Using **asremlPlus**, in conjunction with **asreml**, to do the analysis of a wheat experiment that includes choosing a local spatial variation model using AICs

Chris Brien

05 February, 2024

This vignette shows how to use **asremlPlus** (Brien, 2024), in conjunction with **asreml** (Butler et al., 2023), to select the terms to be included in a mixed model for an experiment that involves spatial variation by comparing of information criteria. It also illustrates diagnostic checking and prediction production and presentation for this experiment. Here, **asremlPlus** and **asreml** are packages for the R Statistical Computing environment (R Core Team, 2024).

It is divided into the following main sections:

1. Set up the initial model for this experiment
2. Compare a series of information criteria to select a linear mixed model for the data
3. Diagnostic checking using residual plots and variofaces
4. Prediction production and presentation

1. Set up the initial model for this experiment

```r
library(asreml, quietly=TRUE)

## Offline License checked out Mon Feb  5 18:40:08 2024

## Loading ASReml-R version 4.2

library(asremlPlus)
library(parallel)
library(doParallel)

## Loading required package: foreach

## Loading required package: iterators

library(foreach)
suppressMessages(library(qqplotr, quietly=TRUE))
options(width = 100)
```
Get data available in asremlPlus

The data are from a 1976 spring wheat experiment and are taken from Gilmour et al. (1995). An analysis is presented in the asreml manual by Butler et al. (2023, Section 7.6), although they suggest that it is a barley experiment.

```r
data(Wheat.dat)
```

Add row and column covariates for the spatial modelling

```r
tmp.dat <- within(Wheat.dat, {
  cColumn <- dae::as.numfac(Column)
  cColumn <- cColumn - mean(unique(cColumn))
  cRow <- dae::as.numfac(Row)
  cRow <- cRow - mean(unique(cRow))
})
```

Fit an initial model - Row and column random

In the following, an initial model is fitted that has the terms that would be included for a balanced lattice. In addition, a term WithinColPairs has been included to allow for extraneous variation arising between pairs of adjacent lanes.

```r
current.asr <- do.call(asreml, list(yield ~ Rep + WithinColPairs + Variety, random = ~ Row + Column, residual = ~ Row:Column, data = tmp.dat))
```

Initialize a model sequence by loading the current fit into an asrtests object

In creating the asrtests object, IClikelihood is set to full so that the full Restricted Maximum Likelihood (full REML) of Verbyla, 2019 is incorporated into the tests.summary of the asrtests object.

```r
current.asrt <- as.asrtests(current.asr, NULL, NULL, IClikelihood = "full", label = "Initial model")
```

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, :
Log-likelihood not converged

Check for and remove any boundary terms and print a summary of the fit in the asrtests object

```r
current.asrt <- rmboundary(current.asrt)
p7rint(current.asrt)
```
Summary of the fitted variance parameters

<table>
<thead>
<tr>
<th>component</th>
<th>std.error</th>
<th>z.ratio</th>
<th>bound</th>
<th>%ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>5943.898</td>
<td>3815.514</td>
<td>1.557824</td>
<td>P 0.0</td>
</tr>
<tr>
<td>Column</td>
<td>12380.527</td>
<td>6323.542</td>
<td>1.957847</td>
<td>P 0.3</td>
</tr>
<tr>
<td>Row:Column!R</td>
<td>20477.280</td>
<td>2896.642</td>
<td>7.069316</td>
<td>P 0.0</td>
</tr>
</tbody>
</table>

Pseudo-anova table for fixed terms

Wald tests for fixed effects.

<table>
<thead>
<tr>
<th>Response: yield</th>
<th>Df</th>
<th>denDF</th>
<th>F.inc</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1</td>
<td>14.9</td>
<td>1390.00</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rep</td>
<td>5</td>
<td>25.3</td>
<td>6.04</td>
<td>0.0008</td>
</tr>
<tr>
<td>WithinColPairs</td>
<td>1</td>
<td>10.4</td>
<td>0.49</td>
<td>0.4998</td>
</tr>
<tr>
<td>Variety</td>
<td>24</td>
<td>104.8</td>
<td>4.71</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Sequence of model investigations

<table>
<thead>
<tr>
<th>terms</th>
<th>DF</th>
<th>denDF</th>
<th>p</th>
<th>AIC</th>
<th>BIC</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Initial model</td>
<td>31</td>
<td>3</td>
<td>NA</td>
<td>1720.891</td>
<td>1823.253</td>
<td>Starting model</td>
</tr>
</tbody>
</table>

The test.summary output shows that no changes have been made to the model loaded using as.asrtests. The pseudo-anova table shows that Varieties are highly significant ($p < 0.001$)

2. Compare a series of information criteria to select a linear mixed model for the data

In this section, models are compared using Akaike Information Criterion (AICs) based on the full REML.

Check the need for the term for within Column pairs (a post hoc factor)

```r
current.asrt <- changeModelOnIC(current.asrt, dropFixed = "WithinColPairs", label = "Try dropping withinColPairs", IClikelihood = "full")
```

```
## Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, :
## Log-likelihood not converged

print(current.asrt)
```
Summary of the fitted variance parameters

<table>
<thead>
<tr>
<th>component</th>
<th>std.error</th>
<th>z.ratio</th>
<th>bound</th>
<th>%ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>5941.153</td>
<td>3813.586</td>
<td>1.557891</td>
<td>P 0</td>
</tr>
<tr>
<td>Column</td>
<td>11165.335</td>
<td>5583.267</td>
<td>1.999785</td>
<td>P 0</td>
</tr>
<tr>
<td>Row:Column</td>
<td>R 20472.402</td>
<td>2895.582</td>
<td>7.070219</td>
<td>P 0</td>
</tr>
</tbody>
</table>

Pseudo-anova table for fixed terms

Wald tests for fixed effects.

<table>
<thead>
<tr>
<th>Df</th>
<th>denDF</th>
<th>F.inc</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1</td>
<td>15.3</td>
<td>0e+00</td>
</tr>
<tr>
<td>Rep</td>
<td>5</td>
<td>6.11</td>
<td>7e-04</td>
</tr>
<tr>
<td>Variety</td>
<td>24</td>
<td>4.73</td>
<td>0e+00</td>
</tr>
</tbody>
</table>

Sequence of model investigations

(If a row has NA for p but not denDF, DF and denDF relate to fixed and variance parameter numbers)

<table>
<thead>
<tr>
<th>terms</th>
<th>DF</th>
<th>denDF</th>
<th>p</th>
<th>AIC</th>
<th>BIC</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>3</td>
<td>NA</td>
<td>1720.891308</td>
<td>1823.25291</td>
<td>Starting model</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>NA</td>
<td>-2.281894</td>
<td>-5.29253</td>
<td>Swapped</td>
</tr>
</tbody>
</table>

It is clear in the call to `changeModelOnIC` that the model is being changed by dropping the `withinColPairs` term, which could also be achieved using `update.asreml`. However, an `asremlPlus` model-changing function operates on an `asrtests` object, that includes an `asreml` object, and, except for `changeTerms.asrtests`, results in an `asrtests` object that may contain the changed model or the supplied model depending on the results of hypothesis tests or comparisons of information criteria. In addition, the result of the test or comparison will be added to a `test.summary` data.frame stored in the new `asrtests` object and, if the model was changed, the `wald.tab` in the new `asrtests` object will have been updated for the new model.

In this case, as can be seen from the summary of `current.asrt` after the call, the model without `withinColPairs` had a smaller AIC and so now the model stored in `current.asrt` does not include `withinColPairs`. The `wald.tab` has been updated for the new model.

Choose a model for local spatial variation from several potential models

This example has been analyzed using a model for the local spatial variation based on a separable autocorrelation process of order one (Butler et al., 2023). The need for this model can be assessed using the function `addSpatialModelOnIC` from `asremlPlus` that uses a forward selection strategy for fitting a correlation model (see output below). For this function, the spatial model to be fitted, the centred covariates for the two dimensions of the grid, and the factors corresponding to the covariates must be specified. Also, `IClikelihood` is set to `full` so that the likelihood will be based on the full REML. Because the model that incorporates the spatial model has a smaller AIC, it is the model returned in `spatial.ar1.asrt`.

The `print` of `spatial.ar1.asrt` shows that an `ar1` model for `Row` was tried first and was found to reduce the AIC by 11.898 and so became the current model. Next a model that incorporates an `ar1` function for
Column was similarly tried and became the current model. This model includes a nugget variance, unless either the variance for Row:Column term or the Residual is bound or fixed. The Residual is the nugget term and represents non-spatial variance, such as measurement error. An appraisal of the need for a nugget term was made by comparing the fits with the residual variance unfixed and fixed at one. The model with the unfixed residual variance was chosen and is the model to be returned. That is, this model includes a term for nugget variance.

```r
spatial.ar1.asrt <- addSpatialModelOnIC(current.asrt, spatial.model = "corr",
                                        row.covar = "cRow", col.covar = "cColumn",
                                        row.factor = "Row", col.factor = "Column",
                                        IClikelihood = "full")
```

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Some components changed by more than 1% on the last iteration

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Some components changed by more than 1% on the last iteration

Warning in infoCriteria.asreml(asreml.obj, IClikelihood = ic.lik, bound.exclusions = bound.exclusions): The following bound terms were discounted:
Column

Warning in infoCriteria.asreml(asreml.obj, IClikelihood = ic.lik): The following bound terms were discounted:
Column

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Warning:
Oscillating parameter(s) reset to average value (iteration 7)

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Warning:
Oscillating parameter(s) reset to average value (iteration 7)

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Warning:
Oscillating parameter(s) reset to average value (iteration 7)

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Warning:
Log-likelihood not converged

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Some components changed by more than 1% on the last iteration

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Warning:
Oscillating parameter(s) reset to average value (iteration 7)

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Warning:
Oscillating parameter(s) reset to average value (iteration 7)

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Warning:
Log-likelihood not converged

Warning in (function (fixed = ~1, random = ~NULL, sparse = ~NULL, residual = ~NULL, : Some components changed by more than 1% on the last iteration

Warning in newfit.asreml(asreml.obj, random. = mod.ran, trace = trace, update = update, :

Warning in changeTerms.asretests(asretests.obj, dropFixed = dropFixed, addFixed = addFixed, : In analysing yield, boundary terms removed
Summary of the fitted variance parameters

<table>
<thead>
<tr>
<th>Component</th>
<th>std.error</th>
<th>z.ratio</th>
<th>bound</th>
<th>%ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>2.202326e+03</td>
<td>8.222412e+03</td>
<td>0.2678443</td>
<td>P 0.3</td>
</tr>
<tr>
<td>Row:Column</td>
<td>5.181864e+04</td>
<td>3.381226e+04</td>
<td>1.5325399</td>
<td>P 0.0</td>
</tr>
<tr>
<td>Row:Column!R</td>
<td>4.821622e+03</td>
<td>1.717158e+03</td>
<td>2.8079077</td>
<td>P 0.0</td>
</tr>
</tbody>
</table>

Sequence of model investigations

(If a row has NA for p but not denDF, DF and denDF relate to fixed and variance parameter numbers)
terms DF denDF p AIC BIC action

1. **Initial model**
 - DF: 31
 - p: 1720.891308
 - Action: Starting model

2. **Try dropping withinColPairs**
 - DF: -1
 - p: -2.281894
 - Action: Swapped

3. **Try ar1(Row)**
 - DF: 2
 - p: -11.897710
 - Action: Swapped

4. **Try ar1(Column)**
 - DF: 0
 - p: -55.371326
 - Action: Swapped

5. **Column**
 - DF: 1
 - p: 1651.310695
 - Action: Boundary

6. **Try fixed nugget (residual) variance**
 - DF: 0
 - p: 1.802928
 - Action: Unswapped

However, the spatial models that are available in `asremlPlus` also include those based on two-dimensional tensor-product natural cubic smoothing splines (TPNCSS), as described by Verbyla et al. (2018), and on two-dimensional tensor-product P-splines (TPPS), as described by Rodriguez-Alvarez et al. (2018) and Piepho, Boer and Williams (2022). The P-splines have been implemented using functions from the R package TPSbits authored by Sue W elham (2022)

The `asremlPlus` function `chooseSpatialModelOnIC` allows one to select the best model from amongst these spatial correlation models using the AIC or the BIC, the AIC being the default. The four models from which it selects are (i) a separable autocorrelation model on both row and column dimensions (`corr`), (ii) a two-dimensional tensor-product natural cubic smoothing spline (TPNCSS), (ii) a two-dimensional tensor-product cubic P-spline with second-difference penalties (TPPCS), and (iii) a tensor-product two-dimensional linear P-spline with first-difference penalties (TPP1LS). By default all four are fitted and compared, but the `trySpatial` argument can be used to specify a subset of them.

The call to `chooseSpatialModelOnIC`, in addition to the arguments specifying covariates and factors, has further arguments: (i) `dropFixed` and `dropRandom` that are relevant to fitting P-splines and are used here to remove the random, overall Row and Column terms that were included in the original model so that the fitted P-spline model will be compared to a model including them and because the code for fitting P-splines also automatically includes these terms so that they would be included twice in the model to be fitted resulting in model singularities, (ii) `rotateX` and `ngridangles` so that the angles in both row and column directions for rotating the eigenvectors of the penalty matrix for the linear component of the P-splines is optimized (setting `ngridangles` to NULL causes the R function `nloptr::bobyqa` to be invoked for finding the optimal angles), (iii) an `asreml.option` argument to specify that the `grp` method be used in fitting the P-spline terms, this being safer because the data.frame needed for any post-fitting computation is available in the `asreml` object, and (iv) `return.asrts` to specify which `asrtests` objects are to be returned. Here we specify all so that `asrtests` objects for the best fits between the model supplied in the `current.asrt` and each of the spatial models is returned for all four spatial models. In this case, neither the `checkboundaryonly` nor the `IClikelihood` arguments were set because their defaults for `chooseSpatialModelOnIC` are appropriate.

```r
suppressWarnings(  
  spatial.asrts <- chooseSpatialModelOnIC(current.asrt,
    row.covar = "cRow", col.covar = "cColumn",
    row.factor = "Row", col.factor = "Column",
    dropRandom = "Row + Column",
    rotateX = TRUE, ngridangles = NULL,
    asreml.option = "grp", return.asrts = "all"))
```

```
## Notice : Spline design points closer than .000900 have been merged
## Notice : Spline design points closer than .001400 have been merged
## Notice : Spline design points closer than .000900 have been merged
## Notice : Spline design points closer than .001400 have been merged
## Notice : Spline design points closer than .000900 have been merged
## Notice : Spline design points closer than .001400 have been merged
## Notice : Spline design points closer than .000900 have been merged
## Notice : Spline design points closer than .001400 have been merged
```
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
elapsed time for bobyqa: 15.3 seconds
##
Optimal thetas: 20.2026926907242, 64.9728898361927 with criterion 1659.433
##
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged
##

Output the results

```r
print(spatial.asrts$spatial.IC)
```

```
## fixedDF varDF   AIC   BIC loglik
## nonspatial 30  3 1718.609 1817.960 -826.3047
## corr       30  5 1651.317 1756.689 -790.6583
## TPNCSS     33  6 1639.489 1756.904 -780.7445
## TPPCS      33  7 1642.838 1763.263 -781.4190
## TPP1LS     30  3 1708.443 1807.794 -821.2214
```

```r
print(R2adj(spatial.asrts$asrts$TPNCSS$asreml.obj, include.which.random = ~ .))
```

```
## [1] 93.3036
```

```r
print(spatial.asrts$best.spatial.mod)
```

```
## [1] "TPNCSS"
```
Summary of the fitted variance parameters

<table>
<thead>
<tr>
<th>component</th>
<th>std.error</th>
<th>z.ratio</th>
<th>bound</th>
<th>%ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>spl(cRow):cColumn</td>
<td>523.2004</td>
<td>372.8016</td>
<td>1.4034</td>
<td>P</td>
</tr>
<tr>
<td>dev(cRow)</td>
<td>7664.0211</td>
<td>4442.0646</td>
<td>1.7253</td>
<td>P</td>
</tr>
<tr>
<td>spl(cColumn)</td>
<td>13338.7348</td>
<td>9236.0511</td>
<td>1.4442</td>
<td>P</td>
</tr>
<tr>
<td>spl(cColumn):cRow</td>
<td>366.7707</td>
<td>322.7484</td>
<td>1.1364</td>
<td>P</td>
</tr>
<tr>
<td>spl(cRow):spl(cColumn)</td>
<td>3630.2187</td>
<td>2186.1497</td>
<td>1.6606</td>
<td>P</td>
</tr>
<tr>
<td>Row:Column!R</td>
<td>7658.0113</td>
<td>1312.2026</td>
<td>5.8359</td>
<td>P</td>
</tr>
</tbody>
</table>

Pseudo-anova table for fixed terms

<table>
<thead>
<tr>
<th>terms</th>
<th>DF</th>
<th>denDF</th>
<th>p</th>
<th>AIC</th>
<th>BIC</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1</td>
<td>6.8</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rep</td>
<td>5</td>
<td>41.3</td>
<td>20.45</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td>24</td>
<td>86.5</td>
<td>10.15</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cRow</td>
<td>1</td>
<td>7.0</td>
<td>0.07</td>
<td>0.7954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cColumn</td>
<td>1</td>
<td>30.1</td>
<td>20.30</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cRow:cColumn</td>
<td>1</td>
<td>64.3</td>
<td>22.00</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence of model investigations

(If a row has NA for p but not denDF, DF and denDF relate to fixed and variance parameter numbers)

<table>
<thead>
<tr>
<th>terms</th>
<th>DF</th>
<th>denDF</th>
<th>p</th>
<th>AIC</th>
<th>BIC</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial model</td>
<td>31</td>
<td>NA</td>
<td>1720.891308</td>
<td>1823.25291</td>
<td>Starting model</td>
<td></td>
</tr>
<tr>
<td>Try dropping withinColPairs</td>
<td>-1</td>
<td>NA</td>
<td>-2.281894</td>
<td>-5.29253</td>
<td>Swapped</td>
<td></td>
</tr>
<tr>
<td>Try tensor NCS splines</td>
<td>3</td>
<td>NA</td>
<td>-79.120426</td>
<td>-61.05661</td>
<td>Swapped</td>
<td></td>
</tr>
<tr>
<td>dev(cColumn)</td>
<td>1</td>
<td>NA</td>
<td>1639.488959</td>
<td>1756.90374</td>
<td>Boundary</td>
<td></td>
</tr>
<tr>
<td>spl(cRow)</td>
<td>1</td>
<td>NA</td>
<td>1639.489011</td>
<td>1756.90379</td>
<td>Boundary</td>
<td></td>
</tr>
</tbody>
</table>

The output shows that the TPNCSS model has the lowest AIC and so is selected as the best model. The adjusted R^2 value shows that the fixed and random terms in the fitted model account for 93% of the total vari-
ation in the yield. The model fitted for the TPNCSS model has been printed using `printFormulae.asreml`. The fitted model includes the term `dev(cRow)` that is equivalent to a random Row term and measures the deviations of the Row trend from a linear trend, the `spl(cRow)` term having been dropped because it was estimated to be zero. The Wald F-statistic for Variety is now 10.15 with 86.5 denominator degrees of freedom, as compared to 10.56 and 74.3 for the correlation model and 4.71 and 105.3 for the initial nonspatial model.

3. Diagnosting checking using residual plots and variofaces

Get current fitted asreml object and update to include standardized residuals

```r
current.asr <- spatial.asrts$asrts$TPCSS$asreml.obj
current.asr <- update(current.asr, aom=TRUE)
```

Notice : Spline design points closer than .001400 have been merged
Notice : Spline design points closer than .000900 have been merged

```r
Wheat.dat$res <- residuals(current.asr, type = "stdCond")
Wheat.dat$fit <- fitted(current.asr)
```

Do diagnostic checking

Do residuals-versus-fitted values plot

```r
with(Wheat.dat, plot(fit, res))
```
Plot variofaces

\begin{verbatim}
variofaces(current.asr, V=NULL, units="addtores",
 maxiter=50, update = FALSE,
 ncores = parallel::detectCores())
\end{verbatim}

Variogram face of Standardized conditional residuals for Row
The variofaces are the lag 1 plots of the sample semivariogram with simulated confidence envelopes (Stefanova et al., 2009).

Plot normal quantile plot

The plot is obtained using the `ggplot` function with extensions available from the `qqplotr` package (Almeida et al., 2023).

```r
ggplot(data = Wheat.dat, mapping = aes(sample = res)) +
  stat_qq_band(bandType = "ts") +
  stat_qq_line() +
  stat_qq_point() +
  labs(x = "Theoretical Quantiles", y = "Sample Quantiles",
       title = "Normal probability plot") +
  theme(plot.title = element_text(size = 12, face = "bold")) +
  theme_bw()
```
4. Prediction production and presentation

Get Variety predictions and all pairwise prediction differences and p-values

```r
Var.diffs <- predictPlus(classify = "Variety", asreml.obj = current.asr, error.intervals = "halfLeast", wald.tab = current.asr$wald.tab, sortFactor = "Variety", tables = "predictions")
```

Notice: Spline design points closer than .001400 have been merged
Notice: Spline design points closer than .000900 have been merged
##
Predictions for yield from Variety
##
Notes:
- The predictions are obtained by averaging across the hypertable calculated from model terms constructed solely from factors in the averaging and classify sets.
- Use ‘average’ to move ignored factors into the averaging set.
- spl(cRow) evaluated at average value of 0.00000
- spl(cColumn) evaluated at average value of 0.00000
- The simple averaging set: Rep
#
Variety predicted.value standard.error upper.halfLeastSignificant.limit
1 10 1196.214 64.11316 1255.028
2 9 1266.442 69.62176 1325.255
3 16 1268.206 74.01873 1327.020
4 1 1273.794 69.30592 1332.608
5 14 1310.806 70.75661 1369.620
6 23 1329.114 73.70238 1387.928
7 11 1340.668 75.07426 1399.481
8 4 1406.408 76.83336 1465.222
9 3 1408.543 71.85868 1467.356
##10 7 1414.471 72.23082 1473.284
##11 12 1423.303 71.18629 1482.117
##12 8 1445.533 75.37805 1504.347
##13 5 1480.687 70.31499 1539.500
##14 15 1485.249 74.28025 1544.063
##15 17 1495.212 71.09930 1554.026
##16 21 1512.767 72.53109 1571.580
##17 6 1520.841 72.50721 1579.654
##18 24 1563.649 65.33308 1622.463
##19 18 1568.887 71.06200 1627.700
##20 25 1579.929 70.52509 1638.743
##21 2 1585.398 74.96623 1644.211
##22 22 1633.080 71.38265 1691.894
##23 13 1637.119 66.24775 1695.932
##24 19 1651.533 74.93686 1710.347
##25 20 1657.612 68.65452 1716.426
lower.halfLeastSignificant.limit est.status
1 1137.400 Estimable
2 1207.628 Estimable
3 1209.393 Estimable
4 1214.980 Estimable
5 1251.993 Estimable
6 1270.300 Estimable
7 1281.854 Estimable
8 1347.594 Estimable
9 1349.729 Estimable
##10 1355.657 Estimable
##11 1364.490 Estimable
##12 1386.720 Estimable
##13 1421.873 Estimable
##14 1426.435 Estimable
##15 1436.399 Estimable
##16 1453.953 Estimable
##17 1462.027 Estimable
##18 1504.836 Estimable
##19 1510.073 Estimable
##20 1521.115 Estimable
##21 1526.584 Estimable
##22 1574.266 Estimable
##23 1578.305 Estimable
24 1592.719 Estimable
25 1598.798 Estimable

LSD values
minimum LSD = 109.6008
mean LSD = 117.6273
maximum LSD = 126.3422
(sed range / mean sed = 0.142)

We have set `error.intervals` to `halfLeast` so that the limits for each prediction ± (0.5 LSD) are calculated. When these are plotted overlapping error bars indicate predictions that are not significant, while those that do not overlap are significantly different (Snee, 1981).

Also set was `sortFactor`, so that the results would be ordered for the values of the predictions for Variety.

The function `predictPlus` returns an `alldiffs` object, a list consisting of the following components:

- **predictions**: the predictions, their standard errors and error intervals;
- **vcov**: the variance matrix of the predictions;
- **differences**: all pairwise differences between the predictions,
- **p.differences**: p-values for all pairwise differences between the predictions;
- **sed**: the standard errors of all pairwise differences between the predictions;
- **LSD**: the mean, minimum and maximum of the LSDs.

Plot the Variety predictions, with halfLSD intervals, and the p-values

```r
plotPredictions(Var.diffs$predictions, 
    classify = "Variety", y = "predicted.value", 
    error.intervals = "half")
```
plotPvalues(Var.diffs)
References

Welham, S. J. (2022) **TPSbits**: Creates Structures to Enable Fitting and Examination of 2D Tensor-Product Splines using ASReml-R. Version 1.0.0 https://mmade.org/tpsbits/