Package ‘assessor’

April 3, 2024

Title Assessment Tools for Regression Models with Discrete and Semicontinuous Outcomes

Version 1.1.0

Description Provides assessment tools for regression models with discrete and semicontinuous outcomes proposed in Yang (2023) <doi:10.48550/arXiv.2308.15596>. It calculates the double probability integral transform (DPIT) residuals, constructs QQ plots of residuals and the ordered curve for assessing mean structures.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

URL https://jhlee1408.github.io/assessor/

BugReports https://github.com/jhlee1408/assessor/issues

Imports tweedie, MASS, VGAM, np

Suggests pscl, statmod, rmarkdown, knitr, AER, faraway, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Lu Yang [aut], Jeonghwan Lee [cre, aut]

Maintainer Jeonghwan Lee <lee03938@umn.edu>

Repository CRAN

Date/Publication 2024-04-03 04:23:02 UTC

R topics documented:

MEPS ... 2
ord_curve .. 3
MEPS

Healthcare expenditure data

Description

Healthcare expenditure data set.

Usage

MEPS

Format

A data frame with 29784 rows and 29 variables:

- EXP: the aggregate annual office based expenditure per participants, semicontinuous outcomes
- AGE: Age
- GENDER: 1 if female
- ASIAN: 1 if Asian
- BLACK: 1 if Black
- NORTHEAST: 1 if Northeast
- MIDWEST: 1 if Midwest
- SOUTH: 1 if South
- USC: 1 if have usual source of care
- COLLEGE: 1 if college or higher degrees
- HIGHSCH: 1 if high school degree
- MARRIED: 1 if married
- WIDIVSEP: 1 if widowed or divorced or separated
- FAMSIZE: Family Size
- HINCOME: 1 if high income
- MINCOME: 1 if middle income
- LINCOME: 1 if low income
- NPOOR: 1 if near poor
- POOR: 1 if poor
FAIR 1 if fair
GOOD 1 if good
VGOOD 1 if very good
MNHPOOR 1 if poor or fair mental health
ANYLIMIT 1 if any functional or activity limitation
unemployed 1 if unemployed at the beginning of 2006
EDUCHEALTH 1 if education, health and social services
PUBADMIN 1 if public administration
insured 1 if is insured at the beginning of the year 2006
MANAGEDCARE if enrolled in an HMO or a gatekeeper plan

Source
http://www.meps.ahrq.gov/mepsweb/

Description
Creates a plot to assess the mean structure of regression models. The plot compares the cumulative sum of the response variable and its hypothesized value. Deviation from the diagonal suggests the possibility that the mean structure of the model is incorrect.

Usage
ord_curve(model, thr)

Arguments
model Regression model object (e.g., lm, glm, glm.nb, polr, lmer)
thr Threshold variable (e.g., predictor, fitted values, or variable to be included as a covariate)

Details
The ordered curve plots
\[\hat{L}_1(t) = \frac{\sum_{i=1}^{n} [Y_i 1(Z_i \leq t)]}{\sum_{i=1}^{n} Y_i} \]
against
\[\hat{L}_2(t) = \frac{\sum_{i=1}^{n} [\hat{\lambda}_i 1(Z_i \leq t)]}{\sum_{i=1}^{n} \hat{\lambda}_i} , \]
where \(\hat{\lambda}_i \) is the fitted mean, and \(Z_i \) is the threshold variable.

If the mean structure is correctly specified in the model, \(\hat{L}_1(t) \) and \(\hat{L}_2(t) \) should be close to each other.

If the curve is distant from the diagonal, it suggests incorrectness in the mean structure. Moreover, if the curve is above the diagonal, the summation of the response is larger than the fitted mean, which implies that the mean is underestimated, and vice versa.

The role of thr (threshold variable \(Z \)) is to determine the rule for accumulating \(\hat{\lambda}_i \) and \(Y_i \), \(i = 1, \ldots, n \) for the ordered curve. The candidate for thr could be any function of predictors such as a single predictor (e.g., \(x_1 \)), a linear combination of predictor (e.g., \(x_1 + x_2 \)), or fitted values (e.g., \(\text{fitted(model)} \)). It can also be a variable being considered to be included in the mean function. If a variable leads to a large discrepancy between the ordered curve and the diagonal, including this variable in the mean function should be considered.

For more details, see the reference paper.

Value

- x-axis: \(\hat{L}_1(t) \)
- y-axis: \(\hat{L}_2(t) \)

which are defined in Details.

References

Examples

```r
## Binary example of ordered curve
n <- 500
set.seed(1234)
x1 <- rnorm(n, 1, 1)
x2 <- rbinom(n, 1, 0.7)
beta0 <- -5
beta1 <- 2
beta2 <- 1
beta3 <- 3
q1 <- 1 / (1 + exp(beta0 + beta1 * x1 + beta2 * x2 + beta3 * x1 * x2))
y1 <- rbinom(n, size = 1, prob = 1 - q1)

## True Model
model0 <- glm(y1 ~ x1 * x2, family = binomial(link = "logit"))
ord_curve(model0, thr = model0$fitted.values)  # set the threshold as fitted values

## Missing a covariate
model1 <- glm(y1 ~ x1, family = binomial(link = "logit"))
ord_curve(model1, thr = x2)  # set the threshold as a covariate
```
```r
## Poisson example of ordered curve
n <- 500
set.seed(1234)
x1 <- rnorm(n)
x2 <- rnorm(n)
beta0 <- 0
beta1 <- 2
beta2 <- 1
lambda1 <- exp(beta0 + beta1 * x1 + beta2 * x2)
y <- rpois(n, lambda1)

## True Model
poismodel1 <- glm(y ~ x1 + x2, family = poisson(link = "log"))
ord_curve(poismodel1, thr = poismodel1$fitted.values)

## Missing a covariate
poismodel2 <- glm(y ~ x1, family = poisson(link = "log"))
ord_curve(poismodel2, thr = poismodel2$fitted.values)
ord_curve(poismodel2, thr = x2)
```

qqresid

QQ-plots of DPIT residuals

Description

Makes a QQ-plot of the DPIT residuals calculated from resid_disc(), resid_semiconti() or resid_zeroinfl(). The plot should be close to the diagonal if the model is correctly specified. Note that this function does not return residuals. To get both residuals and QQ-plot, use resid_disc(), resid_semiconti() and resid_zeroinfl().

Usage

```r
qqresid(model, scale="normal")
```

Arguments

- `model` Fitted model object (e.g., glm(), glm.nb(), zeroinfl(), and polr())
- `scale` You can choose the scale of the residuals between normal and uniform scales. The sample quantiles of the residuals are plotted against the theoretical quantiles of a standard normal distribution under the normal scale, and against the theoretical quantiles of a uniform (0,1) distribution under the uniform scale. The default scale is normal.

Value

A QQ plot.

- x-axis: Theoretical quantiles
- y-axis: Sample quantiles generated by DPIT residuals
resid_2pm

Residuals for regression models with two-part outcomes

Description

Calculates DPIT proposed residuals for model for semi-continuous outcomes. `resid_2pm` can be used either with `model0` and `model1` or with `part0` and `part1` as arguments.

Usage

```r
resid_2pm(model0, model1, y, part0, part1, plot=TRUE, scale = "normal")
```

Arguments

- `model0` Model object for 0 outcomes (e.g., logistic regression)
- `model1` Model object for the continuous part (gamma regression)
- `y` Seminconituous outcome variables
- `part0` Alternative argument to `model0`. One can supply the sequence of probabilities $P(Y_i = 0), i = 1, \ldots, n$.
- `part1` Alternative argument to `model1`. One can fit a regression model on the positive data and supply their probability integral transform. Note that the length of `part1` is the number of positive values in `y` and can be shorter than `part0`.
- `plot` A logical value indicating whether or not to return QQ-plot
- `scale` You can choose the scale of the residuals among `normal` and `uniform` scales. The default scale is `normal`.

Examples

```r
n <- 100
b <- c(2, 1, -2)
x1 <- rnorm(n)
x2 <- rbinom(n, 1, 0.7)

m1 <- glm(y ~ x1 + x2, family = poisson)
qqresid(m1, scale = "normal")
qqresid(m1, scale = "uniform")
```
Details

The DPIT residuals for regression models with semi-continuous outcomes are

$$
\hat{r}_i = \frac{\hat{F}(Y_i|X_i)}{n} \sum_{j=1}^{n} 1 \left(\hat{p}_0(X_j) \leq \hat{F}(Y_i|X_i) \right), \quad i = 1, \ldots, n,
$$

where \(\hat{p}_0(X_i) \) is the fitted probability of zero, and \(\hat{F}(\cdot|X_i) \) is the fitted cumulative distribution function for the \(i \)th observation. Furthermore,

$$
\hat{F}(y|x) = \hat{p}_0(x) + (1 - \hat{p}_0(x)) \hat{G}(y|x)
$$

where \(\hat{G} \) is the fitted cumulative distribution for the positive data.

In two-part models, the probability of zero can be modeled using a logistic regression, model0, while the positive observations can be modeled using a gamma regression, model1. Users can choose to use different models and supply the resulting probability transforms. part0 should be the sequence of fitted probabilities of zeros \(\hat{p}_0(X_i) \), \(i = 1, \ldots, n \). part1 should be the probability integral transform of the positive part \(\hat{G}(Y_i|X_i) \). Note that the length of part1 is the number of positive values in \(y \) and can be shorter than part0.

Value

Residuals. If plot=TRUE, also produces a QQ plot.

See Also

resid_semiconti()

Examples

```r
library(MASS)
n <- 500
beta10 <- 1
beta11 <- -2
beta12 <- -1
beta13 <- -1
beta14 <- -1
beta15 <- -2
x11 <- rnorm(n)
x12 <- rbinom(n, size = 1, prob = 0.4)
p1 <- 1 / (1 + exp(-(beta10 + x11 * beta11 + x12 * beta12)))
lambda1 <- exp(beta13 + beta14 * x11 + beta15 * x12)
y2 <- rgamma(n, scale = lambda1 / 2, shape = 2)
y <- rep(0, n)
u <- runif(n, 0, 1)
ind1 <- which(u >= p1)
y[ind1] <- y2[ind1]

# models as input
mgamma <- glm(y[ind1] ~ x11[ind1] + x12[ind1], family = Gamma(link = "log"))
```
resid_disc <- glm(y == 0 ~ x12 + x11, family = binomial(link = "logit"))
resid.model <- resid_2pm(model0 = m10, model1 = mgamma, y = y)

PIT as input
cdfgamma <- pgamma(y[ind1],
 scale = mgamma$fitted.values * gamma.dispersion(mgamma),
 shape = 1 / gamma.dispersion(mgamma)
)
p1f <- m10$fitted.values
resid.pit <- resid_2pm(y = y, part0 = p1f, part1 = cdfgamma)

resid_disc

Residuals for regression models with discrete outcomes

Description

Calculates the DPIT residuals for regression models with discrete outcomes. Specifically, the model assumption of GLMs with binary, ordinal, Poisson, and negative binomial outcomes can be assessed using resid_disc().

Usage

resid_disc(model, plot=TRUE, scale="normal")

Arguments

- model: Model object (e.g., glm, glm.nb, polr)
- plot: A logical value indicating whether or not to return QQ-plot
- scale: You can choose the scale of the residuals among normal and uniform scales. The sample quantiles of the residuals are plotted against the theoretical quantiles of a standard normal distribution under the normal scale, and against the theoretical quantiles of a uniform (0,1) distribution under the uniform scale. The default scale is normal.

Details

The DPIT residual for the ith observation is defined as follows:

$$
\hat{r}(Y_i|X_i) = \hat{G}\left(\hat{F}(Y_i|X_i)\right)
$$

where

$$
\hat{G}(s) = \frac{1}{n-1} \sum_{j=1, j \neq i}^{n} \hat{F}\left(\hat{F}^{-1}(X_j | X_i)\right)
$$

and \hat{F} refers to the fitted cumulative distribution function. When scale="uniform", DPIT residuals should closely follow a uniform distribution, otherwise it implies model deficiency. When scale="normal", it applies the normal quantile transformation to the DPIT residuals

$$
\Phi^{-1}\left[\hat{r}(Y_i|X_i)\right], i = 1, \ldots, n.
$$
The null pattern is the standard normal distribution in this case.

Check reference for more details.

Value

DPIT residuals. If plot=TRUE, also produces a QQ plot.

References

Examples

```r
library(MASS)
n <- 500
set.seed(1234)
## Negative Binomial example
# Covariates
x1 <- rnorm(n)
x2 <- rbinom(n, 1, 0.7)
### Parameters
beta0 <- -2
beta1 <- 2
beta2 <- 1
size1 <- 2
lambda1 <- exp(beta0 + beta1 * x1 + beta2 * x2)
# generate outcomes
y <- rnbinom(n, mu = lambda1, size = size1)

# True model
model1 <- glm.nb(y ~ x1 + x2)
resid.nb1 <- resid_disc(model1, plot = TRUE, scale = "uniform")

# Overdispersion
model2 <- glm(y ~ x1 + x2, family = poisson(link = "log"))
resid.nb2 <- resid_disc(model2, plot = TRUE, scale = "normal")

## Binary example
n <- 500
set.seed(1234)
# Covariates
x1 <- rnorm(n, 1, 1)
x2 <- rbinom(n, 1, 0.7)
# Coefficients
beta0 <- -5
beta1 <- 2
beta2 <- 1
beta3 <- 3
q1 <- 1 / (1 + exp(beta0 + beta1 * x1 + beta2 * x2 + beta3 * x1 * x2))
y1 <- rbinom(n, size = 1, prob = 1 - q1)
```
True model
model01 <- glm(y1 ~ x1 * x2, family = binomial(link = "logit"))
resid.bin1 <- resid_disc(model01, plot = TRUE)

Missing covariates
model02 <- glm(y1 ~ x1, family = binomial(link = "logit"))
resid.bin2 <- resid_disc(model02, plot = TRUE)

Poisson example
n <- 500
set.seed(1234)
Covariates
x1 <- rnorm(n)
x2 <- rbinom(n, 1, 0.7)
Coefficients
beta0 <- -2
beta1 <- 2
beta2 <- 1
lambda1 <- exp(beta0 + beta1 * x1 + beta2 * x2)
y <- rpois(n, lambda1)

True model
poismodel1 <- glm(y ~ x1 + x2, family = poisson(link = "log"))
resid.poi1 <- resid_disc(poismodel1, plot = TRUE)

Enlarge three outcomes
y <- rpois(n, lambda1) + c(rep(0, (n - 3)), c(10, 15, 20))
poismodel2 <- glm(y ~ x1 + x2, family = poisson(link = "log"))
resid.poi2 <- resid_disc(poismodel2, plot = TRUE)

Ordinal example
n <- 500
set.seed(1234)
Covariates
x1 <- rnorm(n, mean = 2)
Coefficient
beta1 <- 3
True model
p0 <- plogis(1, location = beta1 * x1)
p1 <- plogis(4, location = beta1 * x1) - p0
p2 <- 1 - p0 - p1
genemult <- function(p) {
 rmultinom(1, size = 1, prob = c(p[1], p[2], p[3]))
}
test <- apply(cbind(p0, p1, p2), 1, genemult)
y1 <- rep(0, n)
y1[which(test[1,] == 1)] <- 0
y1[which(test[2,] == 1)] <- 1
y1[which(test[3,] == 1)] <- 2
multimodel <- polr(as.factor(y1) ~ x1, method = "logistic")
resid.ord1 <- resid_disc(multimodel, plot = TRUE)
Non-Proportionality

```r
n <- 500
sample.seed(1234)
x1 <- rnorm(n, mean = 2)
beta1 <- 3
beta2 <- 1
p0 <- plogis(1, location = beta1 * x1)
p1 <- plogis(4, location = beta2 * x1) - p0
p2 <- 1 - p0 - p1
genemult <- function(p) {
  rmultinom(1, size = 1, prob = c(p[1], p[2], p[3]))
}
test <- apply(cbind(p0, p1, p2), 1, genemult)
y1 <- rep(0, n)
y1[which(test[1, ] == 1)] <- 0
y1[which(test[2, ] == 1)] <- 1
y1[which(test[3, ] == 1)] <- 2
multimodel <- polr(as.factor(y1) ~ x1, method = "logistic")
resid.ord2 <- resid_disc(multimodel, plot = TRUE)
```

resid_quasi
Quasi Empirical residuals functions

Description

Draw the QQ-plot for regression models with discrete outcomes using the quasi-empirical residual distribution functions. Specifically, the model assumption of GLMs with binary, ordinal, Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial outcomes can be applicable to `resid_quasi()`.

Usage

```r
resid_quasi(model)
```

Arguments

- `model` Model object (e.g., glm, glm.nb, polr, zeroinfl)

Details

The quasi-empirical residual distribution function is defined as follows:

\[
\hat{U}(s; \beta) = \sum_{i=1}^{n} W_n(s; X_i, \beta) I[F(Y_i | X_i) < H(s; X_i)]
\]

where

\[
W_n(s; X_i, \beta) = \frac{K[(H(s; X_i) - s) / \epsilon_n]}{\sum_{j=1}^{n} K[(H(s; X_j) - s) / \epsilon_n]}
\]

and \(K\) is a bounded, symmetric, and Lipschitz continuous kernel.
Value

A QQ plot.

- x-axis: Theoretical quantiles
- y-axis: Sample quantiles

References

Examples

```r
## Negative Binomial example
library(MASS)
# Covariates
n <- 500
x1 <- rnorm(n)
x2 <- rbinom(n, 1, 0.7)
### Parameters
beta0 <- -2
beta1 <- 2
beta2 <- 1
size1 <- 2
lambda1 <- exp(beta0 + beta1 * x1 + beta2 * x2)
# generate outcomes
y <- rnbinom(n, mu = lambda1, size = size1)
# True model
model1 <- glm.nb(y ~ x1 + x2)
resid.nb1 <- resid_quasi(model1)

# Overdispersion
model2 <- glm(y ~ x1 + x2, family = poisson(link = "log"))
resid.nb2 <- resid_quasi(model2)

## Zero inflated Poisson example
library(pscl)
library(poisson)
set.seed(1234)
# Covariates
x1 <- rnorm(n)
x2 <- rbinom(n, 1, 0.7)
# Coefficients
beta0 <- -2
beta1 <- 2
beta2 <- 1
beta00 <- -2
beta10 <- 2
size1 <- 2
lambda1 <- exp(beta00 + beta1 * x1 + beta2 * x2)
# generate outcomes
y <- rnbinom(n, mu = lambda1, size = size1)
# True model
model1 <- glm.nb(y ~ x1 + x2)
resid.nb1 <- resid_quasi(model1)

# Overdispersion
model2 <- glm(y ~ x1 + x2, family = poisson(link = "log"))
resid.nb2 <- resid_quasi(model2)
```

\[
\lambda_1 \leftarrow \exp(\beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2)
\]

Excess zero probability
\[
p_0 \leftarrow \frac{1}{1 + \exp(-(\beta_{00} + \beta_{10} \times x_1))}
\]

simulate outcomes
\[
y_0 \leftarrow \text{rbinom}(n, \text{size} = 1, \text{prob} = 1 - p_0)
y_1 \leftarrow \text{rpois}(n, \lambda_1)
y \leftarrow \text{ifelse}(y_0 == 0, 0, y_1)
\]

True model
\[
\text{modelzero1} \leftarrow \text{zeroinfl}(y \sim x_1 + x_2 | x_1, \text{dist} = \text{"poisson"}, \text{link} = \text{"logit"})
\]
\[
\text{resid.zero1} \leftarrow \text{resid_quasi(modelzero1)}
\]

Residuals for regression models with semicontinuous outcomes

Description

Calculates the DPIT residuals for regression models with semi-continuous outcomes. The semi-continuous regression model such as a Tweedie regression model from `tweedie` package or a Tobit regression model from `VGAM`, `AER` packages is used in this function.

Usage

```r
resid_semiconti(model, plot=TRUE, scale = "normal")
```

Arguments

- **model**: Model object (e.g., `tweedie`, `vglm`, and `tobit`)
- **plot**: A logical value indicating whether or not to return QQ-plot
- **scale**: You can choose the scale of the residuals between `normal` and `uniform` scales. The default scale is `normal`.

Details

The DPIT residual for the \(i\)th semicontinuous observation is defined as follows:

\[
\hat{r}_i = \frac{\hat{F}(Y_i|X_i)}{n} \sum_{j=1}^{n} I\left(\hat{p}_0(X_j) \leq \hat{F}(Y_i|X_i)\right),
\]

which has a null distribution of uniformity. \(\hat{F}\) refers to the fitted cumulative distribution function, and \(\hat{p}_0\) refers to the fitted probability of being zero.

Value

Residuals. If plot=TRUE, also produces a QQ plot.

References

Tweedie model
library(tweedie)
library(statmod)
n <- 500
x11 <- rnorm(n)
x12 <- rnorm(n)
beta0 <- 5
beta1 <- 1
beta2 <- 1
lambda1 <- exp(beta0 + beta1 * x11 + beta2 * x12)
y1 <- rtweedie(n, mu = lambda1, xi = 1.6, phi = 10)
Choose parameter p
True model
model1 <-
 glm(y1 ~ x11 + x12,
 family = tweedie(var.power = 1.6, link.power = 0)
)
resid.tweedie <- resid_semiconti(model1)

Tobit regression model
library(VGAM)
beta13 <- 1
beta14 <- -3
beta15 <- 3
set.seed(1234)
x11 <- runif(n)
x12 <- runif(n)
lambda1 <- beta13 + beta14 * x11 + beta15 * x12
sd0 <- 0.3
yun <- rnorm(n, mean = lambda1, sd = sd0)
y <- ifelse(yun >= 0, yun, 0)
Using VGAM package
True model
fit1 <- vglm(formula = y ~ x11 + x12, tobit(Upper = Inf, Lower = 0, lmu = "identitylink"))
Missing covariate
fit1miss <- vglm(formula = y ~ x11, tobit(Upper = Inf, Lower = 0, lmu = "identitylink"))
resid.tobit1 <- resid_semiconti(fit1, plot = TRUE)
resid.tobit2 <- resid_semiconti(fit1miss, plot = TRUE)

Using AER package
library(AER)
True model
fit2 <- tobit(y ~ x11 + x12, left = 0, right = Inf, dist = "gaussian")
Missing covariate
fit2miss <- tobit(y ~ x11, left = 0, right = Inf, dist = "gaussian")
resid.aer1 <- resid_semiconti(fit2, plot = TRUE)
resid.aer2 <- resid_semiconti(fit2miss, plot = TRUE)

resid_zeroinfl

Residuals for regression models with zero-inflated outcomes

Description

Calculates the DPIT residuals for a regression model with zero-inflated discrete outcome. A zero-inflated model from pscl is used in this function.

Usage

resid_zeroinfl(model, plot=TRUE, scale="normal")

Arguments

model Model object, which is the output of pscl::zeroinfl.
plot A logical value indicating whether or not to return QQ-plot.
scale You can choose the scale of the residuals among normal and uniform scales. The default scale is normal.

Value

DPIT residuals. If plot=TRUE, also produces a QQ plot.

References

Examples

Zero-Inflated Poisson
library(pscl)
n <- 500
set.seed(1234)
Covariates
x1 <- rnorm(n)
x2 <- rbinom(n, 1, 0.7)
Coefficients
beta0 <- -2
beta1 <- 2
beta2 <- 1
beta00 <- -2
beta10 <- 2

Mean of Poisson part
lambda1 <- exp(beta0 + beta1 * x1 + beta2 * x2)
Excess zero probability
p0 <- 1 / (1 + exp(-(beta00 + beta10 * x1)))
simulate outcomes
y0 <- rbinom(n, size = 1, prob = 1 - p0)
y1 <- rpois(n, lambda1)
y <- ifelse(y0 == 0, 0, y1)
True model
modelzero1 <- zeroinfl(y ~ x1 + x2 | x1, dist = "poisson", link = "logit")
resid.zero1 <- resid_zeroinfl(modelzero1, plot = TRUE, scale = "uniform")

Zero inflation
modelzero2 <- glm(y ~ x1 + x2, family = poisson(link = "log"))
resid.zero2 <- resid_disc(modelzero2, plot = TRUE, scale = "normal"
Index

* datasets
 MEPS, 2

MEPS, 2

ord_curve, 3

qqresid, 5

resid_2pm, 6
resid_2pm(), 14
resid_disc, 8
resid_disc(), 5, 6
resid_quasi, 11
resid_semiconti, 13
resid_semiconti(), 5–7
resid_zeroinf1, 15
resid_zeroinf1(), 5, 6