Package ‘assortnet’

January 18, 2016

Type Package
Title Calculate the Assortativity Coefficient of Weighted and Binary Networks
Version 0.12
Date 2016-01-18
Author Damien Farine <dfarine@orn.mpg.de>
Maintainer Damien Farine <dfarine@orn.mpg.de>
Description Functions to calculate the assortment of vertices in social networks. This can be measured on both weighted and binary networks, with discrete or continuous vertex values.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-18 22:56:18

R topics documented:

assortnet-package .. 1
assortment.continuous ... 2
assortment.discrete .. 4

Description

Functions to calculate the assortment of vertices in social networks. This can be measured on both weighted and binary networks, with discrete or continuous vertex values.

Details
assortment.continuous

Author(s)

Maintainer: Damien Farine <dfarine@orn.mpg.de>

References

assortment.continuous Assortment on continuous vertex values

Description

Calculates the assortativity coefficient for weighted and unweighted graphs with numerical vertex values

Usage

assortment.continuous(graph, vertex_values, weighted = TRUE, SE = FALSE, M = 1)

Arguments

graph A Adjacency matrix, as an N x N matrix. Can be weighted or binary.
vertex_values Values on which to calculate assortment, vector of N numbers
weighted Flag: TRUE to use weighted edges, FALSE to turn edges into binary (even if weights are given)
SE Calculate standard error using the Jackknife method.
M Binning value for Jackknife, where M edges are removed rather than single edges. This helps speed up the estimate for large networks with many edges.

Value

This function returns a named list, with two elements:

$r the assortativity coefficient $SE the standard error
Author(s)

Damien Farine dfarine@orn.mpg.de

References

Examples

```r
# DIRECTED NETWORK EXAMPLE
# Create a random directed network
N <- 20
dyads <- expand.grid(ID1=1:20, ID2=1:20)
dyads <- dyads[which(dyads$ID1 != dyads$ID2),]
weights <- rbeta(nrow(dyads), 1, 15)
network <- matrix(0, nrow=N, ncol=N)
network[cbind(dyads$ID1, dyads$ID2)] <- weights
network[cbind(dyads$ID2, dyads$ID1)] <- weights

# Create random continues trait values
traits <- rnorm(N)

# Test for assortment as binary network
assortment.continuous(network, traits, weighted=FALSE)

# Test for assortment as weighted network
assortment.continuous(network, traits, weighted=TRUE)
```

```r
# UNDIRECTED NETWORK EXAMPLE
# Create a random undirected network
N <- 20
dyads <- expand.grid(ID1=1:20, ID2=1:20)
dyads <- dyads[which(dyads$ID1 < dyads$ID2),]
weights <- rbeta(nrow(dyads), 1, 15)
network <- matrix(0, nrow=N, ncol=N)
network[cbind(dyads$ID1, dyads$ID2)] <- weights
network[cbind(dyads$ID2, dyads$ID1)] <- weights

# Create random continues trait values
traits <- rnorm(N)

# Test for assortment as binary network
assortment.continuous(network, traits, weighted=FALSE)

# Test for assortment as weighted network
assortment.continuous(network, traits, weighted=TRUE)
```
assortment.discrete Assortment on discrete vertex values

Description

Calculates the assortativity coefficient for weighted and unweighted graphs with nominal/categorical vertex values.

Usage

assortment.discrete(graph, types, weighted = TRUE, SE = FALSE, M = 1)

Arguments

- **graph**: Adjacency matrix, as an N x N matrix. Can be weighted or binary.
- **types**: Values on which to calculate assortment, vector of N labels.
- **weighted**: Flag: TRUE to use weighted edges, FALSE to turn edges into binary (even if weights are given).
- **SE**: Calculate standard error using the Jackknife method.
- **M**: Binning value for Jackknife, where M edges are removed rather than single edges. This helps speed up the estimate for large networks with many edges.

Value

This function returns a named list, with three elements:

- r the assortativity coefficient
- SE the standard error
- $mixing_matrix$ the mixing matrix with the distribution of edges or edge weights by category

Author(s)

Damien Farine dfarine@orn.mpg.de

References

Examples

```R
# DIRECTED NETWORK EXAMPLE
# Create a random directed network
N <- 20
dyads <- expand.grid(ID1=1:20, ID2=1:20)
dyads <- dyads[which(dyads$ID1 != dyads$ID2),]
weights <- rbeta(nrow(dyads), 1, 15)
network <- matrix(0, nrow=N, ncol=N)
```
network[cbind(dyads$ID1,dyads$ID2)] <- weights

Create random discrete trait values
traits <- rpois(N,2)

Test for assortment as binary network
assortment.discrete(network,traits,weighted=FALSE)

Test for assortment as weighted network
assortment.discrete(network,traits,weighted=TRUE)

UNDIRECTED NETWORK EXAMPLE
Create a random undirected network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)
dyads <- dyads[which(dyads$ID1 < dyads$ID2),]
weights <- rbeta(nrow(dyads),1,15)
network <- matrix(0, nrow=N, ncol=N)
network[cbind(dyads$ID1,dyads$ID2)] <- weights
network[cbind(dyads$ID2,dyads$ID1)] <- weights

Create random discrete trait values
traits <- rpois(N,2)

Test for assortment as binary network
assortment.discrete(network,traits,weighted=FALSE)

Test for assortment as weighted network
assortment.discrete(network,traits,weighted=TRUE)
Index

*Topic package
 assortnet-package, 1

assortment.continuous, 2
assortment.discrete, 4
assortnet (assortnet-package), 1
assortnet-package, 1