1
## Row:Column!Column!cor 0.8857252 7.487875e-02 11.828793 U 0.0

print(current.asrt, which = "testsummary")

## Sequence of model terms whose status in the model has been investigated
##
## [1] terms DF denDF p action
## <0 rows> (or 0-length row.names)

print(current.asrt, which = "pseudoanova")

##
## #### Pseudo-anova table for fixed terms
##
## Wald tests for fixed effects.
##
## Response: yield
##
## |             | Df | denDF | F.inc | Pr   |
## |--------------|----|-------|-------|------|
## | (Intercept)  | 1  | 1.7   | 153.400 | 0.0115 |
## | WithinColPairs | 1 | 15.6  | 2.543 | 0.1308 |
## | Variety      | 24 | 76.1  | 10.110 | 0.0000 |

Now the Rep component estimate is negative.

The test.summary output shows that no changes have been made to the model loaded using as.asrtests. The pseudo-anova table shows that Varieties are highly significant ($p < 0.001$)

Check term for within Column pairs (a post hoc covariate)

current.asrt <- testranfix(current.asrt, term = "WithinColPairs", drop.fix.ns=TRUE)

## Calculating denominator DF

## Warning in asreml(fixed = yield ~ Variety, random = -Rep/(Row + Column) + : Some components changed by more than 1% on the last iteration.

## Calculating denominator DF

Generally, to determine what has been tested between two fits using asreml involves comparing two asreml calls and deciding what is different. For example what is the difference between the asreml call to fit the initial model and the following call?
current.asr <- asreml(yield ~ Variety, `random = ~ Rep/(Row + Column) + units, residual = ~ ar1(Row):ar1(Column), data=Wheat.dat)``

On the other hand, it is clear from the testranfix call that the term withinColPAirs is being tested.

Test nugget term

The nugget term represents non-spatial variance, such as measurement error. It is fitted using the asreml reserved word units.

current.asrt <- testranfix(current.asrt, "units", positive=TRUE)

## Warning in asreml(fixed = yield ~ Variety, random = ~Rep + Rep:Row + Rep:Column, : Some components ## changed by more than 1% on the last iteration.

Test Row autocorrelation

We begin testing the autocorrelation by dropping the Row autocorrelation.

current.asrt <- testresidual(current.asrt, "- Row:ar1(Column)", label="Row autocorrelation", simpler=TRUE)

## Warning in asreml(fixed = yield ~ Variety, random = ~Rep/(Row + Column) + : Log-likelihood not ## converged
## Warning in asreml(fixed = yield ~ Variety, random = ~Rep/(Row + Column) + : Some components changed ## by more than 1% on the last iteration.
## Warning in newfit.asreml(asreml.obj, residual. = term.form, trace = trace, :

Test Column autocorrelation (depends on whether Row autocorrelation retained)

The function getTestPvalue is used to get the p-value for the Row autocorrelation test. If it is significant then the Column autocorrelation is tested by by dropping the Column autocorrelation, while retaining the Row autocorrelation. Otherwise the model with just Row autocorrelation, whose fit is returned via current.asr after the test, is compared to one with no autocorrelation.

(p <- getTestPvalue(current.asrt, label = "Row autocorrelation"))

## [1] 4.654398e-06

{ if (p <= 0.05)
  current.asrt <- testresidual(current.asrt, "- ar1(Row):Column", label="Col autocorrelation", simpler=TRUE, update=FALSE)
else
  current.asrt <- testresidual(current.asrt, "- Row:Column", label="Col autocorrelation",

4
Output the results

```r
print(current.asrt, which = "test")
```

## Sequence of model terms whose status in the model has been investigated

<table>
<thead>
<tr>
<th>terms</th>
<th>DF</th>
<th>denDF</th>
<th>p</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>WithinColPairs</td>
<td>1</td>
<td>15.6</td>
<td>0.1308</td>
<td>Dropped</td>
</tr>
<tr>
<td>units</td>
<td>1</td>
<td>NA</td>
<td>0.0006</td>
<td>Retained</td>
</tr>
<tr>
<td>Row autocorrelation</td>
<td>1</td>
<td>NA</td>
<td>0.0000</td>
<td>Unswapped - new unconverged</td>
</tr>
<tr>
<td>Col autocorrelation</td>
<td>2</td>
<td>NA</td>
<td>0.0000</td>
<td>Unswapped</td>
</tr>
</tbody>
</table>

info <- `infoCriteria`(current.asrt$asreml.obj)
summary(current.asrt$asreml.obj)$varcomp

<table>
<thead>
<tr>
<th>component</th>
<th>std.error</th>
<th>z.ratio</th>
<th>bound</th>
<th>%ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep</td>
<td>-2392.1643977</td>
<td>1.194200e+03</td>
<td>-2.0031528</td>
<td>U 0.4</td>
</tr>
<tr>
<td>Rep:Row</td>
<td>5035.7265976</td>
<td>3.405769e+03</td>
<td>1.4785872</td>
<td>U 0.3</td>
</tr>
<tr>
<td>Rep:Column</td>
<td>762.1738644</td>
<td>1.612310e+03</td>
<td>0.4727218</td>
<td>U 1.3</td>
</tr>
<tr>
<td>units</td>
<td>5933.5126842</td>
<td>1.610749e+03</td>
<td>3.6836971</td>
<td>P 0.1</td>
</tr>
<tr>
<td>Row:Column</td>
<td>45973.2573645</td>
<td>2.635502e+04</td>
<td>1.7443833</td>
<td>P 0.0</td>
</tr>
<tr>
<td>Row:Column!Row!cor</td>
<td>0.8101706</td>
<td>9.994728e-02</td>
<td>8.1059792</td>
<td>U 0.1</td>
</tr>
<tr>
<td>Row:Column!Column!cor</td>
<td>0.8846993</td>
<td>7.502816e-02</td>
<td>11.7915640</td>
<td>U 0.0</td>
</tr>
</tbody>
</table>

The `test.summary` shows is that the model with Row and without Column autocorrelation failed to converge. It is also clear that no changes were made to the variance terms.

The `asreml.obj` in `current.asrt` contains the model selected by the testing process.

Get current fitted asreml object and update to include standardized residuals

```r
current.asr <- current.asrt$asreml.obj
current.asr <- update(current.asr, aom=TRUE)
Wheat.dat$res <- residuals(current.asr, type = "stdCond")
Wheat.dat$fit <- fitted(current.asr)
```

Do diagnostic checking

Do residuals-versus-fitted values plot

```r
with(Wheat.dat, plot(fit, res))
```
Plot variofaces

\texttt{variofaces(current.asr, V=NULL, units="addtores", maxiter=50, update = FALSE)}
Variogram face of Standardized conditional residuals for Row
The variofaces are the lag 1 plots of the sample semivariogram with simulated confidence envelopes (Stefanova et al., 2009).

**Plot normal quantile plot**

The plot is obtained using the `qqPlot` function from the `QTLRel` function (Cheng, 2018).

```r
with(Wheat.dat, qqPlot(y = res,
 xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
 main="Normal probability plot"))
```
Get Variety predictions and all pairwise prediction differences and p-values

```
Var.diffs <- predictPlus(classify = "Variety",
 asreml.obj=current.asr,
 error.intervals="halfLeast",
 wald.tab=current.asrt$wald.tab,
 sortFactor = "Variety",
 tables = "predictions")
```

## Notes:
## - The predictions are obtained by averaging across the hypertable calculated from model terms constructed solely from factors in the averaging and classify sets.
## - Use 'average' to move ignored factors into the averaging set.
## - The ignored set: Rep,Row,Column,units
## - Variety is included in this prediction
## - (Intercept) is included in this prediction
## - units is ignored in this prediction

##
## Variety predicted.value standard.error upper.halfLeastSignificant.limit
## 10 10 1168.989 120.4773 1228.315
## 1 1 1242.750 119.8109 1302.076
## 9 9 1257.137 119.9713 1316.463
## 16 16 1285.718 119.9405 1345.045
## 14 14 1293.527 119.9232 1352.853
## 23 23 1313.653 119.9713 1381.485
## 11 11 1322.159 120.2412 1316.463
## 7 7 1374.447 119.8109 1302.076
## 3 3 1394.070 120.4037 1453.396
## 4 4 1410.980 120.1060 1470.306
## 12 12 1444.557 120.6039 1503.883
## 8 8 1453.396 120.5945 1512.723
## 15 15 1458.383 120.4351 1517.709
## 5 5 1473.782 120.4460 1533.108
## 17 17 1487.828 120.2901 1547.154
## 6 6 1498.294 120.1194 1557.620
## 21 21 1517.121 120.2267 1576.448
## 2 2 1520.466 120.6327 1669.808
## 24 24 1533.769 120.3000 1593.095
## 18 18 1541.148 120.3669 1687.297
## 25 25 1575.794 120.5147 1635.121
## 22 22 1610.482 120.3286 1669.808
## 13 13 1610.762 120.4580 1670.088
## 20 20 1627.971 120.2333 1687.297
## 19 19 1652.992 120.3440 1712.318
## lower.halfLeastSignificant.limit est.status
## 10 1109.663 Estimable
## 1 1183.424 Estimable
## 9 1197.811 Estimable
## 16 1226.392 Estimable
## 14 1234.200 Estimable
## 23 1254.327 Estimable
## 11 1262.833 Estimable
## 7 1315.120 Estimable
## 3 1334.744 Estimable
## 4 1351.654 Estimable
## 12 1385.231 Estimable
## 8 1394.070 Estimable
## 15 1399.057 Estimable
## 5 1414.456 Estimable
## 17 1428.502 Estimable
## 6 1438.968 Estimable
## 21 1457.795 Estimable
## 2 1461.139 Estimable
## 24 1474.442 Estimable
## 18 1481.821 Estimable
## 25 1516.468 Estimable
## 22 1551.156 Estimable
## 13 1551.436 Estimable
## 20 1568.645 Estimable
## 19 1593.666 Estimable
##
## LSD values

```r
minimum LSD = 114.0128
mean LSD = 118.6523
maximum LSD = 123.3577
(sed range / mean sed = 0.0788)
```

We have set `error.intervals` to `halfLeast` so that the limits for \( \pm 0.5 \text{LSD} \) are calculated. When these are plotted overlapping error bars indicate predictions that are not significant, while those that do not overlap are significantly different (Snee, 1981).

Also set was `sortFactor`, so that the results would be ordered for the values of the predictions for Variety.

The function `predictPlus` returns an `alldiffs` object, a list consisting of the following components:

- `predictions`: the predictions, their standard errors and error intervals;
- `vcov`: the variance matrix of the predictions;
- `differences`: all pairwise differences between the predictions,
- `p.differences`: p-values for all pairwise differences between the predictions;
- `sed`: the standard errors of all pairwise differences between the predictions;
- `LSD`: the mean, minimum and maximum LSDs.

**Plot the Variety predictions, with halfLSD intervals, and the p-values**

```r
plotPredictions(Var.diffs$predictions,
 classify = "Variety", y = "predicted.value",
 error.intervals = "half")
```
plotPvalues(Var.diffs)
References


