Package ‘astrochron’

October 5, 2021

Type Package

Title A Computational Tool for Astrochronology

Version 1.1

Date 2021-11-05

Author Stephen Meyers [aut,cre], Alberto Malinverno [ctb], Linda Hinov [ctb], Christian Zee- den [ctb], Huaran Liu [ctb], Vincent Moron [ctb]

Maintainer Stephen Meyers <smeyers@geology.wisc.edu>

Description Routines for astrochronologic testing, astronomical time scale construction, and time series analysis <doi:10.1016/j.earscirev.2018.11.015>. Also included are a range of statistical analysis and modeling routines that are relevant to time scale development and paleoclimate analysis.

Imports multitaper, parallel, doParallel,foreach, iterators, IDPmisc, fields, viridisLite

License GPL-3

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-10-05 14:40:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>astrochron-package</td>
<td>4</td>
</tr>
<tr>
<td>anchorTime</td>
<td>6</td>
</tr>
<tr>
<td>ar1</td>
<td>7</td>
</tr>
<tr>
<td>ar1etp</td>
<td>8</td>
</tr>
<tr>
<td>arcsinT</td>
<td>9</td>
</tr>
<tr>
<td>armaGen</td>
<td>10</td>
</tr>
<tr>
<td>asm</td>
<td>10</td>
</tr>
<tr>
<td>autoPlot</td>
<td>12</td>
</tr>
<tr>
<td>bandpass</td>
<td>13</td>
</tr>
<tr>
<td>bergerPeriods</td>
<td>14</td>
</tr>
<tr>
<td>bioturb</td>
<td>15</td>
</tr>
<tr>
<td>calcPeriods</td>
<td>16</td>
</tr>
<tr>
<td>cb</td>
<td>16</td>
</tr>
</tbody>
</table>
R topics documented:

clipIt ... 17
confAdjust ... 18
constantSedrate ... 20
conv_fft .. 20
cosTaper .. 21
cycles .. 21
deconv .. 22
delPts .. 23
demean .. 24
detrend ... 24
diffAccum .. 25
divTrend ... 25
dpssTaper .. 26
eAsm .. 27
eAsmTrack .. 29
eha ... 29
eTimeOpt ... 31
eTimeOptTrack .. 33
etp .. 35
extract .. 36
flip ... 37
freq2sedrate .. 38
gausTaper .. 38
getColor ... 39
getData .. 39
getLaskar .. 40
hannTaper ... 41
headn .. 41
hilbert .. 42
idPts ... 43
imbrie .. 44
impulseResponse ... 46
integratePower .. 47
iso ... 49
linage .. 49
linterp .. 51
logT ... 51
lowpass ... 52
lowspec ... 53
makeNoise ... 56
modelA .. 57
mtm ... 57
mtmAR ... 59
mtmML96 ... 60
mtmPL .. 63
multiTest .. 64
mwCor .. 66
mwin .. 68
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mwinGrid</td>
<td>69</td>
</tr>
<tr>
<td>mwMinMax</td>
<td>70</td>
</tr>
<tr>
<td>mwStats</td>
<td>71</td>
</tr>
<tr>
<td>mwStatsGrid</td>
<td>72</td>
</tr>
<tr>
<td>noKernel</td>
<td>73</td>
</tr>
<tr>
<td>noLow</td>
<td>74</td>
</tr>
<tr>
<td>pad</td>
<td>75</td>
</tr>
<tr>
<td>peak</td>
<td>75</td>
</tr>
<tr>
<td>periodogram</td>
<td>76</td>
</tr>
<tr>
<td>pl</td>
<td>79</td>
</tr>
<tr>
<td>plotEha</td>
<td>79</td>
</tr>
<tr>
<td>plS</td>
<td>81</td>
</tr>
<tr>
<td>prewhiteAR</td>
<td>81</td>
</tr>
<tr>
<td>prewhiteAR1</td>
<td>82</td>
</tr>
<tr>
<td>pwrLaw</td>
<td>83</td>
</tr>
<tr>
<td>pwrLawFit</td>
<td>84</td>
</tr>
<tr>
<td>rankSeries</td>
<td>85</td>
</tr>
<tr>
<td>read</td>
<td>85</td>
</tr>
<tr>
<td>readMatrix</td>
<td>86</td>
</tr>
<tr>
<td>repl0</td>
<td>87</td>
</tr>
<tr>
<td>replEps</td>
<td>88</td>
</tr>
<tr>
<td>resample</td>
<td>88</td>
</tr>
<tr>
<td>rmNA</td>
<td>89</td>
</tr>
<tr>
<td>s</td>
<td>89</td>
</tr>
<tr>
<td>sedRamp</td>
<td>90</td>
</tr>
<tr>
<td>sedrate2time</td>
<td>90</td>
</tr>
<tr>
<td>slideCor</td>
<td>91</td>
</tr>
<tr>
<td>sortNave</td>
<td>93</td>
</tr>
<tr>
<td>stepHeat</td>
<td>93</td>
</tr>
<tr>
<td>strats</td>
<td>96</td>
</tr>
<tr>
<td>surrogateCor</td>
<td>96</td>
</tr>
<tr>
<td>surrogates</td>
<td>98</td>
</tr>
<tr>
<td>synthStrat</td>
<td>99</td>
</tr>
<tr>
<td>taner</td>
<td>100</td>
</tr>
<tr>
<td>testBackground</td>
<td>102</td>
</tr>
<tr>
<td>testPrecession</td>
<td>104</td>
</tr>
<tr>
<td>testTilt</td>
<td>106</td>
</tr>
<tr>
<td>timeOpt</td>
<td>108</td>
</tr>
<tr>
<td>timeOptMCMC</td>
<td>111</td>
</tr>
<tr>
<td>timeOptPlot</td>
<td>114</td>
</tr>
<tr>
<td>timeOptSim</td>
<td>116</td>
</tr>
<tr>
<td>timeOptSimPwrLaw</td>
<td>118</td>
</tr>
<tr>
<td>timeOptTemplate</td>
<td>120</td>
</tr>
<tr>
<td>timeOptTemplatePlot</td>
<td>123</td>
</tr>
<tr>
<td>timeOptTemplateSim</td>
<td>125</td>
</tr>
<tr>
<td>tones</td>
<td>128</td>
</tr>
<tr>
<td>traceFreq</td>
<td>129</td>
</tr>
<tr>
<td>tracePeak</td>
<td>130</td>
</tr>
</tbody>
</table>
Description

This software provides routines for astrochronologic testing, astronomical time scale construction, and time series analysis <doi:10.1016/j.earscirev.2018.11.015>. Also included are a range of statistical analysis and modeling routines that are relevant to time scale development and paleoclimate analysis.

Details

Package: astrochron
Type: Package
Version: 1.1
Date: 2021-11-05
License: GPL-3

Note

Development of the 'astrochron' package is partially supported by the U.S. National Science Foundation and the Heising-Simons Foundation:

Leveraging the Geologic Record to Constrain Solar System Evolution, Earth-Moon Dynamics, Paleoclimate Change and Geological Time (Award 2021-2797)

Collaborative Research: Improving the Late Cretaceous-Eocene geomagnetic polarity time scale by integrating the global magnetic anomaly record and astrochronology (Award OCE 2051616)

CAREER: Deciphering the Beat of a Timeless Rhythm - The Future of Astrochronology (Award EAR 1151438)
Collaborative Research: Evolution of the Climate Continuum - Late Paleogene to Present (Award OCE 1003603)

TO CITE THIS PACKAGE IN PUBLICATIONS, PLEASE USE:

Also cite the original research papers that document the relevant algorithms, as referenced on the help pages for specific functions.

Author(s)

Stephen Meyers

Maintainer: Stephen Meyers <smeyers@geology.wisc.edu>

References

Examples

EXAMPLES OF SOME FUNCTIONS AVAILABLE IN THIS SOFTWARE:

This demo will use a model (series are usually read using the function 'read').

```r
data(modelA)
```

Interpolate the model stratigraphic series to its median sampling interval

```r
modelAInterp=linterp(modelA)
```

Calculate MTM spectrum using 2pi Slepian tapers, include AR1 confidence level estimates, plot power with linear scale

```r
mtm(modelAInterp,tbw=2,ar=TRUE,pl=2)
```

Perform Evolutive Harmonic Analysis using 2pi Slepian tapers, a window of 8 meters, pad to 1000 points, and output Harmonic F-test confidence level results

```r
fCL=eha(modelAInterp,win=8,pad=1000,output=4)
```

Extract Harmonic F-test spectrum at approximately 22 meters height

```r
spec=extract(fCL,22)
```

In this extracted spectrum, identify F-test peak maxima exceeding 90% confidence level

```r
freqs=peak(spec,level=0.9)[2]
```

Conduct ASM testing on these peaks

```r
# set Rayleigh frequency in cycles/m
rayleigh=0.1245274

# set Nyquist frequency in cycles/m
nyquist=6.66597

# set astronomical target in 1/ky
target=c(1/405.47,1/126.98,1/96.91,1/37.66,1/22.42,1/18.33)

# execute ASM
asm(freq=freqs,target=target,rayleigh=rayleigh,nyquist=nyquist,sedmin=0.5,sedmax=3,numsed=100,linLog=1,iter=100000,output=FALSE)
```
anchorTime

Anchor a floating astrochronology to a radioisotopic age

Description

Anchor a floating astrochronology to a radioisotopic age. The floating astrochronology is centered on a given ('floating') time datum and assigned the 'anchored' age.

Usage

anchorTime(dat, time, age, timeDir=1, flipOut=F, genplot=T, verbose=T)

Arguments

dat Stratigraphic series. First column should be floating time scale, second column should be data value.
time 'Floating' time datum to center record on. Units should be ka.
age Radioisotopic age (or otherwised) for anchoring at floating 'time' datum. Units should be ka.
timeDir Direction of 'floating' time in input record; 1 = elapsed time towards present; 2 = elapsed time away from present
flipOut Flip the output (sort so the ages are presented in decreasing order)? (T or F)
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

Usage

\texttt{ar1(npts=1024,dt=1,mean=0,sdev=1,rho=0.9,shuffle=F,nsim=1,genplot=T,verbose=T)}

Arguments

- \texttt{ntps} \quad \text{number of time series data points}
- \texttt{dt} \quad \text{sampling interval}
- \texttt{mean} \quad \text{mean value for AR1 surrogate series}
- \texttt{sdev} \quad \text{standard deviation for AR1 surrogate series}
- \texttt{rho} \quad \text{AR(1) coefficient}
- \texttt{shuffle} \quad \text{Apply secondary shuffle of Gaussian deviates before AR modeling}
- \texttt{nsim} \quad \text{Number of AR1 surrogate series to generate}
- \texttt{genplot} \quad \text{generate summary plots (T or F)}
- \texttt{verbose} \quad \text{verbose output (T or F)}

Details

These simulations use the random number generator of Matsumoto and Nishimura [1998]. If \texttt{shuffle = T}, the algorithm from Meyers (2012, pg. 11) is applied: (1) two sets of random sequences of the same length are generated, (2) the first random sequence is then sorted, and finally (3) the permutation vector of the sorted sequence is used to reorder the second random number sequence. This is done to guard against potential shortcomings in random number generation that are specific to spectral estimation.

References

Description

Simulate a combined AR(1) + ETP signal, plot spectrum and confidence levels

Usage

```
ar1etp(etpdat=NULL,nsim=100,rho=0.9,wtAR=1,sig=90,tbw=2,padfac=5,ftest=F,fmax=0.1,
speed=0.5,pl=2,graphfile=0)
```

Arguments

- `etpdat`: Eccentricity, tilt, precession astronomical series. First column = time, second column = ETP. If not entered will use default series from Laskar et al. (2004), spanning 0-1000 kyr.
- `nsim`: Number of simulations.
- `rho`: AR(1) coefficient for noise modeling.
- `wtAR`: Multiplicative factor for AR1 noise (1= equivalent to ETP variance). If < 0, etp signal will be excluded from the simulations (noise only).
- `sig`: Demarcate what confidence level (percent) on plots?
- `tbw`: MTM time-bandwidth product.
- `padfac`: Pad with zeros to (padfac*npts) points, where npts is the number of data points.
- `ftest`: Include MTM harmonic f-test results? (T or F)
- `fmax`: Maximum frequency for plotting.
- `speed`: Set the amount of time to pause before plotting new graph, in seconds.
- `pl`: Plot (1) log frequency-log power or (2) linear frequency-linear power?
- `graphfile`: Output a pdf or jpg image of each plot? 0 = no, 1 = pdf, 2 = jpeg. If yes, there will be no output to screen. Individual graphic files will be produced for each simulation, for assembling into a movie.

Details

Note: Setting `wtAR=1` will provide equal variance contributions from the etp model and the ar1 model. More generally, set `wtAR` to the square root of the desired variance contribution (`wtAR=0.5` will generate an AR1 model with variance that is 25% of the etp model). If you would like to exclusively evaluate the noise (no etp), set `wtAR < 0`.

Note: You may use the function `etp` to generate eccentricity-tilt-precession models.

References

See Also

getLaskar, and etp

Examples

Not run:

run simulations using the default settings
ar1etp()

compare with a second model:
generate etp model spanning 0-2000 ka, with sampling interval of 5 ka.
ex1=etp(tmin=0,tmax=2000,dt=5)
run simulations, with rho=-.7, and scaling noise to have 50
ar1etp(etpdat=ex1,rho=0.7,wtAR=sqrt(0.5))

End(Not run)

arcsinT

Arcsine transformation of stratigraphic series

Description

Arcsine transformation of stratigraphic series

Usage

arcsinT(dat,genplot=T,verbose=T)

Arguments

dat Stratigraphic series for arcsine transformation. Input can have any number of columns desired. If two or more columns are input, the first column must be location (e.g., depth), while remaining columns are data values for transformation.

genplot Generate summary plots? (T or F). This is automatically deactivated if more than one variable is transformed.

verbose Verbose output? (T or F)

See Also
demean, detrend, divTrend, logT, prewhiteAR, and prewhiteAR1
armaGen

Generate autoregressive moving-average model

Description
Generate an autoregressive moving-average time series model

Usage

```r
armaGen(npts=1024, dt=1, m=0, std=1, rhos=c(0.9), thetas=c(0), genplot=T, verbose=T)
```

Arguments
- **npts**: Number of time series data points.
- **dt**: Sampling interval.
- **m**: Mean value of final time series.
- **std**: Standard deviation of final time series.
- **rhos**: Vector of AR coefficients for each order.
- **thetas**: Vector of MA coefficients for each order.
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

asm

Average Spectral Misfit

Description
Calculate Average Spectral Misfit with Monte Carlo spectra simulations, as updated in Meyers et al. (2012).

Usage

```r
asm(freq, target, fper=NULL, rayleigh, nyquist, sedmin=1, sedmax=5, numsed=50, 
linLog=1, iter=100000, output=F, genplot=T)
```
Arguments

freq A vector of candidate astronomical cycles observed in your data spectrum (cycles/m). Maximum allowed is 500.

target A vector of astronomical frequencies to evaluate (1/ka). These must be in order of increasing frequency (e.g., e1,e2,e3,o1,o2,p1,p2). Maximum allowed is 50 frequencies.

fper A vector of uncertainties on each target frequency (1/ka). Values should be from 0-1, representing uncertainty as a percent of each target frequency. The order of the uncertainties must follow that of the target vector. By default, no uncertainty is assigned.

rayleigh Rayleigh frequency (cycles/m).

nyquist Nyquist frequency (cycles/m).

sedmin Minimum sedimentation rate for investigation (cm/ka).

sedmax Maximum sedimentation rate for investigation (cm/ka).

numsed Number of sedimentation rates to investigate in ASM optimization grid. Maximum allowed is 500.

linLog Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear, 1=log)

iter Number of Monte Carlo simulations for significance testing. Maximum allowed is 100,000.

output Return output as a new data frame? (T or F)

genplot Generate summary plots? (T or F)

Details

This function will calculate the Average Spectral Misfit between a data spectrum and astronomical target spectrum, following the approach outlined in Meyers and Sageman (2007), and the improvements of Meyers et al. (2012).

Value

A data frame containing: Sedimentation rate (cm/ka), ASM (cycles/ka), Null hypothesis significance level (0-100 percent), Number of astronomical terms fit.

References

See Also
eAsm, eAsmTrack, testPrecession, timeOpt, and timeOptSim
Examples

```r
## These frequencies are from modelA (type 'astrochron' for more information).
## They are for an 8 meter window, centered at 22 meters height. Units are cycles/m.
freq <- c(0.1599833, 0.5332776, 1.5998329, 2.6797201, 3.2796575, 3.8795948, 5.5194235, 6.5459830)
freq <- data.frame(freq)

## Rayleigh frequency in cycles/m
rayleigh <- 0.1245274

## Nyquist frequency in cycles/m
nyquist <- 6.66597

## orbital target in 1/ky. Predicted periods for 94 Ma (see Meyers et al., 2012)
target <- c(1/405.47, 1/126.98, 1/96.91, 1/37.66, 1/22.42, 1/18.33)

## percent uncertainty in orbital target
fper=c(0.023, 0.046, 0.042, 0.008, 0.035, 0.004)

asm(freq=freq, target=target, fper=fper, rayleigh=rayleigh, nyquist=nyquist, sedmin=0.5, sedmax=3,
     numsed=100, linLog=1, iter=100000, output=FALSE)
```

date: 2022-02-22

autoPlot

Automatically plot multiple stratigraphic series, with smoothing if desired

Description

Automatically plot and smooth specified stratigraphic data, versus location. Data are smoothed with a Gaussian kernel if desired.

Usage

```r
autoPlot(dat, cols=NULL, dmin=NULL, dmax=NULL, vertical=T, ydir=NULL, nrows=NULL, plotype=1,
         smooth=0, xgrid=1, output=F, genplot=T, verbose=T)
```

Arguments

dat: Your data frame; first column should be location identifier (e.g., depth).
cols: A vector that identifies the columns to extract (first column automatically extracted).
dmin: Minimum depth/height/time for plotting.
dmax: Maximum depth/height/time for plotting.
vertical: Generate vertical stratigraphic plots? (T or F) If F, will generate horizontal plots.
ydir: Direction for stratigraphic axis in plots (depth, height, time). If vertical=T, then -1 results in values increasing downwards, while 1 results in values increasing upwards. If vertical=F, then -1 results in values increasing toward the left, while 1 results in values increasing toward the right.
Description

Bandpass filter stratigraphic series using rectangular, Gaussian or tapered cosine (a.k.a. Tukey) window. This function can also be used to notch filter a record (see examples).

Usage

```r
bandpass(dat,padfac=2,flow=NULL,fhigh=NULL,win=0,alpha=3,p=0.25,demean=T,
    detrend=F,addmean=T,output=1,xmin=0,xmax=Nyq,genplot=T,verbose=T)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dat</code></td>
<td>Stratigraphic series for bandpass filtering. First column should be location (e.g., depth), second column should be data value.</td>
</tr>
<tr>
<td><code>padfac</code></td>
<td>Pad with zeros to (padfac*npts) points, where npts is the original number of data points.</td>
</tr>
<tr>
<td><code>flow</code></td>
<td>Lowest frequency to bandpass.</td>
</tr>
<tr>
<td><code>fhigh</code></td>
<td>Highest frequency to bandpass.</td>
</tr>
<tr>
<td><code>win</code></td>
<td>Window type for bandpass filter: 0 = rectangular , 1= Gaussian, 2= Cosine-tapered window (a.k.a. Tukey window).</td>
</tr>
<tr>
<td><code>alpha</code></td>
<td>Gaussian window parameter: alpha is 1/stddev, a measure of the width of the Dirichlet kernel. Choose alpha >= 2.5.</td>
</tr>
<tr>
<td><code>p</code></td>
<td>Cosine-tapered (Tukey) window parameter: p is the percent of the data series tapered (choose 0-1).</td>
</tr>
<tr>
<td><code>demean</code></td>
<td>Remove mean from data series? (T or F)</td>
</tr>
<tr>
<td><code>detrend</code></td>
<td>Remove linear trend from data series? (T or F)</td>
</tr>
<tr>
<td><code>addmean</code></td>
<td>Add mean value to bandpass result? (T or F)</td>
</tr>
</tbody>
</table>
output Output: (1) filtered series, (2) bandpass filter window.
xmin Smallest frequency for plotting.
xmax Largest frequency for plotting.
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

Value

bandpassed stratigraphic series.

See Also

lowpass, noKernel, noLow, prewhiteAR, prewhiteAR1, and taner

Examples

generate example series with periods of 405 ka, 100 ka, 40ka, and 20 ka, plus noise
ex=cycles(freqs=c(1/405,1/100,1/40,1/20),end=1000,dt=5,noisevar=.1)

bandpass precession term using cosine-tapered window
bandpass_ex <- bandpass(ex,flow=0.045,fhigh=0.055,win=2,p=.4)

notch filter (remove) obliquity term using cosine-tapered window
if you'd like the final notch filtered record to be centered on the mean proxy
value, set addmean=FALSE
notch_ex <- bandpass(ex,flow=0.02,fhigh=0.03,win=2,p=.4,addmean=FALSE)
pl(2)
plot(ex,type="l",main="Eccentricity+Obliquity+Precession")
plot(notch_ex,type="l",main="Following application of obliquity notch filter")

bergerPeriods

Description

Determine the predicted precession and obliquity periods based on Berger et al. (1992). Values are determined by piecewise linear interpolation.

Usage

bergerPeriods(age,genplot=T)

Arguments

age Age (millions of years before present)
genplot Generate summary plots? (T or F)
The `bioturb` function is used to simulate bioturbated time series when bioturbation is modeled as a diffusive process. It implements the methodology outlined in Liu et al. (2021), which builds on the approaches of Guinasso and Schinck (1975), Goreau (1977), and Goreau (1980). Given the bioturbation parameters, an impulse response function is first calculated using function `impulseResponse`. This function is then convolved with the input time series (true signal) to output the bioturbed time series. Note that the input true signal ‘dat’ and impulse response function are interpolated to the same resolution before convolution.

Usage

```r
bioturb(dat, G, ML, v, output=1, genplot=TRUE, verbose=TRUE)
```

Arguments

- `dat`: Stratigraphic series to be bioturbated. First column should be age (kyr), second column should be data value.
- `G`: Control parameter in Guinasso and Schinck, 1975. \(G = \frac{D}{ML/v} \)
- `ML`: Mix layer depth (cm)
- `v`: Sedimentation rate (cm/kyr)
- `output`: Which results would you like to return to the console? (0) no output; (1) return bioturbed series; (2) return impulse response
- `genplot`: Generate summary plots? (T or F)
- `verbose`: Verbose output? (T or F)

References

Examples

as a test series, use the three dominant precession terms from Berger et al. (1992)
ex1=cycles()

mix it
res1 <- bioturb(ex1, G=4, ML=10, v=1, genplot = TRUE)

un-mix it
res2=unbioturb(res1, G=4, ML=10, v=1, genplot = TRUE)

pl()
plot(ex1,type="l",main="black=signal, blue=bioturbated, red=unbioturbated",lwd=3)
lines(res2,col="red")
lines(res1,col="blue")

calcPeriods

Calculate eccentricity and precession periods in ka, given g and k in arcsec/yr.

Description

Calculate eccentricity and precession periods in ka, given g and k in arcsec/yr.

Usage

calcPeriods(g,k,output=1)

Arguments

g Data frame or matrix with columns representing the fundamental frequencies: g1, g2, g3, g4, g5. Frequencies must be in arcsec/yr.
k Data frame or vector with precession constant (frequency). Frequencies must be in arcsec/yr.
output (1) return results as data frame, (2) return results as a numeric vector.

cb

Combine multiple vectors

Description

Bind two vectors together and return result as a data frame. Alternatively, extract specified columns from a data frame, bind them together, and return result as a data frame.

Usage

cb(a,b)
clipIt

Arguments

- **a**: first input vector OR a data frame with >1 column.
- **b**: second input vector OR if a is a data frame with > 1 column, a list of columns to bind.

Examples

```r
# example dataset
x <- rnorm(100)
dim(x) <- c(10, 10)
x <- data.frame(x)

# bind two columns
cb(x[1], x[5])

# bind five columns
cb(x, c(1, 2, 4, 7, 9))
```

Description

Create non-linear response by clipping stratigraphic series below a threshold value. Alternatively, mute response below a threshold value using a constant divisor. Both approaches will enhance power in modulator (e.g., eccentricity) and diminish power the carrier (e.g., precession).

Usage

```r
clipIt(dat, thresh=NULL, clipval=NULL, clipdiv=NULL, genplot=T, verbose=T)
```

Arguments

- **dat**: Stratigraphic series. First column should be location (e.g., depth), second column should be data value.
- **thresh**: Clip below what threshold value? By default will clip at mean value.
- **clipval**: What number should be assigned to the clipped values? By default, the value of thresh is used.
- **clipdiv**: Clip using what divisor? A typical value is 2. By default, clipdiv is unity.
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)
confAdjust

Adjust spectrum confidence levels for multiple comparisons

Description

Adjust spectrum confidence levels for multiple comparisons, using the Bonferroni correction

Usage

confAdjust(spec,npts,dt,tbw=3,ntap=5,flow=NULL,fhigh=NULL,output=T,
 xmin=df,xmax=NULL,pl=1,genplot=T,verbose=T)

Arguments

spec A data frame with three columns: frequency, power, background power. If 8 columns are input, the results are assumed to come from mtm, mtmML96, lowspec or mtmPL. If 9 columns are input, the results are assumed to come from periodogram.
npts Number of points in stratigraphic series.dtdt Sampling interval of stratigraphic series.tbw MTM time-bandwidth product.ntap Number of DPSS tapers to use.flow Vector of lower bounds for each frequency band of interest. Order must match fhigh.fhigh Vector of upper bounds for each frequency band of interest. Order must match flow.output Output data frame? (T or F)xmin Smallest frequency for plotting.xmax Largest frequency for plotting.pl Plotting option (1-4): 1=linear frequency & log power, 2=log frequency & power, 3=linear frequency & power, 4=log frequency & linear power.genplot Generate summary plots? (T or F)verbose Verbose output? (T or F)

Details

Multiple testing is a common problem in the evaluation of power spectrum peaks (Vaughan et al., 2011; Crampton et al., PNAS). To address the issue of multiple testing, a range of approaches have been advocated. This function will conduct an assessment using the Bonferroni correction, which is the simplest, and also the most conservative, of the common approaches (it is overly pessimistic). If one is exclusively concerned with particular frequency bands a priori (e.g., those associated with Milankovitch cycles), the statistical power of the method can be improved by restricting the analysis to those frequency bands (use options 'flow' and 'fhigh').
Application of multiple testing corrections does not guarantee that the spectral background is appropriate. To address this issue, carefully examine the fit of the spectral background, and also conduct simulations with the function testBackground.

References

See Also
testBackground, multiTest, spec.mtm, lowspec, and periodogram

Examples

generate example series with periods of 400 ka, 100 ka, 40 ka and 20 ka
ex = cycles(freqs=c(1/400,1/100,1/40,1/20),start=1,end=1000,dt=5)

add AR1 noise
noise = ar1(npts=200,dt=5,sd=.5)

first, let's use mtm with conventional AR1 background
spec=mtm(ex,padfac=1,ar1=TRUE,output=1)

when blindly prospecting for cycles, it is necessary to consider all of the
observed frequencies in the test
confAdjust(spec,npts=200,dt=5,tbw=3,ntap=5,output=FALSE)

if, a priori, you are only concerned with the Milankovitch frequency bands,
restrict your analysis to those bands (as constrained by available sedimentation
rate estimates and the frequency resolution of the spectrum). in the example below,
the mtm bandwidth resolution is employed to search frequencies nearby the
Milankovitch-target periods.
flow=c((1/400)-0.003,(1/100)-0.003,(1/41)-0.003,(1/20)-0.003)
flow=c((1/400)+0.003,(1/100)+0.003,(1/41)+0.003,(1/20)+0.003)
confAdjust(spec,npts=200,dt=5,tbw=3,ntap=5,flow=flow,fhigh=fhigh,output=FALSE)

now try with the lowspec method. this uses prewhitening, so it has one less data point.
spec=lowspec(ex,padfac=1,output=1)
flow=c((1/400)-0.003015075,(1/100)-0.003015075,(1/41)-0.003015075,(1/20)-0.003015075)
flow=c((1/400)+0.003015075,(1/100)+0.003015075,(1/41)+0.003015075,(1/20)+0.003015075)
confAdjust(spec,npts=199,dt=5,tbw=3,ntap=5,flow=flow,fhigh=fhigh,output=FALSE)

for comparison...
confAdjust(spec,npts=199,dt=5,tbw=3,ntap=5,output=FALSE)
constantSedrate

Apply a constant sedimentation rate model to transform a spatial series to temporal series.

Description

Apply a constant sedimentation rate model to transform a spatial series to temporal series.

Usage

constantSedrate(dat, sedrate, begin=0, timeDir=1, genplot=T, verbose=T)

Arguments

dat Stratigraphic series. First column should be location (e.g., depth), second column should be data value.
sedrate Sedimentation rate, in same spatial units as dat.
begin Time value to assign to first datum.
timeDir Direction of floating time in tuned record: 1 = elapsed time increases with depth/height; -1 = elapsed time decreases with depth/height)
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

conv_fft

Convolution through Fast Fourier Transform

Description

Convolution through Fast Fourier Transform

Usage

conv_fft(x, y, index, dt)

Arguments

x Input signal that needs to be convolved
y Green’s function; impulse response function
index index in the impulse response function that corresponds to the deposition time
dt time resolution for the input series

Details

Function 'conv_fft' is used by function 'bioturb'. x and y do not need to be of the same length.
cosTaper

Value

- **z** Convolved output series. length(z) = length(x)

Description

Apply a "percent-tapered" cosine taper (a.k.a. Tukey window) to a stratigraphic series.

Usage

```r
cosTaper(dat,p=.25,rms=T,demean=T,detrend=F,genplot=T,verbose=T)
```

Arguments

- **dat** Stratigraphic series for tapering. First column should be location (e.g., depth), second column should be data value. If no data is identified, will output a 256 point taper to evaluate the spectral properties of the window.
- **p** Cosine-tapered window parameter: p is the percent of the data series tapered (choose 0-1). When p=1, this is equivalent to a Hann taper.
- **rms** Normalize taper to RMS=1 to preserve power for white process? (T or F)
- **demean** Remove mean from data series? (T or F)
- **detrend** Remove linear trend from data series? (T or F)
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)

See Also

- `dpssTaper`, `gausTaper`, and `hannTaper`

cycles

Generate harmonic model

Description

Make a time series with specified harmonic components and noise

Usage

```r
cycles(freqs=NULL,phase=NULL,amp=NULL,start=0,end=499,dt=1,noisevar=0,genplot=T, verbose=T)
```
Arguments

freqs Vector with frequencies to model (‘linear’ frequencies).
phase Vector with phases for each frequency (phase in radians). Phases are subtracted.
amp Vector with amplitudes for each frequency.
start First time/depth/height for output.
end Last time/depth/height for output.
dt Sampling interval.
noisevar Variance of additive Gaussian noise.
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

Value

modeled time series.

Examples

```r
## test signal on pg 38 of Choudhury, Shah, and Thornhill (2008)
freqs=c(0.12,0.18,0.30,0.42)
phase=c(-pi/3,-pi/12,-pi/4,-3*pi/8)
amp=c(1,1,1,1)
cycles(freqs,phase,amp,start=0,end=4095,dt=1,noisevar=0.2)
```

deconv
Wiener Deconvolution through Fast Fourier Transform

Description

Wiener Deconvolution through Fast Fourier Transform.

Usage

dec$(x, y, index, dt, pt = 0.2, wiener = TRUE)

Arguments

x Time series that needs to be deconvolved.
y Green function/Impulse response function.
index index in the impulse response function that corresponds to the deposition time.
pt Cosine-tapered window parameter: pt is the percent of the data series tapered (choose 0-1). When pt=1, this is equivalent to a Hann taper.
wiener Apply Wiener filter? (T or F)
Details

function 'deconv' is used by function 'unbioturb'. A cosine taper is applied to remove edge effects. The signal-to-noise ratio is chosen to be 0.05, and gamma is also chosen to be 0.05. x and y do not need to be of the same length. For additional information see Liu et al. (2021)

Value

z deconvolved/un-bioturbed series. length(z) = length(x)

References

delPts

Interactively delete points in plot

Description

Interactively delete points in x,y plot.

Usage

delPts(dat, del=NULL, cols=c(1,2), psize=1, xmin=NULL, xmax=NULL, ymin=NULL, ymax=NULL, plottype=1, genplot=T, verbose=T)

Arguments

dat Data frame containing stratigraphic variable(s) of interest. Any number of columns permitted.
del A vector of indices indicating points to delete. If specified, the interactive plot is disabled.
cols If you are using the graphical interface, which columns would you like to plot? (default = 1 & 2).
plotype Type of plot to generate: 1= points and lines, 2 = points, 3 = lines
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

See Also

idPts, iso, trim and trimAT
demean

Remove mean value from stratigraphic series

Description
Remove mean value from stratigraphic series

Usage
demean(dat, genplot=T, verbose=T)

Arguments
- **dat** Stratigraphic series for mean removal. First column should be location (e.g., depth), second column should be data value.
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)

See Also
- arcsinT, detrend, divTrend, logT, prewhiteAR, and prewhiteAR1

detrend

Subtract linear trend from stratigraphic series

Description
Remove linear trend from stratigraphic series

Usage
detrend(dat, output=1, genplot=T, verbose=T)

Arguments
- **dat** Stratigraphic series for linear detrending. First column should be location (e.g., depth), second column should be data value.
- **output** 1= output detrended signal; 2= output linear trend
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)

See Also
- arcsinT, demean, divTrend, logT, prewhiteAR, and prewhiteAR1
diffAccum

Model differential accumulation

Description

Model differential accumulation. The input variable (e.g., insolation, proxy value) is rescaled to sedimentation rate curve varying from sedmin to sedmax. Input series must be evenly sampled in time.

Usage

```r
diffAccum(dat, sedmin=0.01, sedmax=0.02, dir=1, genplot=T, verbose=T)
```

Arguments

- **dat**: Model input series with two columns. First column must be time in ka, second column should be data value. Data series must be evenly sampled in time.
- **sedmin**: Minimum sedimentation rate (m/ka)
- **sedmax**: Maximum sedimentation rate (m/ka)
- **dir**: 1=peaks have higher accumulation rate, -1=troughs have higher accumulation rate
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

Examples

```r
# generate model with one 20 ka cycle
ex <- cycles(1/20)
diffAccum(ex)
```

divTrend

Divide by linear trend in stratigraphic series

Description

Divide data series value by linear trend observed in stratigraphic series

Usage

```r
divTrend(dat, genplot=T, verbose=T)
```
Arguments

- **dat**: Stratigraphic series for div-trending. First column should be location (e.g., depth), second column should be data value.
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

See Also

- `arcsinT`, `demean`, `detrend`, `logT`, `prewhiteAR`, and `prewhiteAR1`

dpssTaper

Apply DPSS taper to stratigraphic series

Description

Apply a single Discrete Prolate Spheroidal Sequence (DPSS) taper to a stratigraphic series

Usage

```r
dpssTaper(dat, tbw=1, num=1, rms=T, demean=T, detrend=F, genplot=T, verbose=T)
```

Arguments

- **dat**: Stratigraphic series for tapering. First column should be location (e.g., depth), second column should be data value. If no data is identified, will output a 256 point taper to evaluate the spectral properties of the window.
- **tbw**: Time-bandwidth product for the DPSS
- **num**: Which one of the DPSS would you like to use?
- **rms**: Normalize taper to RMS=1 to preserve power for white process? (T or F)
- **demean**: Remove mean from data series? (T or F)
- **detrend**: Remove linear trend from data series? (T or F)
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

See Also

- `cosTaper`, `gausTaper`, and `hannTaper`
Description

Calculate Evolutive Average Spectral Misfit with Monte Carlo spectra simulations, as updated in Meyers et al. (2012).

Usage

eAsm(spec,siglevel=0.9,target,fper=NULL,rayleigh,nyquist,sedmin=1,sedmax=5, numsed=50,linLog=1,iter=100000,ydir=1,palette=2,output=4,genplot=F)

Arguments

- **spec**: Time-frequency spectral results to evaluate. Must have the following format: column 1=frequency; remaining columns (2 to n)=probability; titles for columns 2 to n must be the location (depth or height). Note that this format is output by function eha.
- **siglevel**: Threshold level for filtering peaks.
- **target**: A vector of astronomical frequencies to evaluate (1/ka). These must be in order of increasing frequency (e.g., e1,e2,e3,o1,o2,p1,p2). Maximum allowed is 50 frequencies.
- **fper**: A vector of uncertainties on each target frequency (1/ka). Values should be from 0-1, representing uncertainty as a percent of each target frequency. The order of the uncertainties must follow that of the target vector. By default, no uncertainty is assigned.
- **rayleigh**: Rayleigh frequency (cycles/m).
- **nyquist**: Nyquist frequency (cycles/m).
- **sedmin**: Minimum sedimentation rate for investigation (cm/ka).
- **sedmax**: Maximum sedimentation rate for investigation (cm/ka).
- **numsed**: Number of sedimentation rates to investigate in ASM optimization grid. Maximum allowed is 500.
- **linLog**: Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear, 1=log)
- **iter**: Number of Monte Carlo simulations for significance testing. Maximum allowed is 100,000.
- **ydir**: Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards.
- **palette**: What color palette would you like to use? (1) rainbow, (2) viridis
- **output**: Return output as a new data frame? (0 = nothing, 1 = Ho-SL, 2 = ASM, 3 = # astronomical terms, 4 = everything)
- **genplot**: Generate summary plots? (T or F)
Details

Please see function asm for details.

References

See Also

asm, eAsmTrack, eha, testPrecession, timeOpt, and timeOptSim

Examples

```r
## Not run:
# use modelA as an example
data(modelA)

# interpolate to even sampling interval
modelAInterp=linterp(modelA)

# perform EHA analysis, save harmonic F-test confidence level results to 'spec'
spec=eha(modelAInterp,win=8,step=2,pad=1000,output=4)

# perform Evolutive Average Spectral Misfit analysis, save results to 'res'
res=eAsm(spec,target=c(1/405.47,1/126.98,1/96.91,1/37.66,1/22.42,1/18.33),rayleigh=0.1245274,nyquist=6.66597,sedmin=0.5,sedmax=3,numsed=100,siglevel=0.8,iter=10000,output=4)

# identify minimum Ho-SL in each record and plot
pl(1)
eAsmTrack(res[1],threshold=0.05)

# extract Ho-SL result at 18.23 m
HoSL18.23=extract(res[1],get=18.23,pl=1)

# extract ASM result at 18.23 m
asm18.23=extract(res[2],get=18.23,pl=0)

## End(Not run)
```
eAsmTrack

Track ASM null hypothesis significance level minima in eASM results

Description
Track ASM null hypothesis significance level minima in eASM results.

Usage
eAsmTrack(res,threshold=.5,ydir=-1,genplot=T,verbose=T)

Arguments
- **res**: eAsm results. Must have the following format: column 1=sedimentation rate; remaining columns (2 to n)=Ho-SL; titles for columns 2 to n must be the location (depth or height). Note that this format is output by function eAsm.
- **threshold**: Threshold Ho-SL value for analysis and plotting.
- **ydir**: Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards.
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

Details
Please see function eAsm for details.

See Also
- asm, eAsm, and eha

eha

Evolutionary Harmonic Analysis & Evolutionary Power Spectral Analysis

Description
Evolutionary Harmonic Analysis & Evolutionary Power Spectral Analysis using the Thomson multitaper method (Thomson, 1982)

Usage
eha(dat,tbw=2,pad,fmin,fmax,step,win,demean=T,detrend=T,siglevel=0.90,sigID=F,ydir=1,output=0,pl=1,palette=6,centerZero=T,ncolors=100,xlab,ylab,genplot=2,verbose=T)
Arguments

- **dat**: Stratigraphic series to analyze. First column should be location (e.g., depth), second column should be data value.
- **tbw**: MTM time-bandwidth product (<=10)
- **pad**: Pad with zeros to how many points? Must not factor into a prime number >23. Maximum number of points is 200,000.
- **fmin**: Smallest frequency for analysis and plotting.
- **fmax**: Largest frequency for analysis and plotting.
- **step**: Step size for EHA window, in units of space or time.
- **win**: Window size for EHA, in units of space or time.
- **demean**: Remove mean from data series? (T or F)
- **detrend**: Remove linear trend from data series? (T or F)
- **siglevel**: Significance level for peak identification/filtering (0-1)
- **sigID**: Identify significant frequencies on power, amplitude, and probability plots. Only applies when one spectrum is calculated. (T or F)
- **ydir**: Direction for y-axis in EHA plots (depth,height,time). -1 = values increase downwards (slower plotting), 1 = values increase upwards
- **output**: Return output as new data frame? 0=no; 1=all results; 2=power; 3=amplitude; 4=probability; 5=significant frequencies (only for one spectrum); 6=significant frequencies and their probabilities (only for one spectrum)
- **pl**: Plot logarithm of spectral power (1) or linear spectral power (2)?
- **palette**: What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red (if values are negative and positive, white is centered on zero), (6) viridis
- **centerZero**: Center color scale on zero (use an equal number of positive and negative color divisions)? (T or F)
- **ncolors**: Number of colors steps to use in palette.
- **xlab**: Label for x-axis. Default = "Frequency"
- **ylab**: Label for y-axis. Default = "Location"
- **genplot**: Plotting options. 0= no plots; 1= power, amplitude, f-test, probability; 2=data series, power, amplitude, probability; 3= data series, power, normalized amplitude (maximum in each window normalized to unity), normalized amplitude filtered at specified siglevel; 4= data series, normalized power (maximum in each window normalized to unity), normalized amplitude (maximum in each window normalized to unity), normalized amplitude filtered at specified siglevel
- **verbose**: Verbese output? (T or F)

References

eTimeOpt: Evolutive implementation of TimeOpt (Meyers, 2015; Meyers, 2019)

Usage

eTimeOpt(dat, win=dt*100, step=dt*10, sedmin=0.5, sedmax=5, numsed=100, linLog=1, limit=T, fit=1, fitModPwr=T, flow=NULL, fhigh=NULL, roll=NULL, targetE=NULL, targetP=NULL, detrend=T, ydir=1, palette=6, ncolors=100, output=1, genplot=T, check=T, verbose=1)

Arguments

dat: Stratigraphic series for astrochronologic assessment. First column should be depth or height (in meters), second column should be data value.

win: Window size, in meters.

step: Step size for moving window, in meters.

sedmin: Minimum sedimentation rate for investigation (cm/ka).

sedmax: Maximum sedimentation rate for investigation (cm/ka).

numsed: Number of sedimentation rates to investigate in optimization grid.

linLog: Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear, 1=log; default value is 1)
Limit Limit evaluated sedimentation rates to region in which full target signal can be recovered? (T or F).

Fit Test for (1) precession amplitude modulation or (2) short eccentricity amplitude modulation?

FitModPwr Include the modulation periods in the spectral fit? (T or F)

Flow Low frequency cut-off for Taner bandpass (half power point; in cycles/ka)

Fhigh High frequency cut-off for Taner bandpass (half power point; in cycles/ka)

Roll Taner filter roll-off rate, in dB/octave.

TargetE A vector of eccentricity periods to evaluate (in ka). These must be in order of decreasing period, with a first value of 405 ka.

TargetP A vector of precession periods to evaluate (in ka). These must be in order of decreasing period.

Detrend Remove linear trend from data series? (T or F)

Ydir Direction for y-axis in plots (depth, height, time). -1 = values increase downwards (slower plotting), 1 = values increase upwards

Palette What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red (if values are negative and positive, white is centered on zero), (6) viridis

Ncolors Number of colors steps to use in palette.

Output Which results would you like to return to the console? (0) no output; (1) everything, (2) r^2_envelope, (3) r^2_power, (4) r^2_opt

Genplot Generate summary plots? (T or F)

Check Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.

Verbose Verbose output? (0=nothing, 1=minimal, 2=a little more, 3=everything!)

References

S.R. Meyers, 2019, Cyclostratigraphy and the problem of astrochronologic testing: Earth-Science Reviews v.190, 190-223.

See Also

tracePeak, trackPeak, timeOpt, timeOptSim, and eTimeOptTrack

Examples

```r
## Not run:
# generate a test signal with precession and eccentricity
ex=cycles(freqs=c(1/405.6795,1/130.719,1/123.839,1/98.86307,1/94.87666,1/23.62069, 1/22.31868,1/19.06768,1/18.91979),end=4000,dt=5)
```
convert to meters with a linearly increasing sedimentation rate from 0.01 m/kyr to 0.03 m/kyr
ex=sedRamp(ex,srstart=0.01,srend=0.03)

interpolate to median sampling interval
ex=linterp(ex)

evaluate precession & eccentricity power, and precession modulations
res=eTimeOpt(ex,win=20,step=1,fit=1,output=1)

extract the optimal fits for the power optimization
sedrates=eTimeOptTrack(res[2])

extract the optimal fits for the envelope*power optimization
sedrates=eTimeOptTrack(res[3])

you can also interactively track the results using functions 'trackPeak' and 'tracePeak'
evaluate the results from the power optimization
sedrates=trackPeak(res[2])
sedrates=trackPeak(res[2])

evaluate the results from the envelope*power optimization
sedrates=tracePeak(res[3])
sedrates=tracePeak(res[3])

evaluate precession & eccentricity power, and short-eccentricity modulations
eTimeOpt(ex,win=20,step=1,fit=2,output=0)

End(Not run)

eTimeOptTrack

Track eTimeOpt r2 maxima

Description

Track eTimeOpt r2 maxima.

Usage

eTimeOptTrack(res,threshold=0,ydir=-1,genplot=T,verbose=T)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>res</td>
<td>eTimeOpt r2 results. Must have the following format: column 1=sedimentation rate; remaining columns (2 to n)=r2; titles for columns 2 to n must be the location (depth or height). Note that this format is output by function eTimeOpt.</td>
</tr>
<tr>
<td>threshold</td>
<td>Threshold r2-value for analysis and plotting.</td>
</tr>
<tr>
<td>ydir</td>
<td>Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards.</td>
</tr>
<tr>
<td>genplot</td>
<td>Generate summary plots? (T or F)</td>
</tr>
<tr>
<td>verbose</td>
<td>Verbose output? (T or F)</td>
</tr>
</tbody>
</table>
Details

Please see function eTimeOpt for details.

References

S.R. Meyers, 2019, Cyclostratigraphy and the problem of astrochronologic testing: Earth-Science Reviews v.190, 190-223.

See Also
timeOpt, and eTimeOpt

Examples

```r
## Not run:
# generate a test signal with precession and eccentricity
ex=cycles(freqs=c(1/405.6795,1/130.719,1/123.839,1/98.86307,1/94.87666,1/23.62069, 1/22.31868,1/19.06768,1/18.91979),end=4000,dt=5)

# convert to meters with a linearly increasing sedimentation rate from 0.01 m/kyr to 0.03 m/kyr
ex=sedRamp(ex,srstart=0.01,srend=0.03)

# interpolate to median sampling interval
ex=linterp(ex)

# evaluate precession & eccentricity power, and precession modulations
res=eTimeOpt(ex,win=20,step=1,fit=1,output=1)

# extract the optimal fits for the power optimization
sedrates=eTimeOptTrack(res[2])

# extract the optimal fits for the envelope*power optimization
sedrates=eTimeOptTrack(res[3])

# you can also interactively track the results using functions 'trackPeak' and 'tracePeak'
# evaluate the results from the power optimization
sedrates=trackPeak(res[2])
sedrates=tracePeak(res[2])

# evaluate the results from the envelope*power optimization optimization
sedrates=trackPeak(res[3])
sedrates=tracePeak(res[3])

## End(Not run)
```
etp Generate eccentricity-tilt-precession models

Description
Calculate eccentricity-tilt-precession time series using the theoretical astronomical solutions. By default, the Laskar et al. (2004) solutions will be downloaded. Alternatively, one can specify the astronomical solution.

Usage
etp(tmin=NULL,tmax=NULL,dt=1,eWt=1,oWt=1,pWt=1,esinw=T,solution=NULL,standardize=T,genplot=T,verbose=T)

Arguments
- **tmin**: Start time (ka before present, J2000) for ETP. Default value is 0 ka, unless the data frame 'solution' is specified, in which case the first time datum is used.
- **tmax**: End time (ka before present, J2000) for ETP. Default value is 1000 ka, unless the data frame 'solution' is specified, in which case the last time datum is used.
- **dt**: Sample interval for ETP (ka). Minimum = 1 ka.
- **eWt**: Relative weight applied to eccentricity solution.
- **oWt**: Relative weight applied to obliquity solution.
- **pWt**: Relative weight applied to precession solution.
- **esinw**: Use e*sinw in ETP calculation? (T or F). If set to false, sinw is used.
- **solution**: A data frame containing the astronomical solution to use. The data frame must have four columns: Time (ka, positive and increasing), Precession Angle, Obliquity, Eccentricity.
- **standardize**: Standardize (subtract mean, divide by standard deviation) precession, obliquity and eccentricity series before applying weight and combining? (T or F)
- **genplot**: Generate summary plots? (T or F).
- **verbose**: Verbose output? (T or F).

Details
Note: If you plan to repeatedly execute the etp function, it is advisable to download the astronomical solution once using the function getLaskar.

Note: It is common practice to construct ETP models that have specified variance ratios (e.g., 1:1:1 or 1:0.5:0.5) for eccentricity, obliquity and precession. In order to construct such models, it is necessary to choose 'standardize=T', and to set the individual weights (eWt, oWt, pWt) to the square root of the desired variance contribution.

Value
Eccentricity + tilt + precession.
References

See Also

getLaskar

Examples

```r
## Not run:
# create an ETP model from 10000 ka to 20000 ka, with a 5 ka sampling interval
# this will automatically download the astronomical solution
ex=etp(tmin=10000,tmax=20000,dt=5)

# alternatively, download the astronomical solution first
ex2=getLaskar()
ex=etp(tmin=10000,tmax=20000,dt=5,solution=ex2)

## End(Not run)
```

extract

Extract record from EHA time-frequency output or eAsm output

Description

Extract record from EHA time-frequency output or eAsm output: Use interactive graphical interface to identify record.

Usage

```r
extract(spec=get=NULL,xmin=NULL,xmax=NULL,ymin=NULL,ymax=NULL,h=6,w=4,ydir=1,pl=0,ncolors=100,genplot=T,verbose=T)
```

Arguments

- **spec**: Time-frequency spectral results to evaluate, or alternatively, eAsm results to evaluate. For time-frequency results, must have the following format: column 1=frequency; remaining columns (2 to n)=power, amplitude or probability; titles for columns 2 to n must be the location (depth or height). Note that this format is output by function eha. For eAsm results, must have the following format: column 1=sedimentation rate; remaining columns (2 to n)=Ho-SL or ASM; titles for columns 2 to n must be the location (depth or height).
get Record to extract (height/depth/time). If no value given, graphical interface is activated.
xmin Minimum frequency or sedimentation rate for PLOTTING.
xmax Maximum frequency or sedimentation rate for PLOTTING.
ymin Minimum depth/height for PLOTTING.
ymax Maximum depth/height for PLOTTING.
h Height of plot in inches.
w Width of plot in inches.
ydir Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards.
pl An option for the color plots (0=do nothing; 1=plot log of value [useful for plotting power], 2=normalize to maximum value [useful for plotting amplitude]).
ncolors Number of colors to use in plot.
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

See Also
eha

flip

Flip stratigraphic series

Description

Flip the stratigraphic order of your data series (e.g., convert stratigraphic depth series to height series, relative to a defined datum.)

Usage

```r
flip(dat, begin=0, genplot=T, verbose=T)
```

Arguments

- **dat** Stratigraphic series. First column should be location (e.g., depth), second column should be data value.
- **begin** Depth/height value to assign to (new) first stratigraphic datum.
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)
freq2sedrate

Convert record of local spatial frequency (from EHA) to sedimentation rate curve

Description

Convert record of local spatial frequency (from EHA) to sedimentation rate curve

Usage

freq2sedrate(freqs, period=NULL, ydir=1, genplot=T, verbose=T)

Arguments

- **freqs** Data frame containing depth/height in first column (meters) and spatial frequencies in second column (cycles/m)
- **period** Temporal period of spatial frequency (ka)
- **ydir** Direction for y-axis in plots (depth, height). -1 = values increase downwards (slower), 1 = values increase upwards
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)

gausTaper

Apply Gaussian taper to stratigraphic series

Description

Apply a Gaussian taper to a stratigraphic series

Usage

gausTaper(dat, alpha=3, rms=T, demean=T, detrend=F, genplot=T, verbose=T)

Arguments

- **dat** Stratigraphic series for tapering. First column should be location (e.g., depth), second column should be data value. If no data is identified, will output a 256 point taper to evaluate the spectral properties of the window.
- **alpha** Gaussian window parameter: alpha is 1/stdev, a measure of the width of the Dirichlet kernel. Larger values decrease the width of data window, reduce discontinuities, and increase width of the transform. Choose alpha >= 2.5.
- **rms** Normalize taper to RMS=1 to preserve power for white process? (T or F)
- **demean** Remove mean from data series? (T or F)
- **detrend** Remove linear trend from data series? (T or F)
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)
getColor

Query R for color information

Description

Query R for color information.

Usage

g getColor(color)

Arguments

color The name of the color you are interested in, in quotes.

getData

Download file from astrochron data server

Description

Download data file from astrochron server.

Usage

g getData(dat="1262-a*")

Arguments

dat A character string that specifies the data file to download. At present there are eight options: "1262-a*", "926B-18O", "graptolite", "Xiamaling-CuAl", "607-18O", "AEB-18O", "Newark-rank", "CDL-rank", "DVCP2017-18O"

References

See Also

cosTaper, dpssTaper, and hannTaper
getLaskar

Description

Usage
getLaskar(sol="la04",verbose=T)

Arguments
sol A character string that specifies the astronomical solution to download: "la04","la10a","la10b","la10c","la10d","la11","insolation"
verbose Verbose output? (T or F)

Details
la04: three columns containing precession angle, obliquity, and eccentricity of Laskar et al. (2004)
la10a: one column containing the la10a eccentricity solution of Laskar et al. (2011a)
la10b: one column containing the la10b eccentricity solution of Laskar et al. (2011a)
la10c: one column containing the la10c eccentricity solution of Laskar et al. (2011a)
la10d: one column containing the la10d eccentricity solution of Laskar et al. (2011a)
la11: one column containing the la11 eccentricity solution of Laskar et al. (2011b; please also cite 2011a)
insolation: one column containing insolation at 65 deg North (W/m^2) during summer solstice, from Laskar et al. (2004)

References
hannTaper

Apply Hann taper to stratigraphic series

Description

Apply a Hann (Hanning) taper to a stratigraphic series

Usage

hannTaper(dat, rms=T, demean=T, detrend=F, genplot=T, verbose=T)

Arguments

dat Stratigraphic series for tapering. First column should be location (e.g., depth), second column should be data value. If no data is identified, will output a 256 point taper to evaluate the spectral properties of the window.
rms Normalize taper to RMS=1 to preserve power for white process? (T or F)
demean Remove mean from data series? (T or F)
detrend Remove linear trend from data series? (T or F)
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

See Also

cosTaper, dpssTaper, and gausTaper

headn

List column numbers for each variable

Description

Execute 'head' function, with column numbers indicated for each variable. (useful for functions such as 'autopl')

Usage

headn(dat)

Arguments

dat Your data frame.
hilbert

Hilbert transform of stratigraphic series

Description

Calculate instantaneous amplitude (envelope) via Hilbert Transform of stratigraphic series

Usage

hilbert(dat, padfac=2, demean=T, detrend=F, output=T, addmean=F, genplot=T, check=T, verbose=T)

Arguments

dat Stratigraphic series to Hilbert Transform. First column should be location (e.g., depth), second column should be data value.
padfac Pad with zeros to (padfac*npts) points, where npts is the original number of data points.
demean Remove mean from data series? (T or F)
detrend Remove linear trend from data series? (T or F)
output Return results as new data frame? (T or F)
addmean Add mean value to instantaneous amplitude? (T or F)
genplot Generate summary plots? (T or F)
check Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.
verbose Verbose output? (T or F)

Examples

generate example series with 3 precession terms and noise
ex <- cycles(noisevar=.0004,dt=5)
bandpass precession terms using cosine-tapered window
res_ex <- bandpass(ex,flow=0.038,fhigh=0.057,win=2,p=.4)
hilbert transform
hil_ex <- hilbert(res_ex)
idPts

Interactively identify points in plot

Description

Interactively identify points in x,y plot.

Usage

```r
idPts(dat1, dat2=NULL, ptsize=1, xmin=NULL, xmax=NULL, ymin=NULL, ymax=NULL, logx=F, logy=F, plotype=1, annotate=1, output=1, verbose=T)
```

Arguments

- **dat1**: Data frame with one, two or three columns. If one column, dat2 must also be specified. If three columns, the data frame is assumed to represent a stratigraphic series, and the first column should be depth, height or time.
- **dat2**: Data frame with one column.
- **ptsize**: Size of plotted points.
- **xmin**: Minimum x-value (column 1) to plot
- **xmax**: Maximum x-value (column 1) to plot
- **ymin**: Minimum y-value (column 2) to plot
- **ymax**: Maximum y-value (column 2) to plot
- **logx**: Plot x-axis using logarithmic scaling? (T or F)
- **logy**: Plot y-axis using logarithmic scaling? (T or F)
- **plotype**: Type of plot to generate: 1= points and lines, 2 = points, 3 = lines
- **annotate**: Annotate plot with text indicating coordinates?: 0=none, 1=annotate above point, 2=annotate below point
- **output**: Return identified points as a data frame? (0) no, (1) return x and y, (2) return index, x and y. If dat1 contains three columns, option 2 will return index, location, x and y.
- **verbose**: Verbose output? (T or F)

See Also

`delPts`, `iso`, `trim` and `trimAT`
Description

An implementation of the Imbrie and Imbrie (1980) ice sheet model

Usage

imbrie(insolation=NULL,Tm=17,b=0.6,times=NULL,initial=0,burnin=100,standardize=T, output=T,genplot=1,verbose=T)

Arguments

- `insolation`: Insolation, in ka (negative for future, positive for past). Default is insolation over the past 1000 ka from 65 deg. North, 21 June.
- `Tm`: Vector of mean time constants in ka. Default is 17 ka. The order of the Tm values should match vectors b and times.
- `b`: Vector of nonlinearity coefficient (a value ranging from 0 to 1). Default is 0.6. The order of the b values should match vectors Tm and times.
- `times`: Vector of start times for each Tm and b listed above. Leave as NULL if you only need to model one Tm and b value.
- `initial`: Initial value for ice volume, relative to centered record. Default is 0.
- `burnin`: Number of points for model burn-in. This is required to achieve stable model results. Default is 100 points.
- `standardize`: Standardize model output to maximum value of one and minimum value of zero? (T or F)
- `output`: Output model results? (T or F)
- `genplot`: Generate summary plots? (1) plot insolation and ice volume series, (2) plot animated insolation, ice volume and phase portrait.
- `verbose`: Verbose output? (T or F)

Details

This function will implement the ice volume model of Imbrie and Imbrie (1980), following the conventions of Paillard et al. (1996).

When using the 'times' vector, consider the following example:

times= c(500,1000)
Tm=c(15,5)
b=c(0.6,0.3)

In this case, a Tm of 15 (b of 0.6) will be applied to model from 0-500 ka, and a Tm of 5 (b of 0.3) will be applied to model 500-1000 ka.
References

Examples

```r
## Not run:
# make a very simple forcing (on/off)
forcing=cycles(0,end=300)
forcing[50:150,2]=1
plot(forcing,type="l")

# use this forcing to drive the imbrie ice model
# set b=0, Tm = 1
imbrie(forcing,b=0,Tm=1,output=F)

# let's view the evolution of the ice sheet
imbrie(forcing,b=0,Tm=1,output=F,genplot=2)

# now increase the response time
imbrie(forcing,b=0,Tm=10,output=F,genplot=2)

# now model slow growth, fast decay
imbrie(forcing,b=0.5,Tm=10,output=F,genplot=2)

# now make a 100 ka cyclic forcing
forcing=cycles(1/100,end=300)
imbrie(forcing,b=0,Tm=1,output=F,genplot=2)
imbrie(forcing,b=0,Tm=10,output=F,genplot=2)
imbrie(forcing,b=0.5,Tm=10,output=F,genplot=2)

# show burn-in
imbrie(forcing,b=0.5,Tm=10,output=F,genplot=2,burnin=0)

# now examine Malutin Milankovitch's hypothesis: 65 deg N, summer solstice
imbrie(b=0.5,Tm=10,output=F,genplot=2,burnin=900)

# use the ice model output to make a synthetic stratigraphic section
res=imbrie(b=0.5,T=10,output=T,genplot=1,burnin=100)
synthStrat(res,clip=F)

# generate ice model for last 5300 ka, using 65 deg. N insolation, 21 June
# allow b and Tm values to change as in Lisiecki and Raymo (2005):
insolation=getLaskar("insolation")
insolation=iso(insolation,xmin=0,xmax=5300)
# b is 0.3 from 5300 to 3000 ka, then linearly increases to 0.6 between 3000 and 1500 ka.
# b is 0.6 from 1500 ka to present.
set_b=linterp(cb(c(1500,3000),c(0.6,0.3)),dt=1)
```
impulseResponse

Impulse response function calculation

Description

Calculate the analytical response function from an impulse forcing using the 1-D advection diffusion model proposed in Schink and Guinasso (1975) to model the bioturbation impact on climate time series.

Usage

```r
impulseResponse(G, ML = NULL, v = NULL, nt = 500, genplot = FALSE, verbose = FALSE)
```

Arguments

- `G` Bioturbation parameter. $G = D/ML/v$
- `ML` Mix layer depth (cm)
- `v` Sedimentation rate (cm/kyr)
- `nt` Number of steps after the signal is deposited.
- `genplot` Generate summary plots? (T or F)
- `verbose` Verbose output? (T or F)

Value

- `fc` Impulse response function

References

integratePower

Examples

```r
G <- 4
ML <- 10
v <- 1
# take a look at the IRF
impulseResponse(G=4, ML = 10, v = 1, genplot = TRUE)
```

integratePower

Determine the total power within a given bandwidth

Description

Determine the total power within a given bandwidth, and also the ratio of this power to the total power in the spectrum (or up to a specified frequency). If bandwidth is not specified, generate interactive plots for bandwidth selection. For use with the function eha, integratePower can process spectrograms (time-frequency) or single spectra.

Usage

```r
integratePower(spec,flow=NULL,fhigh=NULL,fmax=NULL,unity=F,f0=T,xmin=NULL, xmax=NULL,ymin=NULL,ymax=NULL,npts=NULL,pad=NULL,ydir=1, palette=6,ncolors=100,h=6,w=9,ln=F,genplot=T,verbose=T)
```

Arguments

- `spec`: Spectral results to evaluate. If the data frame contains time-frequency results, it must have the following format: column 1=frequency; remaining columns (2 to n)=power; titles for columns 2 to n must be the location (depth or height). Note that this format is output by function eha. If the data frame contains one spectrum, it must have the following format: column 1=frequency, column 2=power.
- `flow`: Low frequency cutoff for integration. If flow or fhigh are not specified, interactive plotting is activated.
- `fhigh`: High frequency cutoff for integration. If flow or fhigh are not specified, interactive plotting is activated.
- `fmax`: Integrate total power up to this frequency.
- `unity`: Normalize spectra such that total variance (up to fmax) is unity. (T of F)
- `f0`: Is f(0) included in the spectra? (T or F)
- `xmin`: Minimum frequency for PLOTTING.
- `xmax`: Maximum frequency for PLOTTING.
integratePower

- **ymin**: Minimum depth/height/time for PLOTTING. Only used if processing time-frequency results.
- **ymax**: Maximum depth/height/time for PLOTTING. Only used if processing time-frequency results.
- **npts**: The number of points in the processed time series window. This is needed for proper spectrum normalization.
- **pad**: The total padded length of the processed time series window. This is needed for proper spectrum normalization.
- **ydir**: Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards. Only used if processing time-frequency results.
- **palette**: What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red, (6) viridis
- **ncolors**: Number of colors to use in plot. Only used if processing time-frequency results.
- **h**: Height of plot in inches.
- **w**: Width of plot in inches.
- **ln**: Plot natural log of spectral results? (T or F)
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

Details

Depending on the normalization used, you may want to preprocess the power spectra prior to integration.

See Also

- eha

Examples

```r
# generate etp signal over past 10 Ma
ex=etp(tmax=10000)

# evolutive power
pwr=eha(ex,win=500,fmax=.1,pad=2000,output=2,pl=2)

# integrate power from main obliquity term
integratePower(pwr,flow=0.02,fhigh=0.029,npts=501,pad=2000)
```
iso

Isolate data from a specified stratigraphic interval

Description

Isolate a section of a uni- or multi-variate stratigraphic data set for further analysis

Usage

\[\text{iso}(\text{dat}, \text{xmin}, \text{xmax}, \text{col}=2, \text{logx}=F, \text{logy}=F, \text{genplot}=T, \text{verbose}=T) \]

Arguments

dat Data frame containing stratigraphic variable(s) of interest. First column must be location (e.g., depth).
xmin Minimum depth/height/time for isolation. If xmin is not specified, it will be selected using a graphical interface.
xmax Maximum depth/height/time for isolation. If xmax is not specified, it will be selected using a graphical interface.
col If you are using the graphical interface to select xmin/xmax, which column would you like to plot? (default = 2).
logx Plot x-axis using logarithmic scaling? (T or F)
logy Plot y-axis using logarithmic scaling? (T or F)
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

See Also

delPts, idPts, trim and trimAT

linage

Tune stratigraphic series to an astronomical target using graphical interface

Description

Tune stratigraphic series to an astronomical target using graphical interface similar to Analyseries 'Linage' routine (Paillard et al, 1996).

Usage

\[\text{linage}(\text{dat}, \text{target}, \text{extrapolate}=F, \text{xmin}=\text{NULL}, \text{xmax}=\text{NULL}, \text{tmin}=\text{NULL}, \text{tmax}=\text{NULL}, \text{size}=1, \text{plotype}=1, \text{output}=1, \text{genplot}=T) \]
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>Stratigraphic series for tuning, with two columns. First column is depth/height.</td>
</tr>
<tr>
<td>target</td>
<td>Astronomical tuning target series. First column is time.</td>
</tr>
<tr>
<td>extrapolate</td>
<td>Extrapolate sedimentation rates above and below 'tuned' interval? (T or F)</td>
</tr>
<tr>
<td>xmin</td>
<td>Minimum height/depth to plot.</td>
</tr>
<tr>
<td>xmax</td>
<td>Maximum height/depth to plot.</td>
</tr>
<tr>
<td>tmin</td>
<td>Minimum time value to plot.</td>
</tr>
<tr>
<td>tmax</td>
<td>Maximum time value to plot.</td>
</tr>
<tr>
<td>size</td>
<td>Multiplicative factor to increase or decrease size of symbols and fonts.</td>
</tr>
<tr>
<td>plotype</td>
<td>Type of plot to generate: 1 = points and lines, 2 = points, 3 = lines</td>
</tr>
<tr>
<td>output</td>
<td>Return which of the following? 1 = tuned stratigraphic series; 2 = age control points; 3 = tuned stratigraphic series and age control points</td>
</tr>
<tr>
<td>genplot</td>
<td>Generate additional summary plots (tuned record, time-space map, sedimentation rates)? (T or F)</td>
</tr>
</tbody>
</table>

References

Examples

```r
# Not run:
# Check to see if this is an interactive R session, for compliance with CRAN standards.
# YOU CAN SKIP THE FOLLOWING LINE IF YOU ARE USING AN INTERACTIVE SESSION.
if(interactive()) {

    # generate example series with 3 precession terms and noise using function 'cycles'
    # then convert from time to space using sedimentation rate that increases from 1 to 7 cm/ka
    ex=sedRamp(cycles(start=1,end=400, dt=2,noisevar=.00005),srstart=0.01,srend=0.07)

    # create astronomical target series
    targ=cycles(start=1,end=400,dt=2)

    ## manually tune
    tuned=linage(ex,targ)

    ## should you need to flip the direction of the astronomical target series, use function 'cb':
    tuned=linage(ex,cb(targ[1]*-1,targ[2]))
}
```

```r
# End(Not run)
```
linterp
Piecewise linear interpolation of stratigraphic series

Description
Interpolate stratigraphic series onto an evenly sampled grid, using piecewise linear interpolation.

Usage
```r
linterp(dat, dt, start, genplot = T, check = T, verbose = T)
```

Arguments
- **dat**: Stratigraphic series for piecewise linear interpolation. First column should be location (e.g., depth), second column should be data value.
- **dt**: New sampling interval.
- **start**: Start interpolating at what time/depth/height value? By default, the first value of the stratigraphic series will be used.
- **genplot**: Generate summary plots? (T or F)
- **check**: Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.
- **verbose**: Verbose output? (T or F)

logT
Log transformation of stratigraphic series

Description
Log transformation of stratigraphic series.

Usage
```r
logT(dat, c = 0, opt = 1, genplot = T, verbose = T)
```

Arguments
- **dat**: Stratigraphic series for log transformation. Input can have any number of columns desired. If two or more columns are input, the first column must be location (e.g., depth), while remaining columns are data values for transformation.
- **c**: Constant to add prior to log transformation. Default = 0.
- **opt**: (1) use natural logarithm, (2) use log10. Default = 1.
- **genplot**: Generate summary plots? (T or F). This is automatically deactivated if more than one variable is transformed.
- **verbose**: Verbose output? (T or F)
lowpass

Lowpass filter stratigraphic series using rectangular, Gaussian or tapered cosine window. This function can also be used to highpass filter a record (see examples).

Usage

lowpass(dat, padfac=2, fcut=NULL, win=0, demean=T, detrend=F, addmean=T, alpha=3, p=0.25, xmin=0, xmax=Nyq, genplot=T, verbose=T)

Arguments

dat Stratigraphic series for lowpass filtering. First column should be location (e.g., depth), second column should be data value.
padfac Pad with zeros to (padfac*npts) points, where npts is the original number of data points.
fcut Cutoff frequency for lowpass filtering.
win Window type for bandpass filter: 0 = rectangular, 1= Gaussian, 2= Cosine-tapered window.
demean Remove mean from data series? (T or F)
detrend Remove linear trend from data series? (T or F)
addmean Add mean value to bandpass result? (T or F)
alpha Gaussian window parameter: alpha is 1/stdev, a measure of the width of the Dirichlet kernal. Larger values decrease the width of data window, reduce discontinuities, and increase width of the transform. Choose alpha >= 2.5.
p Cosine-tapered window parameter: p is the percent of the data series tapered (choose 0-1).
xmin Smallest frequency for plotting.
xmax Largest frequency for plotting.
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

See Also

arcsinT, demean, detrend, divTrend, prewhiteAR, and prewhiteAR1
Examples

generate example series with periods of 405 ka, 100 ka, 40ka, and 20 ka, plus noise
ex=cycles(freqs=c(1/405,1/100,1/40,1/20),end=1000,dt=5,noisevar=.1)

lowpass filter eccentricity terms using cosine-tapered window
lowpass_ex=lowpass(ex,fcut=.02,win=2,p=.4)

highpass filter obliquity and precession terms using cosine-tapered window
if you'd like the final notch filtered record to be centered on the mean proxy
value, set addmean=FALSE
highpass_ex=lowpass(ex,fcut=.02,win=2,p=.4,addmean=FALSE)
pl(2)
plot(ex,type="l",main="Eccentricity+Obliquity+Precession")
plot(highpass_ex,type="l",main="Obliquity+Precession highpassed signal")

lowspec

Robust Locally-Weighted Regression Spectral Background Estimation

Description

LOWSPEC: Robust Locally-Weighted Regression Spectral Background Estimation (Meyers, 2012)

Usage

lowspec(dat,decimate=NULL,tbw=3,padfac=5,detrend=F,siglevel=0.9,setrho,
 lowspan,b_tun,output=0,CLpwr=T,xmin,xmax,pl=1,sigID=T,genplot=T,
 verbose=T)

Arguments

dat Stratigraphic series for LOWSPEC. First column should be location (e.g., depth),
 second column should be data value.
decimate Decimate stratigraphic series to have this sampling interval (via piecewise linear
 interpolation). By default, no decimation is performed.
tbw MTM time-bandwidth product (2 or 3 permitted)
padfac Pad with zeros to (padfac*npts) points, where npts is the original number of data
 points.
detrend Remove linear trend from data series? This detrending is performed following
 AR1 prewhitening. (T or F)
siglevel Significance level for peak identification. (0-1)
setrho Define AR1 coefficient for pre-whitening (otherwise calculated). If set to 0, no
 pre-whitening is applied.
lowspan Span for LOWESS smoothing of prewhitened signal, usually fixed to 1. If using
 value <1, the method is overly conservative with a reduced false positive rate.
b_tun Robustness weight parameter for LOWSPEC. By default, this will be estimated internally.

output What should be returned as a data frame? (0=nothing; 1=pre-whitened spectrum + harmonic F-test CL + LOWSPEC background + LOWSPEC CL + 90%-99% LOWSPEC power levels; 2=sig peaks)

CLpwr Plot LOWSPEC noise confidence levels on power spectrum? (T or F)

xmin Smallest frequency for plotting.

xmax Largest frequency for plotting.

pl Power spectrum plotting: (1) linear frequency-log spectral power, (2) linear frequency-linear spectral power (3) log frequency-log spectral power, (4) log frequency-linear spectral power

sigID Identify significant frequencies on power and probability plots? (T or F)

genplot Generate summary plots? (T or F)

verbose Verbose output? (T or F)

Details

LOWSPEC is a 'robust' method for spectral background estimation, designed for the identification of potential astronomical signals that are imbedded in red noise (Meyers, 2012). The complete algorithm implemented here is as follows: (1) initial pre-whitening with AR1 filter (default) or other filter as appropriate (e.g., see function prewhiteAR), (2) power spectral estimation via the multitaper method (Thomson, 1982), (3) robust locally weighted estimation of the spectral background using the LOWESS-based (Cleveland, 1979) procedure of Ruckstuhl et al. (2001), (4) assignment of confidence levels using a Chi-square distribution.

NOTE: If you choose to pre-whiten before running LOWSPEC (rather than using the default AR1 pre-whitening), specify setrho=0.

Candidate astronomical cycles are subsequently identified via isolation of those frequencies that achieve the required (e.g., 90 percent) LOWSPEC confidence level and MTM harmonic F-test confidence level. Allowance is made for the smoothing inherent in the MTM power spectral estimate as compared to the MTM harmonic spectrum. That is, an F-test peak is reported if it achieves the required MTM harmonic confidence level, while also achieving the required LOWSPEC confidence level within +/- half the power spectrum bandwidth resolution. One additional criterion is included to further reduce the false positive rate, a requirement that significant F-tests must occur on a local power spectrum high, which is parameterized as occurring above the local LOWSPEC background estimate. See Meyers (2012) for further information on the algorithm.

In this implementation, the 'robustness criterion' ('b' in EQ. 6 of Ruckstuhl et al., 2001) has been optimized for 2 and 3 pi DPSS, using a 'span' of 1. By default the robustness criterion will be estimated. Both 'b' and the 'span' can be explicitly set using parameters 'b_tun' and 'lowspan'. Note that it is permissible to decrease 'lowspan' from its default value, but this will result in an overly conservative false positive rate. However, it may be necessary to reduce 'lowspan' to provide an appropriate background fit for some stratigraphic data. Another option is to decimate the data series prior to spectral estimation.
Value

If option 1 is selected, a data frame containing the following is returned: Frequency, Prewhitened power, harmonic F-test CL, LOWSPEC CL, LOWSPEC background, 90%-99% LOWSPEC power levels. NOTE: as of version 0.8, the order of the columns in the output data frame has been changed, for consistency with functions mtm, mtmML96, and mtmPL.

If option 2 is selected, the 'significant' frequencies are returned (as described above).

References

See Also

eha, mtm, mtmAR, mtmML96, periodogram, rfbaseline, and spec.mtm

Examples

```r
# generate example series with periods of 400 ka, 100 ka, 40 ka and 20 ka
ex = cycles(freqs=c(1/400,1/100,1/40,1/20),start=1,end=1000,dt=5)

# add AR1 noise
noise = ar1(npts=200,dt=5,sd=.5)

# LOWSPEC analysis
pl(1, title="lowspec")
lowspec(ex)

# compare to MTM spectral analysis, with conventional AR1 noise test
pl(1,title="mtm")
mtm(ex,ar1=TRUE)

# compare to ML96 analysis
pl(1, title="mtmML96")
mtmML96(ex)

# compare to amplitudes from eha
pl(1,title="eha")
ehaxex, tbw=3, win=1000, pad=1000)
```
makeNoise Generate noise surrogates from a theoretical power spectrum

Description
Generate noise surrogates from a theoretical power spectrum.

Usage
makeNoise(S, dt=1, mean=0, sdev=1, addPt=F, nsim=1, genplot=T, verbose=T)

Arguments
- S: Vector or 1-D data frame containing the theoretical power, from f(0) to the Nyquist frequency.
- dt: Sampling interval for surrogate series
- mean: Mean value for surrogate series
- sdev: Standard deviation for surrogate series
- addPt: Did you add a Nyquist frequency? (T or F)
- nsim: Number of surrogate series to generate
- genplot: generate summary plots (T or F)
- verbose: verbose output (T or F)

Details
These simulations use the random number generator of Matsumoto and Nishimura [1998]. The algorithm of Timmer and Konig (1995) is employed to generate surrogates from any arbitrary theoretical power spectrum. See examples section below.

References

Examples
create theoretical AR1 spectrum, using rho of 0.8
rho=0.8
freq=seq(0,.5,by=0.005)
Nyq=max(freq)
AR1 = (1-(0.8^2)) / (1 - (2*0.8*cos(pi*freq/Nyq)) + (0.8^2))
plot(freq,AR1,type="l")
make noise surrogates from the theoretical AR1 spectrum
makeNoise(AR1)

modelA
Example stratigraphic model series

Description
Example stratigraphic model series.

Usage
```r
data(modelA)
```

Format
Height (meters), weight percent CaCO3

mtm
Multitaper method spectral analysis

Description
Multitaper method (MTM) spectral analysis (Thomson, 1982)

Usage
```r
mtm(dat, tbw=3, ntap=NULL, padfac=5, demean=T, detrend=F, siglevel=0.9, ar1=T, output=0, 
  CLpwr=T, xmin, xmax, pl=1, sigID=T, genplot=T, verbose=T)
```

Arguments
- **dat**
 Stratigraphic series for MTM spectral analysis. First column should be location (e.g., depth), second column should be data value.
- **tbw**
 MTM time-bandwidth product.
- **ntap**
 Number of DPSS tapers to use. By default, this is set to (2*tbw)-1.
- **padfac**
 Pad with zeros to (padfac*npts) points, where npts is the original number of data points.
- **demean**
 Remove mean from data series? (T or F)
- **detrend**
 Remove linear trend from data series? (T or F)
- **siglevel**
 Significance level for peak identification. (0-1)
- **ar1**
 Estimate conventional AR(1) noise spectrum and confidence levels? (T or F)
- **CLpwr**
 Plot AR(1) noise confidence levels on power spectrum? (T or F)
output

What should be returned as a data frame? (0=nothing; 1= power spectrum + harmonic CL + AR1 CL + AR1 fit + 90%-99% AR1 power levels (ar1 must be set to TRUE to output AR model results); 2=significant peak frequencies; 3=significant peak frequencies + harmonic CL; 4=internal variables from spec.mtm). Option 4 is intended for expert users, and should generally be avoided.

xmin

Smallest frequency for plotting.

xmax

Largest frequency for plotting.

pl

Power spectrum plotting: (1) linear frequency-log spectral power, (2) linear frequency-linear spectral power (3) log frequency-log spectral power, (4) log frequency-linear spectral power

sigID

Identify significant frequencies on power and probability plots? (T or F)

genplot

Generate summary plots? (T or F)

verbose

Verbose output? (T or F)

Details

If ar1=T, candidate astronomical cycles are identified via isolation of those frequencies that achieve the required (e.g., 90 percent) "red noise" confidence level and MTM harmonic F-test confidence level. Allowance is made for the smoothing inherent in the MTM power spectral estimate as compared to the MTM harmonic spectrum. That is, an F-test peak is reported if it achieves the required MTM harmonic confidence level, while also achieving the required red noise confidence level within +/- half the power spectrum bandwidth resolution. One additional criterion is included to further reduce the false positive rate, a requirement that significant F-tests must occur on a local power spectrum high, which is parameterized as occurring above the local red noise background estimate. See Meyers (2012) for further information.

References

See Also

eha, lowspect, mtmAR, mtmML96, periodogram, and spec.mtm

Examples

generate example series with periods of 400 ka, 100 ka, 40 ka and 20 ka
ex = cycles(freqs=c(1/400,1/100,1/40,1/20),start=1,end=1000,dt=5)

add AR1 noise
noise = ar1(npts=200,dt=5,sd=.5)
\[\text{ex}[2] = \text{ex}[2] + \text{noise}[2] \]

MTM spectral analysis, with conventional AR1 noise test
pl(1, title="mtm")
mtm(ex, ar1=TRUE)

compare to ML96 analysis
pl(1, title="mtmML96")
mtmML96(ex)

compare to analysis with LOWSPEC
pl(1, title="lowspec")
lowspec(ex)

compare to amplitudes from eha
pl(1, title="eha")
eha(ex, tbw=3, win=1000, pad=1000)

mtmAR

Intermediate spectrum test of Thomson et al. (2001)

Description

Perform the 'intermediate spectrum test' of Thomson et al. (2001).

Paraphrased from Thomson et al. (2001): Form an intermediate spectrum by dividing MTM by AR estimate. Choose an order \(P \) for a predictor. A variety of formal methods are available in the literature, but practically, one keeps increasing \(P \) (the order) until the range of the intermediate spectrum \(S_i(f) \) (equation (C4) of Thomson et al., 2001) stops decreasing rapidly as a function of \(P \). If the intermediate spectrum is not roughly white, as judged by the minima, the value of \(P \) should be increased.

Usage

\[
\text{mtmAR}(\text{dat}, \text{tbw}=3, \text{ntap}=\text{NULL}, \text{order}=1, \text{method}=\text{"mle"}, \text{CItype}=1, \text{padfac}=5, \text{demean}=\text{T}, \text{detrend}=\text{F}, \text{output}=1, \text{xmin}=0, \text{xmax}=\text{Nyq}, \text{pl}=1, \text{genplot}=\text{T}, \text{verbose}=\text{T})
\]

Arguments

- **dat**: Stratigraphic series for analysis. First column should be location (e.g., depth), second column should be data value.
- **tbw**: MTM time-bandwidth product.
- **ntap**: Number of DPSS tapers to use. By default, this is set to \((2*\text{tbw})-1\).
- **order**: Order of the AR spectrum.
- **method**: AR method ("yule-walker", "burg", "ols", "mle", "yw")
- **CItype**: Illustrate (1) one-sided or (2) two-sided confidence intervals on plots
- **padfac**: Pad with zeros to \((\text{padfac}*\text{npts})\) points, where \(\text{npts} \) is the original number of data points.
mtmML96

Mann and Lees (1996) robust red noise MTM analysis

Description

Mann and Lees (1996) robust red noise MTM analysis. This function implements several improvements to the algorithm used in SSA-MTM toolkit, including faster AR1 model optimization, and more appropriate 'edge-effect' treatment.

Usage

mtmML96(dat, tbw=3, ntap=NULL, padfac=5, demean=T, detrend=F, medsmooth=0.2, opt=1, linLog=2, siglevel=0.9, output=0, CLpwr=T, xmin=0, xmax=Nyq, sigID=T, pl=1, genplot=T, verbose=T)
Arguments

- **dat**: Stratigraphic series for MTM spectral analysis. First column should be location (e.g., depth), second column should be data value.
- **tbw**: MTM time-bandwidth product.
- **ntap**: Number of DPSS tapers to use. By default, this is set to (2*tbw)-1.
- **padfac**: Pad with zeros to (padfac*npts) points, where npts is the original number of data points.
- **demean**: Remove mean from data series? (T or F)
- **detrnd**: Remove linear trend from data series? (T or F)
- **medsmooth**: ML96 median smoothing parameter (1 = use 100% of spectrum; 0.20 = use 20%)
- **opt**: Optimization method for robust AR1 model estimation (1=Brent’s method: fast, 2=Gauss-Newton: fast, 3=grid search: slow)
- **linLog**: Optimize AR1 model fit using (1) linear power or (2) log(power)?
- **siglevel**: Significance level for peak identification. (0-1)
- **output**: What should be returned as a data frame? (0= nothing; 1= power spectrum + harmonic CL + AR1 CL + AR1 fit + 90%-99% AR1 power levels + median smoothed spectrum; 2= significant peak frequencies; 3= significant peak frequencies + harmonic CL)
- **CLpwr**: Plot ML96 AR(1) noise confidence levels on power spectrum? (T or F)
- **xmin**: Smallest frequency for plotting.
- **xmax**: Largest frequency for plotting.
- **sigID**: Identify significant frequencies on power and probability plots? (T or F)
- **pl**: Power spectrum plotting: (1) linear frequency-log spectral power, (2) linear frequency-linear spectral power (3) log frequency-log spectral power, (4) log frequency-linear spectral power
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

Details

This function conducts the Mann and Lees (1996; ML96) "robust red noise" analysis, with an improved median smoothing approach. The original Mann and Lees (1996) approach applies a truncation of the median smoothing window to include fewer frequencies near the edges of the spectrum; while truncation is required, its implementation in the original method often results in an "edge effect" that can produce excess false positive rates at low frequencies, commonly within the eccentricity-band (Meyers, 2012).

To help address this issue, an alternative median smoothing approach is applied that implements Tukey’s robust end-point rule and symmetrical medians (see the function runmed for details). Numerical experiments indicate that this approach produces an approximately uniform false positive rate across the spectrum. It should be noted that the false positive rates are still inflated with this method, but they are substantially reduced compared to the original ML96 approach. For example, simulations using rho=0.9 (using identical parameters to those in Meyers, 2012) yield median false
positive rates of 1.7%, 7.3% and 13.4%, for the 99%, 95% and 90% confidence levels (respectively). This compares with 4.7%, 11.4% and 17.8% using the original approach (see Table 2 of Meyers, 2012).

Candidate astronomical cycles are identified via isolation of those frequencies that achieve the required (e.g., 90 percent) "robust red noise" confidence level and MTM harmonic F-test confidence level. Allowance is made for the smoothing inherent in the MTM power spectral estimate as compared to the MTM harmonic spectrum. That is, an F-test peak is reported if it achieves the required MTM harmonic confidence level, while also achieving the required robust red noise confidence level within +/- half the power spectrum bandwidth resolution. One additional criterion is included to further reduce the false positive rate, a requirement that significant F-tests must occur on a local power spectrum high, which is parameterized as occurring above the local robust red noise background estimate. See Meyers (2012) for further information.

NOTE: If the (fast) Brent or Gauss-Newton methods fail, use the (slow) grid search approach. This version of the ML96 algorithm was first implemented in Patterson et al. (2014).

References

http://www.meteo.psu.edu/holocene/public_html/Mann/tools/MTM-RED/

See Also

eha, lowspec, mtm, mtmAR, periodogram, runmed, and spec.mtm

Examples

generate example series with periods of 400 ka, 100 ka, 40 ka and 20 ka
ex = cycles(freqs=c(1/400,1/100,1/40,1/20),start=1,end=1000,dt=5)

add AR1 noise
noise = ar1(npts=200,dt=5,sd=0.5)

run ML96 analysis
pl(1, title="mtmML96")
mtmML96(ex)

compare to analysis with conventional AR1 noise test
mtmPL

Multitaper Method Spectral Analysis with Power Law (1/f) fit

Description

Multitaper Method (MTM) Spectral Analysis with Power Law (1/f) fit

Usage

```r
mtmPL(dat, tbw=3, ntap=NULL, padfac=5, demean=T, detrend=F, siglevel=0.9, flow=NULL, fhigh=NULL, output=0, CLpwr=T, xmin=0, xmax=Nyq, pl=1, sigID=F, genplot=T, verbose=T)
```

Arguments

dat Stratigraphic series for MTM spectral analysis. First column should be location (e.g., depth), second column should be data value.
tbw MTM time-bandwidth product.
ntap Number of DPSS tapers to use. By default, this is set to (2*tbw)-1.
padfac Pad with zeros to (padfac*npts) points, where npts is the original number of data points.
demean Remove mean from data series? (T or F)
detrend Remove linear trend from data series? (T or F)
siglevel Significance level for peak identification.
flow Lowest frequency to include in 1/f fit
fhigh Highest frequency to include in 1/f fit
output What should be returned as a data frame? (0=nothing; 1=spectrum + CLs + power law fit; 2=sig peak freqs; 3=sig peak freqs + prob; 4=all)
CLpwr Plot power law noise confidence levels on power spectrum (in addition to the power law fit)? (T or F)
xmin Smallest frequency for plotting.
xmax Largest frequency for plotting.
pl Power spectrum plotting: (1) linear frequency-log spectral power, (2) linear frequency-linear spectral power (3) log frequency-log spectral power, (4) log frequency-linear spectral power
Candidate astronomical cycles are identified via isolation of those frequencies that achieve the required (e.g., 90 percent) power law confidence level and MTM harmonic F-test confidence level. Allowance is made for the smoothing inherent in the MTM power spectral estimate as compared to the MTM harmonic spectrum. That is, an F-test peak is reported if it achieves the required MTM harmonic confidence level, while also achieving the required power law confidence level within +/- half the power spectrum bandwidth resolution. One additional criterion is included to further reduce the false positive rate, a requirement that significant F-tests must occur on a local power spectrum high, which is parameterized as occurring above the local red noise background estimate. See Meyers (2012) for further information.

References

See Also
eha, lowspect, mmt, mtmAR, mtmML96, periodogram, and spec.mtm

multiTest

Adjust spectral p-values for multiple comparisons

Description

Adjust spectral p-values for multiple comparisons, using a range of approaches.

Usage

```r
multiTest(spec,flow=NULL,fhigh=NULL,pl=T,output=T,genplot=T,verbose=T)
```
Arguments

spec A data frame with two columns: frequency, uncorrected confidence level. If 8 columns are input, the results are assumed to come from mtm, mtmML96, lowspec or mtmPL. If 9 columns are input, the results are assumed to come from periodogram.

flow Vector of lower bounds for each frequency band of interest. Order must match fhigh.

fhigh Vector of upper bounds for each frequency band of interest. Order must match flow.

pl Include graphs of uncorrected p-values? (T or F)

output Return results as new data frame? (T or F)

genplot Generate summary plots? (T or F)

verbose Verbose output? (T or F)

Details

Multiple testing is a common problem in the evaluation of power spectrum peaks (Vaughan et al., 2011; Crampton et al., PNAS). To address the issue of multiple testing, a range of approaches have been advocated. This function will conduct an assessment using six approaches: Bonferroni, Homl (1979), Hochberg (1998), Hommel (1988), Benjamini & Hochberg (1995, a.k.a. "false discovery rate"), Benjamini & Yekutieli (2001, a.k.a. "false discovery rate"). See the function p.adjust for additional information on these six approaches.

In conducting these assessments, it is important that the spectral analysis is conducted without zero-padding. If one is exclusively concerned with particular frequency bands a priori (e.g., those associated with Milankovitch cycles), the statistical power of the method can be improved by restricting the analysis to those frequency bands (use options 'flow' and 'fhigh').

Application of these multiple testing corrections does not guarantee that the spectral background is appropriate. To address this issue, carefully examine the fit of the spectral background, and also conduct simulations with the function testBackground.

References

See Also

`p.adjust`, `testBackground`, `confAdjust`, `lowspec`, `mtm`, `mtmML96`, `mtmPL`, and `periodogram`

Examples

```r
# generate example series with periods of 400 ka, 100 ka, 40 ka and 20 ka
ex = cycles(freqs=c(1/400,1/100,1/40,1/20),start=1,end=1000,dt=5)

# add AR1 noise
noise = ar1(npts=200,dt=5,sd=.5)

# first, let's look at mtm with conventional AR1 background
spec=mtm(ex,padfac=1,ar1=TRUE,output=1)
multiTest(cb(spec,c(1,4)),output=FALSE)

# when blindly prospecting for cycles, it is necessary to consider all of the
# observed frequencies in the test
multiTest(cb(spec,c(1,4)),output=FALSE)

# if, a priori, you are only concerned with the Milankovitch frequency bands,
# restrict your analysis to those bands (as constrained by available sedimentation
# rate estimates and the frequency resolution of the spectrum). in the example below,
# the mtm bandwidth resolution is employed to search frequencies nearby the
# Milankovitch-target periods.
flow=c((1/400)-0.003,(1/100)-0.003,(1/40)-0.003,(1/20)-0.003)
flow=c((1/400)+0.003,(1/100)+0.003,(1/40)+0.003,(1/20)+0.003)
multiTest(cb(spec,c(1,4)),flow=flow,fhigh=fhigh,output=FALSE)

# now try with the lowspec method. this uses prewhitening, so it has one less data point.
spec=lowspec(ex,padfac=1,flow=flow,fhigh=fhigh,output=FALSE)

# for comparison...
multiTest(cb(spec,c(1,4)),output=FALSE)
```

`mwCor`
Calculate moving window correlation coefficient for two stratigraphic series, using a 'dynamic window'
Description

Calculate moving window correlation coefficient for two stratigraphic series, using a 'dynamic window'. This routine adjusts the number of data points in the window so it has a constant duration in time or space, for use with unevenly sampled data.

Usage

mwCor(dat, cols=NULL, win=NULL, conv=1, cormethod=1, output=T, pl=1, genplot=T, verbose=T)

Arguments

dat Your data frame containing stratigraphic data; any number of columns (variables) are permitted, but the first column should be a location identifier (e.g., depth, height, time).

cols A vector that identifies the two variable columns to be extracted (first column automatically extracted).

win Moving window size in units of space or time.

conv Convention for window placement: (1) center each window on a stratigraphic level in 'dat' (DEFAULT), (2) start with the smallest location datum in 'dat', (3) start with the largest location datum in 'dat'. For options 2 and 3, the center of the window will not necessarily coincide with a measured stratigraphic level in 'dat', but edges of the data set are better preserved.

cormethod Method used for calculation of correlation coefficient (1=Pearson, 2=Spearman, 3=Kendall)

output Output results? (T or F)

pl (1) Plot results at center of window, or (2) create "string of points plot" as in Sageman and Hollander (1999)

genplot Generate summary plots? (T or F)

verbose Verbose output? (T or F)

References

Examples

generate example series
ex <- cycles(freqs=c(1/40,1/20),noisevar=.2)

add second variable
ex[3] <- cycles(freqs=c(1/40,1/20),noisevar=0.2)[2]

jitter sampling times
sort
Determine 'dynamic moving window' for stratigraphic series, adjusting for changing sample density to maintain a window of constant duration

Description

Determine start and end points for a moving window of fixed duration (e.g. 500 kiloyears). The dynamic window allows for adjustment of the number of data points in the window, so it has a constant duration in time or space.

Usage

```r
mwin(dat,win,conv=1,verbose=T)
```

Arguments

- **dat**: Your data frame containing stratigraphic data; any number of columns (variables) are permitted, but the first column should be a location identifier (e.g., depth, height, time).
- **win**: Moving window size in units of space or time.
- **conv**: Convention for window placement: (1) center each window on a stratigraphic level in 'dat' (DEFAULT), (2) start with the smallest location datum in 'dat', (3) start with the largest location datum in 'dat'. For options 2 and 3, the center of the window will not necessarily coincide with a measured stratigraphic level in 'dat', but edges of the data set are better preserved.
- **verbose**: Verbose output? (T or F)

Details

This algorithm steps forward one stratigraphic datum at a time. The output consists of:

- **Average**: this is the average of the depth/time values in the given window.
- **Center**: this is the center of the 'win' size window.
- **Midpoint**: this is midpoint between first and last observation in the window (for unevenly sampled data this is typically less than than the size of 'win').

Value

A data frame containing: Starting index for window, Ending index for window, Location (average), Location (center), Location (midpoint)
Examples

```r
# generate some noise
ex1 <- ar1(npts=50,dt=1)

# jitter sampling times

# sort
ex1 = ex1[order(ex1[,1],na.last=NA,decreasing=FALSE),]

# run mwin
mwin(ex1,win=10)
```

mwinGrid

Determine 'dynamic moving window' for stratigraphic series, adjusting for changing sample density to maintain a window of constant duration; output on evenly spaced grid

Description

Determine start and end points for a moving window of fixed duration (e.g. 500 kiloyears). The dynamic window allows for adjustment of the number of data points in the window, so it has a constant duration in time or space. This version will output an evenly spaced spatial/temporal grid.

Usage

```r
mwinGrid(dat,win,step,start=NULL,end=NULL,verbose=T)
```

Arguments

- **dat**
 - Your data frame containing stratigraphic data; any number of columns (variables) are permitted, but the first column should be a location identifier (e.g., depth, height, time).

- **win**
 - Moving window size in units of space or time.

- **step**
 - Step size for moving window, in units of space or time.

- **start**
 - Start moving window at what depth/height/time; by default will use first value

- **end**
 - End moving window at what depth/height/time; by default will use last value

- **verbose**
 - Verbose output? (T or F)

Details

This algorithm is similar to function mwin, but instead of stepping forward one stratigraphic datum at a time, it generates an evenly spaced spatial/temporal grid.

Value

A data frame containing: Starting index for window, Ending index for window, Location (center)
Examples

```r
# generate some noise
ex1 <- ar1(npts=50,dt=1)

# jitter sampling times

# sort
ex1 = ex1[order(ex1[,1],na.last=NA,decreasing=FALSE),]

# run mwin
mwinGrid(ex1,win=10,step=2)
```

mwMinMax

'Dynamic window' moving assessment of maxima and minima in stratigraphic series

Description

'Dynamic window' moving assessment of maxima and minima in stratigraphic series. This routine adjusts the number of data points in the window so it has a constant duration in time or space, for use with unevenly sampled data.

Usage

```r
mwMinMax(dat,cols=NULL,win=NULL,conv=1,output=T,genplot=T,verbose=T)
```

Arguments

dat: Your data frame containing stratigraphic data; any number of columns (variables) are permitted, but the first column should be a location identifier (e.g., depth, height, time).

cols: A vector that identifies the variable column to be extracted (first column automatically extracted).

win: Moving window size in units of space or time.

conv: Convention for window placement: (1) center each window on a stratigraphic level in 'dat' (DEFAULT), (2) start with the smallest location datum in 'dat', (3) start with the largest location datum in 'dat'. For options 2 and 3, the center of the window will not necessarily coincide with a measured stratigraphic level in 'dat', but edges of the data set are better preserved.

output: Output results? (T or F)

genplot: Generate summary plots? (T or F)

verbose: Verbose output? (T or F)

Value

A data frame with five columns: Center of window, Minimum, Maximum, Maximum-Minimum, Number of points in window.
mwStats

Dynamic window moving average, median and variance of stratigraphic series

Description

'Dynamic window' moving average, median and variance of stratigraphic series. This routine adjusts the number of data points in the window so it has a constant duration in time or space, for use with unevenly sampled data.

Usage

```r
mwStats(dat, cols=NULL, win=NULL, conv=1, ends=F, CI=0, output=T, genplot=T, verbose=T)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dat</code></td>
<td>Your data frame containing stratigraphic data; any number of columns (variables) are permitted, but the first column should be a location identifier (e.g., depth, height, time).</td>
</tr>
<tr>
<td><code>cols</code></td>
<td>A vector that identifies the variable column to be extracted (first column automatically extracted).</td>
</tr>
<tr>
<td><code>win</code></td>
<td>Moving window size in units of space or time.</td>
</tr>
<tr>
<td><code>conv</code></td>
<td>Convention for window placement: (1) center each window on a stratigraphic level in 'dat' (DEFAULT), (2) start with the smallest location datum in 'dat', (3) start with the largest location datum in 'dat'. For options 2 and 3, the center of the window will not necessarily coincide with a measured stratigraphic level in 'dat', but ends of the data set are better preserved. See options 'ends'.</td>
</tr>
<tr>
<td><code>ends</code></td>
<td>Assign average values to ends, by averaging data before first window, and averaging data after last window? (T or F; only applicable for conv=1)</td>
</tr>
<tr>
<td><code>CI</code></td>
<td>What confidence interval should be calculated for the average value (0-100 percent). If set to 0, the confidence interval calculation is skipped.</td>
</tr>
<tr>
<td><code>output</code></td>
<td>Output results? (T or F)</td>
</tr>
<tr>
<td><code>genplot</code></td>
<td>Generate summary plots? (T or F)</td>
</tr>
<tr>
<td><code>verbose</code></td>
<td>Verbose output? (T or F)</td>
</tr>
</tbody>
</table>

Examples

```r
# generate example series from ar1 noise, 5 kyr sampling interval
ex = ar1(npts=1001, dt=5)

# jitter sampling times

# sort
ex = ex[order(ex[,1], na.last=NA, decreasing=FALSE),]

# run mwStats
mwMinMax(ex, win=100)
```
Details

If conv=1 is selected, the edges of the record are determined using a smaller window size. A constant value is assigned based on the observed values within the first and last 0.5*win of the record.

Value

A data frame with five or six columns: Center of window, Average, Median, Variance, Number of points in window. If CI>0, the sixth column is the value used to determine the confidence interval (add and subtract it from the average).

Examples

```
# generate example series from ar1 noise, 5 kyr sampling interval
ex = ar1(npts=1001,dt=5)

# jitter sampling times
# sort
ex = ex[order(ex[,1],na.last=NA,decreasing=FALSE),]

# run mwStats
mwStats(ex,win=100)
```

```
# 'Dynamic window' moving average, median and variance of stratigraphic series, using evenly spaced spatial/temporal grid

Description

'Dynamic window’ moving average, median and variance of stratigraphic series. This routine adjusts the number of data points in the window so it has a constant duration in time or space, for use with unevenly sampled data. The results are output on an evenly spaced spatial/temporal grid (this contrasts with mwStats).

Usage

```
mwStatsGrid(dat,cols=NULL,win=NULL,step=NULL,start=NULL,end=NULL,output=T,norm=F,
 palette=6,ncolors=100,genplot=1,verbose=T)
```

Arguments

dat    Your data frame containing stratigraphic data; any number of columns (variables) are permitted, but the first column should be a location identifier (e.g., depth, height, time).
cols   A vector that identifies the variable column to be extracted (first column automatically extracted).
noKernel

Moving window size, in units of space or time.

step

Moving window step size, in units of space or time.

start

Starting point for analysis, in units of space or time.

dead

Ending point for analysis, in units of space or time.

norm

Normalize density estimates to maximum value? (T or F). If false, density estimates are normalized to unit area.

output

Output results? (T or F)

palette

What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red, (6) viridis

ncolors

Number of colors to use in plot.

genplot

Generate summary plots? (0=none, 1=all time series, 2=kernel density estimates for each window, 3=kernel density estimates with median, 4=kernel density estimates with mean)

verbose

Verbose output? (T or F)

Value

A data frame with four columns: Center of window, Average, Median, Variance

Examples

# generate example series from AR1 noise, 5 kyr sampling interval
ex = ar1(npts=1001,dt=5)

# jitter sampling times
# sort
ex = ex[order(ex[,1],na.last=NA,decreasing=FALSE),]

# run mwStats
mwStatsGrid(ex,win=100)

Description

Estimate trend and remove from stratigraphic series using a Gaussian kernel smoother

Usage
	noKernel(dat,smooth=0.1,sort=F,output=1,genplot=T,verbose=T)
Arguments

dat  Stratigraphic series for smoothing. First column should be location (e.g., depth), second column should be data value.
smooth  Degree of smoothing with a Gaussian kernel (0 = no smoothing); for a value of 0.5, the kernel is scaled so that its quartiles (viewed as prob densities) are at +/- 25 percent of the data series length. Must be > 0.
sort  Sort data into increasing depth (required for ksmooth)? (T or F)
output  1= output residual values; 2= output Gaussian kernel smoother.
genplot  Generate summary plots? (T or F)
verbose  Verbose output? (T or F)

See Also

bandpass, lowpass, noLow, prewhiteAR, and prewhiteAR1

Description

Fit and remove Lowess smoother from stratigraphic series

Usage

noLow(dat, smooth=.20, output=1, genplot=T, verbose=T)

Arguments

dat  Stratigraphic series for lowess smoother removal. First column should be location (e.g., depth), second column should be data value.
smooth  Lowess smoothing parameter.
output  1= output residual values; 2= output lowess fit
genplot  Generate summary plots? (T or F)
verbose  Verbose output? (T or F)

See Also

bandpass, lowpass, noKernel, prewhiteAR, and prewhiteAR1
**pad**

*Pad stratigraphic series with zeros ("zero padding")*

**Usage**

pad(dat, zeros, genplot=T, verbose=T)

**Arguments**

- dat: Stratigraphic series for mean removal. First column should be location (e.g., depth), second column should be data value.
- zeros: Number of zeros to add on the end of the series. By default, the number of points will be doubled.
- genplot: Generate summary plots? (T or F)
- verbose: Verbose output? (T or F)

**peak**

*Identify maxima of peaks in series, filter at desired threshold value*

**Description**

Identify maxima of peaks in any 1D or 2D series, filter at desired threshold value.

**Usage**

peak(dat, level, plateau=F, genplot=T, verbose=T)

**Arguments**

- dat: 1 or 2 dimensional series. If 2 dimensions, first column should be location (e.g., depth), second column should be data value.
- level: Threshold level for filtering peaks. By default all peak maxima reported.
- plateau: Output plateau points not evaluated? If T, identified peaks will not be output. (T or F)
- genplot: Generate summary plots? (T or F)
- verbose: Verbose output? (T or F)

**Examples**

```r
ex=cycles(genplot=FALSE)
peak(ex, level=0.02)
```
periodogram

periodogram

Simple periodogram

Description

Calculate periodogram for stratigraphic series

Usage

periodogram(dat, padfac=2, demean=T, detrend=F, nrm=1, background=0, output=0, f0=F, fNyq=T, xmin=0, xmax=Nyq, pl=1, genplot=T, verbose=T)

Arguments

dat Stratigraphic series to analyze. First column should be location (e.g., depth), second column should be data value.

padfac Pad with zeros to (padfac*npts) points, where npts is the original number of data points. padfac will automatically promote the total padded series length to an even number, to ensure the Nyquist frequency is calculated. However, if padfac is set to 0, no padding will be implemented.

demean Remove mean from data series? (T or F)

detrend Remove linear trend from data series? (T or F)

nrm Power normalization: 0 = no normalization; 1 = divide Fourier transform by npts.

background Estimate noise model background spectrum and confidence levels? (0= No, 1= AR1, 2= Power Law)

output Return output as new data frame? (0= no; 1= frequency, amplitude, power, phase (+ background fit and confidence levels, if background selected); 2= frequency, real coeff., imag. coeff)

f0 Return results for the zero frequency? (T or F)

fNyq Return results for the Nyquist frequency? (T or F)

xmin Smallest frequency for plotting.

xmax Largest frequency for plotting.

pl Power spectrum plotting: 1 = log power, 2 = linear power

genplot Generate summary plots? (T or F)

verbose Verbose output? (T or F)

See Also

mtm and lowspec
Examples

# ***** PART 1: Demonstrate the impact of tapering
# generate example series with 10 periods: 100, 40, 29, 19, 14, 10, 5, 4 and 3 ka.
ex=cycles(c(1/100,1/40,1/29,1/21,1/19,1/14,1/10,1/5,1/4,1/3),amp=c(1,.75,0.01,.5,.25,
0.01,0.1,0.05,0.001,0.01))

# set zero padding amount for spectral analyses
# (pad= 1 results in no zero padding, pad = 2 will pad the series to two times its original length)
# start with pad = 1, then afterwards evaluate pad=2
pad=1

# calculate the periodogram with no tapering applied (a "rectangular window")
res=periodogram(ex,output=1,padfac=pad)

# save the frequency grid and the power for plotting
freq=res[,1]
pwr_rect=res[,3]

# now compare with results obtained after applying four different tapers:
# Hann, 30% cosine taper, DPSS with a time-bandwidth product of 1, and DPSS
# with a time-bandwidth product of 3
pwr_hann=periodogram(hannTaper(ex,demean=FALSE),output=1,padfac=pad)[3]
pwr_cos=periodogram(cosTaper(ex,p=.3,demean=FALSE),output=1,padfac=pad)[3]
pwr_dpss1=periodogram(dpssTaper(ex,tbw=1,demean=FALSE),output=1,padfac=pad)[3]
pwr_dpss3=periodogram(dpssTaper(ex,tbw=3,demean=FALSE),output=1,padfac=pad)[3]

# now plot the results
ymin=min(rbind(log(pwr_rect[,1]),log(pwr_hann[,1]),log(pwr_cos[,1]),log(pwr_dpss1[,1]),
log(pwr_dpss3[,1])))
ymax=max(rbind(log(pwr_rect[,1]),log(pwr_hann[,1]),log(pwr_cos[,1]),log(pwr_dpss1[,1]),
log(pwr_dpss3[,1])))

plot(freq[,1],log(pwr_rect[,1]),type="l",ylim=c(ymin,ymax),lwd=2,ylab="log(Power)",
xlab="Frequency (cycles/ka)",
main="Comparison of rectangle (black), cosine (blue) and Hann (orange) taper",
cex.main=1)
lines(freq[,1],log(pwr_hann[,1]),col="orange",lwd=2)
lines(freq[,1],log(pwr_cos[,1]),col="blue")
points(c(1/100,1/40,1/29,1/21,1/19,1/14,1/10,1/5,1/4,1/3),rep(ymax,10),cex=.5,
col="purple")

plot(freq[,1],log(pwr_rect[,1]),type="l",ylim=c(ymin,ymax),lwd=2,ylab="log(Power)",
xlab="Frequency (cycles/ka)",
main="Comparison of rectangle (black), 1pi DPSS (green) and 3pi DPSS (red) taper",
cex.main=1)
lines(freq[,1],log(pwr_dpss1[,1]),col="green")
lines(freq[,1],log(pwr_dpss3[,1]),col="red",lwd=2)
points(c(1/100,1/40,1/29,1/21,1/19,1/14,1/10,1/5,1/4,1/3),rep(ymax,10),cex=.5,
col="purple")
# ***** PART 2: Now add a very small amount of red noise to the series  
# (with lag-1 correlation = 0.5)

ex2 = ex

# compare the original series with the series+noise

plot(ex, type = "l", lwd = 2, lty = 3, col = "black", xlab = "time (ka)", ylab = "signal", 
    main = "signal (black dotted) and signal+noise (red)"); lines(ex2, col = "red")

plot(ex[, 1], ex2[, 2] - ex[, 2], xlab = "time (ka)", ylab = "difference", 
    main = "Difference between the two time series (very small!")

# calculate the periodogram with no tapering applied (a "rectangular window")

res.2 = periodogram(ex2, output = 1, padfac = pad)

# save the frequency grid and the power for plotting

freq.2 = res.2[1]
pwr_rect.2 = res.2[3]

# now compare with results obtained after applying four different tapers:
# Hann, 30% cosine taper, DPSS with a time-bandwidth product of 1, and DPSS
# with a time-bandwidth product of 3

pwr_hann.2 = periodogram(hannTaper(ex2, demean = FALSE), output = 1, padfac = pad)[3]
pwr_cos.2 = periodogram(cosTaper(ex2, p = .3, demean = FALSE), output = 1, padfac = pad)[3]
pwr_dpss1.2 = periodogram(dpssTaper(ex2, tbw = 1, demean = FALSE), output = 1, padfac = pad)[3]
pwr_dpss3.2 = periodogram(dpssTaper(ex2, tbw = 3, demean = FALSE), output = 1, padfac = pad)[3]

# now plot the results

ymin = min(rbind(log(pwr_rect.2[, 1]), log(pwr_hann.2[, 1]), log(pwr_cos.2[, 1]), 
    log(pwr_dpss1.2[, 1]), log(pwr_dpss3.2[, 1])))
ymax = max(rbind(log(pwr_rect.2[, 1]), log(pwr_hann.2[, 1]), log(pwr_cos.2[, 1]), 
    log(pwr_dpss1.2[, 1]), log(pwr_dpss3.2[, 1])))

plot(freq.2[, 1], log(pwr_rect.2[, 1]), type = "l", ylim = c(ymin, ymax), lwd = 2, ylab = "log(Power)", 
    xlab = "Frequency (cycles/ka)", main = "Comparison of rectangle (black), cosine (blue) and Hann (orange) taper", cex.main = 1)

lines(freq.2[, 1], log(pwr_hann.2[, 1]), col = "orange", lwd = 2)
lines(freq.2[, 1], log(pwr_cos.2[, 1]), col = "blue")
points(c(1/100, 1/40, 1/29, 1/19, 1/14, 1/10, 1/5, 1/4, 1/3), rep(ymax, 10), cex = .5, 
    col = "purple")

plot(freq.2[, 1], log(pwr_dpss1.2[, 1]), type = "l", ylim = c(ymin, ymax), lwd = 2, ylab = "log(Power)", 
    xlab = "Frequency (cycles/ka)", main = "Comparison of rectangle (black), 1pi DPSS (green) and 3pi DPSS (red) taper", cex.main = 1)

lines(freq.2[, 1], log(pwr_dpss1.2[, 1]), col = "green")
lines(freq.2[, 1], log(pwr_dpss3.2[, 1]), col = "red", lwd = 2)
points(c(1/100, 1/40, 1/29, 1/21, 1/19, 1/14, 1/10, 1/5, 1/4, 1/3), rep(ymax, 10), cex = .5, 
    col = "purple")

# ***** PART 3: Return to PART 1, but this time increase the zero padding to 2 (pad=2)
\texttt{pl} \hspace{1cm} \textit{Set up plots}

\textbf{Description}

Open new device and set up for multiple plots, output to screen or PDF if desired.

\textbf{Usage}

\texttt{pl(n,r,c,h,w,mar,file,title)}

\textbf{Arguments}

\begin{itemize}
  \item \textbf{n} \hspace{1cm} Number of plots per page (1-25). When specified, this parameter takes precedence and the default settings for \textit{r} and \textit{c} are used (the \textit{r} and \textit{c} options below are ignored).
  \item \textbf{r} \hspace{1cm} Number of rows of plots.
  \item \textbf{c} \hspace{1cm} Number of columns of plots.
  \item \textbf{h} \hspace{1cm} Height of new page (a.k.a. "device").
  \item \textbf{w} \hspace{1cm} Width of new page (a.k.a. "device").
  \item \textbf{mar} \hspace{1cm} A numerical vector of the form c(bottom, left, top, right) which gives the margin size specified in inches.
  \item \textbf{file} \hspace{1cm} File name, in quotes. Accepted file formats include .pdf, .jpg, .png, .tiff, .bmp; the format must be indicated using the appropriate filename extension at the end of the file name. If a file name is not designated, the plot is output to the screen instead.
  \item \textbf{title} \hspace{1cm} Plot title (must be in quotes)
\end{itemize}

\texttt{plotEha} \hspace{1cm} \textit{Create color time-frequency plots from eha results.}

\textbf{Description}

Create color time-frequency plots from eha results.

\textbf{Usage}

\texttt{plotEha(spec,xmin,xmax,ymin,ymax,h=6,w=4,ydir=1,pl=0,norm,palette=6,centerZero=T,ncolors=100,colors=0,xlab,ylab,filetype=0,output=T,verbose=T)}
Arguments

spec Time-frequency spectral results to evaluate. Must have the following format: column 1=frequency; remaining columns (2 to n)=power, amplitude or probability; titles for columns 2 to n must be the location (depth or height). Note that this format is ouput by function eha.

xmin Minimum frequency for PLOTTING.
xmax Maximum frequency for PLOTTING.
ymin Minimum depth/height for PLOTTING.
ymax Maximum depth/height for PLOTTING.
h Height of plot in inches.
w Width of plot in inches.
ydir Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards.
pl An option for the color plots (0=linear scale; 1=plot log of value [useful for plotting power], 2=normalize to maximum value in each window [useful for plotting amplitude], 3=use normalization provided in norm.
norm Optional amplitude normalization divisor, consisting of a single column dataframe. This option is provided in case you’d like to normalize a set of EHA results using the same scheme (e.g., before and after removal of spectral lines).
palette What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red (if values are negative and positive, white is centered on zero), (6) viridis
centerZero Center color scale on zero (use an equal number of postive and negative color divisions)? (T or F)
colorscale Number of colors steps to use in palette.
filetype Generate .pdf, .jpeg, .png or tiff file? (0=no; 1=pdf; 2=jpeg; 3=png; 4=tiff)
output If amplitude is normalized (pl = 2), output normalization used? (T or F)
verbose Verbose output? (T or F)

Examples

```r
as an example, evaluate the modelA
data(modelA)

interpolate to even sampling interval of 0.075 m
ex1=linterp(modelA, dt=0.075)

perform EHA with a time-bandwidth parameter of 2, using an 7.95 meter window, 0.15 m step, ## and pad to 1000 points, output amplitude
res=eha(ex1,tbw=2,win=7.95,step=0.15,pad=1000,genplot=0,output=3)

plot EHA amplitude, normalized to maximum value in each window
plotEha(res,xlab="Frequency (cycles/m)",ylab="Height (m)",pl=2)
```
### plS

Set default plotting parameters for vertical stratigraphic plots

**Description**
Set default plotting parameters for vertical stratigraphic plots. This is usually invoked after function `pl`.

**Usage**

```r
plS(f=T, s=1)
```

**Arguments**

- `f` Are you plotting the first (leftmost) stratigraphic plot? (T or F)
- `s` Size of the symbols and text on plot. Default = 1

### prewhiteAR

Prewhiten stratigraphic series with autoregressive filter, order selected by Akaike Information Criterion

**Description**
Prewhiten stratigraphic series using autoregressive (AR) filter. Appropriate AR order can be automatically determined using the Akaike Information Criterion, or alternatively, the order may be predefined.

**Usage**

```r
prewhiteAR(dat, order=0, method="mle", aic=T, genplot=T, verbose=T)
```

**Arguments**

- `dat` Stratigraphic series for prewhitening. First column should be location (e.g., depth), second column should be data value for prewhitening. Series must have uniform sampling interval.
- `order` AR order for prewhitening (if `aic=F`), or alternatively, the maximum AR order to investigate (if `aic=T`). If order is set to <=0, will evaluate up to maximum default order (this varies based on method).
- `aic` Select model using AIC? if F, will use order. AIC is only strictly valid if method is "mle".
- `genplot` Generate summary plots? (T or F)
- `verbose` Verbose output? (T or F)
References


See Also

`ar`, `arcsinT`, `bandpass`, `demean`, `detrend`, `divTrend`, `logT`, `lowpass`, `noKernel`, and `prewhiteAR1`

---

**prewhiteAR1**

*Prewhiten stratigraphic series with AR1 filter, using 'standard' or unbiased estimate of rho*

**Description**

Prewhiten stratigraphic series using autoregressive-1 (AR1) filter. Rho can be estimated using the 'standard' approach, or following a bias correction.

**Usage**

```r
prewhiteAR1(dat,setrho=NULL,bias=F,genplot=T,verbose=T)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dat</code></td>
<td>Stratigraphic series for prewhitening. First column should be location (e.g., depth), second column should be data value for prewhitening. Series must have uniform sampling interval.</td>
</tr>
<tr>
<td><code>setrho</code></td>
<td>Specified lag-1 correlation coefficient (rho). By default, rho is calculated.</td>
</tr>
<tr>
<td><code>bias</code></td>
<td>Calculate unbiased estimate of rho, as in Mudelsee (2010, eq. 2.45). (T or F)</td>
</tr>
<tr>
<td><code>genplot</code></td>
<td>Generate summary plots? (T or F)</td>
</tr>
<tr>
<td><code>verbose</code></td>
<td>Verbose output? (T or F)</td>
</tr>
</tbody>
</table>

**References**


See Also

`arcsinT`, `bandpass`, `demean`, `detrend`, `divTrend`, `logT`, `lowpass`, `noKernel`, and `prewhiteAR`
**pwrLaw**

*Generate power law (1/f) noise surrogates*

**Description**

Generate power law (1/f) noise surrogates, following the algorithm of Timmer and Konig (1995).

**Usage**

```r
pwrLaw(npts=1024, dt=1, mean=0, sdev=1, beta=2, fcut=0, nsim=1, genplot=T, verbose=T)
```

**Arguments**

- `npts`: number of data points for 1/f surrogate time series
- `dt`: sampling interval
- `mean`: mean value for 1/f surrogate series
- `sdev`: standard deviation for 1/f surrogate series
- `beta`: power law coefficient. Positive number will yield a negative slope.
- `fcut`: frequency cutoff: below this frequency a plateau will be modeled. Set to zero (default) for no plateau.
- `nsim`: Number of surrogate series to generate
- `genplot`: generate summary plots (T or F)
- `verbose`: verbose output (T or F)

**Details**

These simulations use the random number generator of Matsumoto and Nishimura (1998). Power law noise series are generated following the algorithm of Timmer and Konig (1995).

**References**


Estimate power law (1/f) fit to power spectrum

**Description**

Estimate power law (1/f) fit to power spectrum, following the algorithm of Vaughan (2005).

**Usage**

```r
pwrLawFit(spec,dof=2,flow=NULL,fhigh=NULL,output=1,genplot=T,verbose=T)
```

**Arguments**

- `spec`: Power spectrum. First column is frequency, second column is raw power (linear). Do not include the zero frequency and Nyquist.
- `dof`: Degrees of freedom for power spectral estimate. Default is 2, for a simple periodogram.
- `flow`: Lowest frequency to include in 1/f fit
- `fhigh`: Highest frequency to include in 1/f fit
- `output`: Output results of 1/f fit? (0=none; 1=Frequency,Power,Power Law CL,Unbiased Power Law fit,CL_90,CL_95,CL_99; 2=beta, unbiased log10N, biased log10N)
- `genplot`: generate summary plots (T or F)
- `verbose`: verbose output (T or F)

**References**


**Examples**

```r
generate example series with periods of 400 ka, 100 ka, 40 ka and 20 ka
ex = cycles(freqs=c(1/400,1/100,1/40,1/20),start=1,end=1000,dt=5)

add AR1 noise
ox = ar1(npts=200,dt=.5)
ex2 = ex2 + noise2

calculate periodogram
res=periodogram(ex,output=1,padfac=1)

extract power and remove the Nyquist frequency
resPwr=cb(res,c(1,3))
resPwr=resPwr[-length(resPwr[,1]),]

pwrLawFit(resPwr)
```
rankSeries

Create lithofacies rank series from bed thickness data

Description

Create lithofacies rank series from bed thickness data.

Usage

rankSeries(dat, dt, genplot = T, verbose = T)

Arguments

dat
First column should be bed thickness, and second column should be bed lithofacies rank.

dt
Sampling interval for piecewise linear interpolation. By default a grid spacing that is 5 times smaller than the thinnest bed is used. If dt is set to zero, interpolation is skipped.

genplot
Generate summary plots? (T or F)

verbose
Verbose output? (T or F)

Examples

# generate example series with random bed thicknesses
exThick = rnorm(n = 20, mean = 10, sd = 2)
# assign alternating rank of 1 and 2
rank = double(20)
rank[seq(from = 1, to = 19, by = 2)] <- 1
rank[seq(from = 2, to = 20, by = 2)] <- 2

# combine into a dataframe
ex = cb(exThick, rank)

# generate lithofacies rank series
rankSeries(ex)

read

Read data from file

Description

Read stratigraphic data series from a file, either tab-delimited, CSV, or semicolon-delimited. First column MUST contain location data (depth, height, time). The function will remove missing entries, sort by location, average duplicate values, and generate summary plots.
readMatrix

Usage

read(file=NULL,d=1,h="auto",skip=0,srt=T,ave=T,check=T,genplot=T,verbose=T)

Arguments

file An optional file name, which must be in quotes (use the full directory path if the file is not in your present working directory). When a file name is not specified (the default), the file will be selected using a graphical user interface.
d What column delimiter is used? (0 = tab/.txt, 1 = comma/.csv, 2 = semicolon). CSV is the default option, which interfaces well with EXCEL.
h Does the data file have column titles/headers? ("yes", "no", "auto"). "auto" will auto detect column titles/headers, which must be single strings and start with a character.
skip Number of lines to skip before beginning to read file
srt Sort data values by first column? (T or F)
ave Average duplicate values? (T or F). Only applies if input file has 2 columns
check Check for sorting, duplicates, and empty entries in the data frame? (T or F). If set to F, sorting, duplicate averaging and empty entry removal are disabled.
genplot generate summary plots (T or F).
verbose Verbose output? (T or F).

Details

Missing values (in the file that you are reading from) should be indicated by 'NA'. If you have included characters in the column titles that are not permitted by R, they will be modified!

readMatrix  Read data matrix from file

Description

Read data matrix from a file, either tab-delimited, CSV, or semicolon-delimited.

Usage

readMatrix(file=NULL,d=1,h="auto",skip=0,output=1,check=T,genplot=F,verbose=T)

Arguments

file An optional file name, which must be in quotes (use the full directory path if the file is not in your present working directory). When a file name is not specified (the default), the file will be selected using a graphical user interface.
d What column delimiter is used? (0 = tab/.txt, 1 = comma/.csv, 2 = semicolon). CSV is the default option, which interfaces well with EXCEL.
**repl0**

Does the data file have column titles/headers? ("yes", "no", "auto"). "auto" will auto detect column titles/headers, which must be single strings and start with a character.

**skip**

Number of lines to skip before beginning to read file

**output**

Return data as: 1= matrix, 2=data frame

**check**

Check for empty entries in the matrix? (T or F).

**genplot**

Generate summary plots (T or F).

**verbose**

Verbose output? (T or F).

### Details

Missing values (in the file that you are reading from) should be indicated by 'NA'. If you have included characters in the column titles that are not permitted by R, they will be modified!

---

**repl0**

*Replace values < 0 with 0*

### Description

Replace all variable values < 0 with 0. If first column is location ID (depth/height/time), it will not be processed. Any number of variables (columns) permitted.

### Usage

repl0(dat,ID=T,genplot=T,verbose=T)

### Arguments

dat

Data series to process. If location is included (e.g., depth), it should be in the first column.

ID

Is a location ID included in the first column? (T or F)

genplot

Generate summary plots? (T or F)

verbose

Verbose output? (T or F)
replEps

*Replace values <= 0 with smallest positive value*

**Description**

Replace all variable values <= 0 with the smallest positive floating-point number (eps) that can be represented on machine. If first column is location ID (depth/height/time), it will not be processed. Any number of variables (columns) permitted.

**Usage**

```r
replEps(dat,ID=T,genplot=T,verbose=T)
```

**Arguments**

- **dat** Data series to process. If location is included (e.g., depth), it should be in the first column.
- **ID** Is a location ID included in the first column? (T or F)
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)

---

resample

*Resample stratigraphic series*

**Description**

Resample a stratigraphic series using a new (variably sampled) time or space axis. Values are piecewise-linearly interpolated from original data.

**Usage**

```r
resample(dat,xout,genplot=T,verbose=T)
```

**Arguments**

- **dat** Stratigraphic series for resampling. First column should be location (e.g., depth), second column should be data value.
- **xout** Vector of new sampling locations.
- **genplot** Generate summary plots? (T or F)
- **verbose** Verbose output? (T or F)
**rmNA**  
*Remove stratigraphic levels that contain one or more NAs*

**Description**

Remove stratigraphic levels that contain one or more NAs.

**Usage**

```
rmNA(dat, genplot=T, verbose=T)
```

**Arguments**

- `dat`: Data series to process. If location is included (e.g., depth), it should be in the first column.
- `genplot`: Generate summary plots? (T or F)
- `verbose`: Verbose output? (T or F)

**s**  
*Standardize variable in stratigraphic series*

**Description**

Standardize variable in stratigraphic series (subtract mean value and divide by standard deviation)

**Usage**

```
s(dat, genplot=F, verbose=T)
```

**Arguments**

- `dat`: Stratigraphic series for standardization. First column should be location (e.g., depth), second column should be data value.
- `genplot`: Generate summary plots? (T or F)
- `verbose`: Verbose output? (T or F)
Description

Apply a linearly increasing (or decreasing) sedimentation rate model to convert time to stratigraphy.

Usage

```r
sedRamp(dat,srstart=0.01,srend=0.05,genplot=T,verbose=T)
```

Arguments

dat
  Time series. First column should be time (in ka), second column should be data value.
srstart
  Initial sedimentation rate (in m/ka).
srend
  Final sedimentation rate (in m/ka).
genplot
  Generate summary plots? (T or F)
verbose
  Verbose output? (T or F)

Value

modeled stratigraphic series.

Examples

```
generate example series with 3 precession terms using function 'cycles'
then convert from time to space using sedimentation rate that increases from 1 to 7 cm/ka
ex=sedRamp(cycles(),srstart=0.01,srend=0.07)
```

Description

Integrate sedimentation rate curve to obtain time-space map.

Usage

```r
sedrate2time(sedrates,timdir=1,genplot=T,check=T,verbose=T)
```
**slideCor**

Identify optimal spatial/temporal shift to maximize correlation between two stratigraphic/time series.

### Arguments

- **sedrates**: Data frame containing depth/height in first column (meters) and sedimentation rates in second column (cm/ka).
- **timedir**: Floating time scale direction: 1= time increases with depth/height; 2= time decreases with depth/height.
- **genplot**: Generate summary plots? (T or F)
- **check**: Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.
- **verbose**: Verbose output? (T or F)

**Usage**

```
slideCor(dat1, dat2, rev=F, cormethod=1, minpts=NULL, detrend=F, rmin=NULL, output=T, genplot=T, verbose=T)
```

**Arguments**

- **dat1**: Stratigraphic series 1. First column should be location (e.g., depth), second column should be data value.
- **dat2**: Stratigraphic series 2. First column should be location (e.g., depth), second column should be data value.
- **rev**: Reverse polarity of stratigraphic series 2 (multiply proxy data value by -1)? (T or F)
- **cormethod**: Method used for calculation of correlation coefficient (1=Pearson, 2=Spearman rank, 3=Kendall)
- **minpts**: Minimum number of data points for calculation of correlation coefficient.
- **detrend**: Remove linear trend from each window? (T or F)
- **rmin**: Minimum r and r^2 value shown on plots. By default all r and r^2 values will be displayed.
- **output**: Output correlation coefficient results as a dataframe? (T or F)
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)
Details

slideCor is a general purpose tool to identify the optimal spatial/temporal correlation between two data sets. A few example applications include: (1) stratigraphic correlation of data series from two locations (as in Preto et al., 2004), (2) identification of the optimal spatial/temporal lag between two variables from the same site, and (3) identification of the optimal fit between a floating astrochronology and astronomical target (e.g., Mitchell et al., 2008).

Both series must be evenly sampled, but are not required to have the same sampling interval. If stratigraphic series of different duration/length are being compared, the shift (in spatial or temporal units) should be interpreted as the location within the longer stratigraphic series where the shorter stratigraphic series begins. If both stratigraphic series are of the same duration/length, then the shift is the location within dat1 where dat2 begins.

In some cases, it may be desirable to smooth or bandpass the data series before implementing slideCor (e.g., functions noLow, noKernel, bandpass, taner, etc.).

References


See Also

surrogateCor

Examples

# Example 1: generate AR1 noise
ex1 <- ar1(npts=1000,dt=1)
# isolate a section
ex2 <- iso(ex1,xmin=200,500)
ex2$[1] <- ex2$[1]-200
res=slideCor(ex1,ex2)

# Example 2: an astronomical signal
ex1=etp(tmin=0,tmax=1000)
# isolate a 200 ka section
ex2=iso(ex1,xmin=400,xmax=600)
# convert to a floating timescale (elapsed time)
ex2$[1] <- ex2$[1]-400
res=slideCor(ex1,ex2)
**sortNave**

*Remove missing entries, sort data, average duplicates*

**Description**

Sort and average duplicates in stratigraphic series, as performed in 'read' function.

**Usage**

```r
sortNave(dat, sortDecr=F, ave=T, xmin=NULL, xmax=NULL, genplot=1, verbose=T)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>Stratigraphic series for processing. First column should be location (e.g., depth), second column should be data value.</td>
</tr>
<tr>
<td>sortDecr</td>
<td>Sorting direction? (F=increasing, T=decreasing)</td>
</tr>
<tr>
<td>ave</td>
<td>Average duplicate values? (T or F)</td>
</tr>
<tr>
<td>xmin</td>
<td>Minimum x-axis value for plotting</td>
</tr>
<tr>
<td>xmax</td>
<td>Maximum x-axis value for plotting</td>
</tr>
<tr>
<td>genplot</td>
<td>Generate summary plots? 0=none, 1=stratigraphic series, distribution, box plot, Q-Q, 2=stratigraphic series</td>
</tr>
<tr>
<td>verbose</td>
<td>Verbose output? (T or F)</td>
</tr>
</tbody>
</table>

**stepHeat**

*Ar/Ar Geochronology: Generate an Ar/Ar age spectrum and calculate step-heating plateau age.*

**Description**

The stepHeat function will evaluate data from stepwise heating experiments, producing an Ar/Ar age spectrum, a weighted mean age with uncertainty, and other helpful statistics/plots (with interactive graphics for data culling). The function includes the option to generate results using the approach of IsoPlot 3.70 (Ludwig, 2008) or ArArCALC (Koppers, 2002).

**Usage**

```r
stepHeat(dat, unc=1, lambda=5.463e-10, J=NULL, Jsd=NULL, CI=2, cull=-1, del=NULL, output=F, idPts=T, size=NULL, unit=1, setAr=95, color="black", genplot=T, verbose=T)
```
Arguments

dat  
dat must be a data frame with seven columns, as follows: (1) %Ar39 released,  
      (2) date, (3) date uncertainty (one or two sigma), (4) K/Ca, (5) %Ar40*, (6) F,  
      and (7) F uncertainty (one or two sigma). NOTE: F is the ratio Ar40*/Ar39K  
      (see Koppers, 2002).

unc  
What is the uncertainty on your input dates? (1) one sigma, or (2) two sigma.  
DEFAULT is one sigma. This also applies to the F uncertainty, and the J-value  
uncertainty (if specified)

lambda  
Total decay constant of K40, in units of 1/year. The default value is 5.463e-10/year (Min et al., 2000).

J  
Neutron fluence parameter

Jsd  
Uncertainty for J-value (neutron fluence parameter; as one or two sigma)

CI  
Which convention would you like to use for the 95% confidence intervals? (1)  
ISOPLOT (Ludwig, 2008), (2) ArArCALC (Koppers, 2002)

cull  
Would you like select dates with a graphical interface? (0=no, 1=select points  
to retain, -1=select points to remove)

del  
A vector of indices indicating dates to remove from weighted mean calculation.  
If specified, this takes precedence over cull.

output  
Return weighted mean results as new data frame? (T or F)

idPts  
Identify datum number on each point? (T or F)

size  
Multiplicative factor to increase or decrease size of symbols and fonts. The  
default is 1.4

unit  
The time unit for your results. (1) = Ma, (2) = Ka

setAr  
Set the %Ar40* level to be illustrated on the plot. The default is 95%.

color  
Color to use for symbols. Default is black.

genplot  
Generate summary plots? (T or F)

verbose  
Verbose output? (T or F)

Details

This function performs weighted mean age calculations for step-heating data, including estimation  
of age uncertainties, mean square weighted deviation, and probability of fit.

The following plots are produced:

(1) %Ar40* versus %Ar39 released
(2) K/Ca versus %Ar39 released
(3) Ar/Ar age spectrum, with 2 sigma uncertainties for each step, and weighted mean with 95%  
confidence interval (in red)

If the J-value and its uncertainty are input, stepHeat will calculate and include the uncertainty  
associated with J. The uncertainty is calculated and propagated following equation 18 of Koppers  
(2002).

A NOTE regarding confidence intervals: There are two conventions that can be used to calculate  
the confidence intervals, selected with the option 'CI':
(1) ISOPLOT convention (Ludwig, 2008). When the probability of fit is >= 0.15, the confidence interval is based on 1.96*sigma. When the probability of fit is < 0.15, the confidence interval is based on t*sigma*sqrt(MSWD).

(2) ArArCALC convention (Koppers, 2002). When MSWD <=1, the confidence interval is based on 1.96*sigma. When MSWD > 1, the confidence interval is based on 1.96*sigma*sqrt(MSWD).

ADDITIONAL ADVICE: Use the function readMatrix to load your data in R (rather than the function read).

References

See Also
wtMean

Examples
## Not run:
# Check to see if this is an interactive R session, for compliance with CRAN standards.
# YOU CAN SKIP THE FOLLOWING LINE IF YOU ARE USING AN INTERACTIVE SESSION.
if(interactive()) {

# Sample MT-09-09 incremental heating Ar/Ar data from Sageman et al. (2014).
perAr39 <- c(4.96,27.58,19.68,39.9,6.25,1.02,0.42,0.19)
age <- c(90.08,89.77,89.92,89.95,89.89,89.55,87.71,86.13)
sd <- c(0.18,0.11,0.08,0.06,0.14,0.64,1.5,3.22)
perAr40 <- c(93.42,99.42,99.64,99.79,99.61,97.99,94.64,90.35)
Fval <- c(2.148234,2.140643,2.144197,2.145006,2.143627,2.135163,2.090196,2.051682)
Fsd <- c(0.00439,0.00270,0.00192,0.00149,0.00331,0.01557,0.03664,0.07846)
ex <- data.frame(cbind(perAr39,age,sd,KCa,perAr40,Fval,Fsd))
stepHeat(ex)

# plot without points identified
stepHeat(ex,size=0,idPts=FALSE,cull=0)
}

strats

Summary statistics for stratigraphic series

Description

Summary statistics for stratigraphic series: sampling interval and proxy values.

Usage

strats(dat,output=0,genplot=1)

Arguments

dat
Stratigraphic series to evaluate. The first column should contain location (e.g., depth), and the second column should contain data value. This function also accepts non-stratigraphic (single column) input, in which case the sampling interval assessment is skipped.

output
Output: (0) nothing, (1) cumulative dt as percent of data points, (2) cumulative dt as percent of total interval duration, (3) dt by location

genplot
Generate summary plots? (0) none, (1) include plot of cumulative dt, (2) include dt histogram/density plot

Details

This function will generate a range of summary statistics for time series, including sampling interval information and the statistical distribution of proxy values.

surrogateCor

Estimate correlation coefficient and significance for serially correlated data

Description

Estimate correlation coefficient and significance for serially correlated data. This algorithm permits the analysis of data sets with different sampling grids, as discussed in Baddouh et al. (2016). The sampling grid from the data set with fewer points (in the common interval) is used for resampling. Resampling is conducted using piecewise-linear interpolation.

If either dat1 or dat2 have only one column, the resampling is skipped.

The significance of the correlation is determined using the method of Ebisuzaki W. (1997).

Usage

surrogateCor(dat1,dat2,firstDiff=F,cormethod=1,nsim=1000,output=2,genplot=T,verbose=T)
**Arguments**

- **dat1**: Data series with one or two columns. If two columns, first should be location (e.g., depth), second column should be data value.
- **dat2**: Data series with one or two columns. If two columns, first should be location (e.g., depth), second column should be data value.
- **firstDiff**: Calculate correlation using first differences? (T or F)
- **cormethod**: Method used for calculation of correlation coefficient (1=Pearson, 2=Spearman rank, 3=Kendall)
- **nsim**: Number of phase-randomized surrogate series to generate. If nsim <=1, simulation is deactivated.
- **output**: Return which of the following?: 1= correlation coefficients for each simulation; 2= correlation coefficient for data series; 3= data values used in correlation estimate (resampled)
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)

**Details**

Paraphrased from Baddouh et al. (2016): To provide a quantitative evaluation of the correlation between two data sets that do not share a common sampling grid, we introduce a statistical approach that employs sample interpolation, and significance testing with phase-randomized surrogate data (Ebisuzaki, 1997). The sparser sampling grid is used to avoid over-interpolation. Correlation is evaluated using Pearson, Spearman Rank, or Kendall rank coefficients. The statistical significance of the resulting correlation coefficients are estimated via Monte Carlo simulations using phase-randomized surrogates; the surrogates are subject to the same interpolation process, and compensate for potential serial correlation of data (Ebisuzaki, 1997).

The first-difference series of each variable can also evaluated, to assess correlation in the magnitude of change between sequential stratigraphic samples rather than absolute magnitude.

**References**


**See Also**

surrogates

**Examples**

```r
generate two stochastic AR1 series
ex1 <- ar1(npts=100,dt=5)
ex2 <- ar1(npts=100,dt=6)
```
surrogates

Generate phase-randomized surrogate series as in Ebisuzaki (1997).

Description
Generate phase-randomized surrogate series as in Ebisuzaki (1997).

Usage
surrogates(dat, nsim=1, preserveMean=T, std=T, genplot=T, verbose=T)

Arguments
dat Data series with one or two columns. If two columns, first should be location (e.g., depth), second column should be data value.
nsim Number of phase-randomized surrogate series to generate.
preserveMean Should surrogate series have the same mean value as data series? (T or F)
std Standardize results to guarantee equivalent variance as data series? (T or F)
genplot Generate summary plots? Only applies if nsim=1. (T or F)
verbose Verbose output? (T or F)

Details
This function will generate phase-randomized surrogate series as in Ebisuzaki (1997). It is an R-translation of the Matlab code by V. Moron (see link below), with modifications and additional features.

References
Matlab code by V. Moron: http://www.mathworks.com/matlabcentral/fileexchange/10881-weaclim/content/ebisuzaki.m
Original C-code by W. Ebisuzaki: http://www.ftp.cpc.ncep.noaa.gov/wd51we/random_phase/

Examples
# generate example series with 3 precession terms and noise
ex <- cycles(start=0, end=500, noisevar=.0004, dt=5)

# generate phase-randomized surrogates
ran_ex <- surrogates(ex, nsim=1)
# compare periodograms of data and surrogates
res1 <- periodogram(ex,padfac=0,output=1,genplot=FALSE)
res2 <- periodogram(ran_ex,padfac=0,output=1,genplot=FALSE)

pl(2)
plot(ex,type="l",main="black=original; red=surrogate")
lines(ran_ex,col="red",lty=4)
plot(res1[,1],res1[,2],type="l",lwd=2,main="black=original; red=surrogate",
     xlab="frequency",ylab="amplitude")
lines(res2[,1],res2[,2],col="red",lwd=2,lty=4)

## compare periodograms of data and surrogates
res1 <- periodogram(ex,padfac=0,output=1,genplot=FALSE)
res2 <- periodogram(ran_ex,padfac=0,output=1,genplot=FALSE)

pl(2)
plot(ex,type="l",main="black=original; red=surrogate")
lines(ran_ex,col="red",lty=4)
plot(res1[,1],res1[,2],type="l",lwd=2,main="black=original; red=surrogate",
     xlab="frequency",ylab="amplitude")
lines(res2[,1],res2[,2],col="red",lwd=2,lty=4)

## synthStrat

### Synopsis

Synthesize stratigraphy from forcing function.

### Description

Synthesize stratigraphy from forcing function.

### Usage

```r
synthStrat(signal=NULL,nfacies=4,clip=T,flip=F,fmax=0.1,output=F,genplot=2,verbose=T)
```

### Arguments

- **signal**: Forcing signal. First column should be time (in ka), second column should be forcing.
- **nfacies**: Number of sedimentary facies to model.
- **clip**: Clip forcing signal at mean value? (T or F)
- **flip**: Reverse the sign of the forcing? (T or F)
- **fmax**: Maximum frequency for spectra (if genplot=2).
- **output**: Output facies series? (T or F)
- **genplot**: Generate summary plots? (1) plot stratigraphy, (2) plot stratigraphy and spectra.
- **verbose**: Verbose output? (T or F)

### Value

modeled stratigraphic series.

### Examples

```r
Not run:
EX.1: precession, unclipped
signal=etp(tmin=8400,tmax=8900,pWt=1,oWt=0,eWt=0)
synthStrat(signal,nfacies=4,clip=FALSE,genplot=2)

EX.2: more finely resolved facies
synthStrat(signal,nfacies=15,clip=FALSE,genplot=2)
```
# EX.3: couplets
#synthStrat(signal,nfacies=2,clip=FALSE,genplot=2)

# EX.4: precession, clipped
#synthStrat(signal,nfacies=4,genplot=2)

# EX.5: noise
noise=ar1(npts=501,rho=0.8)
#synthStrat(noise,nfacies=4,genplot=2)

# EX.6: precession + noise
#signal2=signal
#synthStrat(signal2,nfacies=4,genplot=2)

# EX.7: p-0.5t, clipped (demonstrates interference pattern; compare with EX.4
#signal3=etp(tmin=8400,tmax=8900,pWt=1,oWt=-0.5,eWt=0)
#synthStrat(signal3,nfacies=4,genplot=2)

# EX.8: ice sheet model, using p-0.5t
#ice=imbrie()
#synthStrat(ice,nfacies=5,clip=FALSE,genplot=2)

# EX.9: precession, clipped, ramping sedimentation rate
#synthStrat(linterp(sedRamp(signal,genplot=FALSE),genplot=FALSE),nfacies=6,
#clip=TRUE,genplot=2,fmax=10)

## End(Not run)

---

**taner**

*Apply Taner bandpass or lowpass filter to stratigraphic series*

**Description**

Apply Taner bandpass or lowpass filter to stratigraphic series. This function can also be used to notch filter or highpass a record (see examples).

**Usage**

taner(dat,padfac=2,flow=NULL,fhigh=NULL,roll=10^3,demean=T,detrend=F,addmean=T,
output=1,xmin=0,xmax=Nyq,genplot=T,check=T,verbose=T)

**Arguments**

dat Stratigraphic series for bandpass filtering. First column should be location (e.g., depth), second column should be data value.

padfac Pad with zeros to (padfac*npts) points, where npts is the original number of data points.
flow  Low frequency cut-off for Taner filter (half power point). If this value is not set (NULL), it will default to -1*fhigh, which will create a lowpass filter.

fhigh  High frequency cut-off for Taner filter (half power point).

roll  Roll-off rate, in dB/octave. Typical values are 10^3 to 10^12, but can be larger.

demean  Remove mean from data series? (T or F)

detrend  Remove linear trend from data series? (T or F)

addmean  Add mean value to bandpass result? (T or F)

output  Output: (1) filtered series, (2) bandpass filter window.

xmin  Smallest frequency for plotting.

xmax  Largest frequency for plotting.

genplot  Generate summary plots? (T or F)

check  Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.

verbose  Verbose output? (T or F)

Value

bandpassed stratigraphic series.

References

http://www.rocksolidimages.com/pdf/attrib_revisited.htm#_Toc328470897

See Also

bandpass, lowpass, noKernel, noLow, prewhiteAR, and prewhiteAR1

Examples

# generate example series with periods of 405 ka, 100 ka, 40ka, and 20 ka, plus noise
ex=cycles(freqs=c(1/405,1/100,1/40,1/20),end=1000,dt=5,noisevar=.1)

# bandpass precession term using Taner window
bandpass_ex <- taner(ex,flow=0.045,fhigh=0.055,roll=10^10)

# lowpass filter eccentricity terms using Taner window
lowpass_ex=bander(ex,fhigh=.02,roll=10^10)

# notch filter (remove) obliquity term using Taner window
# if you'd like the final notch filtered record to be centered on the mean proxy
# value, set addmean=FALSE
notch_ex <- taner(ex,flow=0.02,fhigh=0.03,roll=10^10,addmean=FALSE)

pl(2)
plot(ex,type="l",main="Eccentricity+Obliquity+Precession")
plot(notch_ex,type="l",main="Following application of obliquity notch filter")

# highpass filter obliquity and precession terms using Taner window
# if you'd like the final highpass filtered record to be centered on the mean proxy
# value, set addmean=FALSE
highpass_ex=taner(ex,fhigh=.02,roll=10^10,addmean=FALSE)
plot(ex,type="l",main="Eccentricity+Obliquity+Precession")
plot(highpass_ex,type="l",main="Obliquity+Precession highpassed signal")

testBackground

Evaluate power spectrum false positive rates via Monte Carlo simulation

Description

This is a simulation tool to evaluate power spectrum false positive rates, the frequency distribution of the false positives, and the behavior of numerous "multiple correction" procedures, for a range of background estimation approaches that are implemented in Astrochron. The tool can be used to conduct surrogate analyses, alongside analysis of real data, to better understand the suitability of particular background estimation approaches. The resulting simulations are similar to those presented in Figure 3 of Meyers (2012) and Crampton et al. (PNAS).

Usage

testBackground(npts=1001,dt=5,noiseType="ar1",coeff=NULL,method="periodogramAR1", opt=NULL,demean=T,detrend=F,low=0, tbw=3, multi=F, iter=2000, output=F, genplot=F, verbose=T)

Arguments

npts Number of points in simulated stratigraphic series (surrogates).
dt Sampling interval for surrogates.
oiseType Select "ar1" for AR1 noise surrogates, or "pwrLaw" for Power Law noise surrogates.
coeff AR1 coefficient (rho) or Power Law coefficient (beta) for surrogates.
method Background estimation method: (1) "mtmAR1" (function mtm), (2) "mtmML96" (function mtmML96), (3) "lowspec" (function lowsprec), (4) "mtmPL" (function mtmPL), (5) "periodogramPL" (function periodogram), (6) "periodogramAR1" (function periodogram)
opt Method specific options. For mtmML96, this is medsmooth (see function mtmML96); for lowsprec this is lowspan (see function lowsprec); for periodogram this is percent cosine taper (see function cosTaper).
demean Remove mean value from simulated surrogates? (T or F; this option does not apply to lowsprec)
detrend Remove linear trend from simulated surrogates? (T or F)
low Remove long-term trend using a LOWESS smoother? Choose a value ranging from 0-1 (see function noLow). 0 = no long-term trend removal.
tbw  MTM time-bandwidth product. This option is ignored for methods 5 and 6.
multi  Evaluate a range of multiple-comparison tests too? (T or F)
iter  Number of iterations (surrogate series) for Monte Carlo simulation.
output  Output data frame? (T or F)
genplot  Generate summary plots? (T or F)
verbose  Verbose output? (T or F)

Details

The Monte Carlo simulations can utilize AR1 or Power Law noise surrogates. Background estimation approaches include conventional AR1, ML96, LOWSPEC and Power Law. The function also allows evaluation of common data detrending approaches (linear trend removal, LOWESS trend removal).

Note that MTM-ML96 conducts the Mann and Lees (1996; ML96) "robust red noise" analysis, with an improved median smoothing approach. The original Mann and Lees (1996) approach applies a truncation of the median smoothing window to include fewer frequencies near the edges of the spectrum; while truncation is required, its implementation in the original method often results in an "edge effect" that can produce excess false positive rates at low frequencies, commonly within the eccentricity-band (Meyers, 2012). To help address this issue, an alternative median smoothing approach is applied that implements Tukey’s robust end-point rule and symmetrical medians (see the function mtmML96 for more details). This version of the ML96 algorithm was first implemented in Patterson et al. (2014).

See function multiTest for more information on the multiple comparison tests evaluated.

References


See Also

confAdjust, multiTest, lowspect, mtm, mtmML96, mtmPL, and periodogram
Examples

```r
Not run:
evaluate false positive rate for MTM-AR1 using AR1 surrogates
testBackground(noiseType="ar1",method="mtmAR1")

evaluate false positive rate for MTM-AR1 using Power Law surrogates
testBackground(noiseType="pwrLaw",method="mtmAR1")

End(Not run)
```

testPrecession

Astrochronologic testing via the precession amplitude modulation approach of Zeeden et al. (2015).

Description

Astrochronologic testing via the precession amplitude modulation approach of Zeeden et al. (2015), as updated in Zeeden et al. (2018 submitted).

Usage

```r
testPrecession(dat,nsim=1000,gen=1,edge=0.025,maxNoise=1,rho=NULL,detrendEnv=T,
solution=NULL,output=F,genplot=T,verbose=T)
```

Arguments

- **dat**: Stratigraphic series to analyze. First column should be location (time in ka, a positive value), second column should be data value.
- **nsim**: Number of Monte Carlo simulations (phase-randomized surrogates or AR1 surrogates).
- **gen**: Monte Carlo simulation generator: (1) use phase-randomized surrogates, (2) use AR1 surrogates.
- **edge**: Percentage of record to exclude from beginning and end of data series, to remove edge effects. (a value from 0-1)
- **maxNoise**: Maximum noise level to add in simulations. A value of 1 will apply maximum noise that is equivalent to 1 standard deviation of the data.
- **rho**: Specified lag-1 correlation coefficient (rho). If rho is not specified, it will be calculated within the function.
- **detrendEnv**: Linearly detrend envelope? (T or F)
- **solution**: Theoretical solution used for astrochronologic testing. Solution should be in the format: time (ka), precession angle, obliquity, eccentricity (the output from function ‘getLaskar’). By default this is automatically determined within the function, using the solution of Laskar et al. (2004).
- **output**: Return results as a new data frame? (T or F)
- **genplot**: Generate summary plots? (T or F)
- **verbose**: Verbose output? (T or F)
Details

This astrochronologic testing method compares observed precession-scale amplitude modulations to those expected from the theoretical eccentricity solutions. It is applicable for testing astrochronologies spanning 0-50 Ma. The technique implements a series of filters to guard against artificial introduction of eccentricity modulations during tuning and data processing, and evaluates the statistical significance of the results using Monte Carlo simulation (Zeeden et al., 2015).

The algorithm includes an improvement in the significance testing approach. Specifically, as a safeguard against artificially imposed modulations, an adaptive noise addition step is implemented (as outlined in Zeeden et al., submitted).

The astronomically-tuned data series under evaluation should consist of two columns: time in kilo-years & data value. Note that time must be positive. The default astronomical solutions used for the astrochronologic testing come from Laskar et al. (2004).

When reporting a p-value for your result, it is important to consider the number of simulations used. A factor of 10 is appropriate, such that for 1000 simulations one would report a minimum p-value of "p<0.01" , and for 10000 simulations one would report a minimum p-value of "p<0.001".

Please be aware that the kernel density estimate plots, which summarize the simulations, represent ‘smoothed’ models. Due to the smoothing bandwidth, they can sometimes give the impression of simulation values that are larger or smaller than actually present. However, the reported p-value does not suffer from these issues.

IMPORTANT CHANGES (June 20, 2018): Note that this version has been updated to use 'solution' instead of 'esinw', for consistency with the function 'testTilt'. If you are invoking the default option, you do not need to make any changes to your script. Also note that the new option ‘edge’ has been added, which by default will truncate your data series by 5 percent (2.5 percent on each end of the record), to guard against edge effects that can be present in the amplitude envelope. Set edge to 0 to reconstruct the original (now legacy) ‘testPrecession’ approach.

Value

When nsim is set to zero, the function will output a data frame with five columns:

1=time, 2=precession bandpass filter output, 3=amplitude envelope of (2), 4=lowpass filter output of (3), 5=theoretical eccentricity (as extracted from precession modulations using the filtering algorithm), 6=(2) + noise, 7=amplitude envelope of (6), 8=lowpass filter output of (7)

When nsim is > 0, the function will output the correlation coefficients for each simulation.

References


See Also

`asm, eAsmTrack, timeOpt, and timeOptSim`

Examples

```r
Not run:
as a test series, use the three dominant precession terms from Berger et al. (1992)
ex<-cycles(start=0,end=1000,dt=2)
now conduct astrochronologic testing
res1=testPrecession(ex)

if you plan to run testPrecession repeatedly, it is advisable to download the astronomical
solution first
solution<-getLaskar()
now conduct astrochronologic testing
res2<-testPrecession(ex,solution=solution)

End(Not run)
```

testTilt

**Astrochronologic testing via the obliquity amplitude modulation approach of Zeeden et al. (2019 submitted).**

Description

Astrochronologic testing via the obliquity amplitude modulation approach of Zeeden et al. (2019 submitted).

Usage

```r
testTilt(dat,nsim=1000,gen=1,edge=0.025,cutoff=1/150,maxNoise=0.25,rho=NULL,detrendEnv=T,
solution=NULL,output=F,genplot=T,verbose=T)
```

Arguments

- **dat** Stratigraphic series to analyze. First column should be location (time in ka, a positive value), second column should be data value.
- **nsim** Number of Monte Carlo simulations (phase-randomized surrogates or AR1 surrogates).
- **gen** Monte Carlo simulation generator: (1) use phase-randomized surrogates, (2) use AR1 surrogates.
- **edge** Percentage of record to exclude from beginning and end of data series, to remove edge effects. (0-1)
- **cutoff** Cutoff frequency for lowpass filtering.
maxNoise  Maximum noise level to add in simulations. A value of 1 will apply maximum noise that is equivalent to 1 sd of data.

detrendEnv  Linearly detrend envelope? (T or F)

rho  Specified lag-1 correlation coefficient (rho). This value is only used if gen=2. If rho is not specified, it will be calculated within the function.

solution  Theoretical solution used for astrochronologic testing. Solution should be in the format: time (ka), precession angle, obliquity, eccentricity (the output from function 'getLaskar'). By default this is automatically determined within the function, using the solution of Laskar et al. (2004).

output  Return results as a new data frame? (T or F)

genplot  Generate summary plots? (T or F)

verbose  Verbose output? (T or F)

Details

This astrochronologic testing method compares observed obliquity-scale amplitude modulations to those expected from the theoretical solutions. It is applicable for testing astrochronologies spanning 0-50 Ma. The technique implements a series of filters to guard against artificial introduction of modulations during tuning and data processing, and evaluates the statistical significance of the results using Monte Carlo simulation. The algorithm includes an adaptive noise addition step to improvement the significance testing approach. See Zeeden et al. (2019 submitted) for additional information.

The astronomically-tuned data series under evaluation should consist of two columns: time in kilo-years & data value. Note that time must be positive. The default obliquity solution used for the astrochronologic testing comes from Laskar et al. (2004).

When reporting a p-value for your result, it is important to consider the number of simulations used. A factor of 10 is appropriate, such that for 1000 simulations one would report a minimum p-value of "p<0.01", and for 10000 simulations one would report a minimum p-value of "p<0.001".

Please be aware that the kernel density estimate plots, which summarize the simulations, represent 'smoothed' models. Due to the smoothing bandwidth, they can sometimes give the impression of simulation values that are larger or smaller than actually present. However, the reported p-value does not suffer from these issues.

Value

When nsim is set to zero, the function will output a data frame with five columns:

1=time, 2=obliquity bandpass filter output, 3=amplitude envelope of (2), 4=lowpass filter output of (3), 5=theoretical obliquity (as extracted from modulations using the filtering algorithm), 6=(2) + noise, 7=amplitude envelope of (6), 8=lowpass filter output of (7)

When nsim is > 0, the function will output the correlation coefficients for each simulation.

References


See Also

asm, eAsmTrack, timeOpt, and timeOptSim

Examples

```r
Not run:
as a test series, use the obliquity series from Laskar et al. (2004), spanning
the past 4 million years
ex<-etp(tmin=0,tmax=4000,dt=2,eWt=0,oWt=1,pWt=0,solution=solution,standardize=FALSE)

now conduct astrochronologic testing
res1=testTilt(ex)

if you plan to run testTilt repeatedly, it is advisable to download the astronomical
solution
solution<-getLaskar()

now conduct astrochronologic testing
res<-testTilt(ex,solution=solution)

End(Not run)
```

---

timeOpt

*TimeOpt: Evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data*

Description

TimeOpt: Evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data, as in Meyers (2015).

Usage

```r
timeOpt(dat,sedmin=0.5,sedmax=5,numsed=100,linLog=1,limit=T,fit=1,fitModPwr=T,
flow=NULL,fhigh=NULL,roll=NULL,targetE=NULL,targetP=NULL,detrend=T,
output=0,title=NULL,genplot=T,check=T,verbose=T)
```
### Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>Stratigraphic series for astrochronologic assessment. First column should be depth or height (in meters), second column should be data value.</td>
</tr>
<tr>
<td>sedmin</td>
<td>Minimum sedimentation rate for investigation (cm/ka).</td>
</tr>
<tr>
<td>sedmax</td>
<td>Maximum sedimentation rate for investigation (cm/ka).</td>
</tr>
<tr>
<td>numsed</td>
<td>Number of sedimentation rates to investigate in optimization grid.</td>
</tr>
<tr>
<td>linLog</td>
<td>Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear, 1=log; default value is 1)</td>
</tr>
<tr>
<td>limit</td>
<td>Limit evaluated sedimentation rates to region in which full target signal can be recovered? (T or F)</td>
</tr>
<tr>
<td>fit</td>
<td>Test for (1) precession amplitude modulation or (2) short eccentricity amplitude modulation?</td>
</tr>
<tr>
<td>fitModPwr</td>
<td>Include the modulation periods in the spectral fit? (T or F)</td>
</tr>
<tr>
<td>flow</td>
<td>Low frequency cut-off for Taner bandpass (half power point; in cycles/ka)</td>
</tr>
<tr>
<td>fhigh</td>
<td>High frequency cut-off for Taner bandpass (half power point; in cycles/ka)</td>
</tr>
<tr>
<td>roll</td>
<td>Taner filter roll-off rate, in dB/octave.</td>
</tr>
<tr>
<td>targetE</td>
<td>A vector of eccentricity periods to evaluate (in ka). These must be in order of decreasing period, with a first value of 405 ka.</td>
</tr>
<tr>
<td>targetP</td>
<td>A vector of precession periods to evaluate (in ka). These must be in order of decreasing period.</td>
</tr>
<tr>
<td>detrend</td>
<td>Remove linear trend from data series? (T or F)</td>
</tr>
<tr>
<td>output</td>
<td>Which results would you like to return to the console? (0) no output; (1) return sedimentation rate grid, r^2_envelope, r^2_power, r^2_opt; (2) return optimal time series, bandpassed series, envelope, reconstructed eccentricity model</td>
</tr>
<tr>
<td>title</td>
<td>A character string (in quotes) specifying the title for the graphics window (optional)</td>
</tr>
<tr>
<td>genplot</td>
<td>Generate summary plots? (T or F)</td>
</tr>
<tr>
<td>check</td>
<td>Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.</td>
</tr>
<tr>
<td>verbose</td>
<td>Verbose output? (T or F)</td>
</tr>
</tbody>
</table>

### Details

*TimeOpt* is an astronomical testing algorithm for untuned (spatial) stratigraphic data. The algorithm identifies the sedimentation rate(s) that simultaneously optimizes: (1) eccentricity amplitude modulations within the precession band, and (2) the concentration of spectral power at specified target astronomical periods.

For each temporal calibration investigated (i.e., sedimentation rate), the observed precession band amplitude envelope is extracted using bandpass filtering and the Hilbert transform. The fit of the extracted precession envelope to the eccentricity periods is evaluated using a linear regression onto sine and cosine terms that reflect the five dominant eccentricity periods (~405.7, 130.7, 123.8, 98.9 and 94.9 kyr); amplitude and phase of the eccentricity terms are not assigned, but are determined
during the linear model optimization. This approach is advantageous, as (1) the transfer functions associated with the climate and depositional systems can alter the amplitude and phase of the theoretical eccentricity terms (e.g., Laurin et al., 2005), and (2) the amplitude and phase of the eccentricity terms are unconstrained for deep-time investigations (>50 Ma). The quality of the "fit" is estimated by calculation of the correlation of the fitted eccentricity model time series to the observed precession band envelope \((r^2_{\text{envelope}})\), indicating the fraction of variance shared between the model and envelope.

The concentration of power at the target astronomical periods is evaluated using a linear regression of the temporally-calibrated series onto sine and cosine terms that reflect the dominant eccentricity and precession periods. As above, the amplitude and phase of each term is determined during the linear model optimization, and the quality of the "fit" is estimated by calculation of the correlation of the fitted astronomical model series to the temporally-calibrated series \((r^2_{\text{spectral}})\).

The final measure of fit \((r^2_{\text{opt}})\) is determined as:

\[
r^2_{\text{opt}} = r^2_{\text{envelope}} \times r^2_{\text{spectral}}
\]

which is simply the product of the fraction of variance shared between "model and envelope" and "model and time-calibrated data". This optimization approach identifies the sedimentation rate at which the precession envelope strongly expresses expected eccentricity modulation, while simultaneously, spectral power is concentrated at the target astronomical periods. \(r^2_{\text{opt}}\) can take on values ranging from 0 to 1 (a perfect fit to the astronomical model), and provides a measure of overall quality of the astronomically calibrated time series. A similar approach is applicable to evaluate short eccentricity amplitude modulations. The statistical significance of the \(r^2_{\text{opt}}\) is determined via Monte Carlo simulation (see timeOptSim).

### Value

if output = 1, a data frame containing the following will be returned: Sedimentation rate (cm/ka), \(r^2_{\text{envelope}}, r^2_{\text{spectral}}, r^2_{\text{opt}}\)

if output = 2, a data frame containing the following will be returned: Time (ka), tuned time series, bandpassed series, envelope, reconstructed model

### References


### See Also

`asm, eAsmTrack, testPrecession, timeOptPlot`, and `timeOptSim`

### Examples

```r
Not run:
generate a test signal with precession and eccentricity
ex=etp(tmin=1,tmax=1000,dt=5,pWt=1,oWt=0,eWt=1,esinw=TRUE,genplot=FALSE,verbose=FALSE)
convert to meters with sedimentation rate of 2 cm/kyr
ex[1]<-ex[1]*0.02
evaluate precession modulations
```
### Usage

```r
timeOptMCMC(dat, iopt=1, sedmin=0.5, sedmax=5, sedstart=NULL, gAve=NULL, gSd=NULL, gstart=NULL, kAve=NULL, kSd=NULL, kstart=NULL, rhomin=0, rhomax=0.9999, rhostart=NULL, sigmamin=NULL, sigmamax=NULL, sigmastart=NULL, ran=F, fit=1, ftol=0.01, roll=10^3, nsamples=1000, epsilon=NULL, test=F, burnin=-1, detrend=T, output=1, savefile=F, genplot=1, verbose=T)
```

### Arguments

- **dat**: Stratigraphic series for astrochronologic assessment. First column should be depth or height (in meters), second column should be data value.
- **iopt**: (1) fit power and envelope, (2) fit power only.
- **sedmin**: Minimum sedimentation rate for investigation (cm/ka).
- **sedmax**: Maximum sedimentation rate for investigation (cm/ka).
- **sedstart**: Initial sedimentation rate for MCMC search (cm/ka). Default is 0.5*(sedmin+sedmax). Alternatively, if set to negative number, a random value is selected from the prior distribution.
- **gAve**: Vector which contains the average values for the g1 through g5 fundamental frequencies (arcsec/year). Must be in the following order: g1,g2,g3,g4,g5.
- **gSd**: Vector which contains the standard deviation for the g1 through g5 fundamental frequencies (arcsec/year). Must be in the following order: g1,g2,g3,g4,g5.
gstart Vector which contains the initial values for the g1 through g5 fundamental frequencies (arcsec/year). Must be in the following order: g1,g2,g3,g4,g5. Default is 0.5*(gmin+gmax). Alternatively, if set to negative number, a random value is selected from the prior distribution.

kAve Average value for the precession constant (arcsec/year).

kSd Standard deviation for the precession constant (arcsec/year).

kstart Initial value for the precession constant (arcsec/year). Default is 0.5*(kmin+kmax). Alternatively, if set to negative number, a random value is selected from the prior distribution.

rhomin Minimum value for residual lag-1 autocorrelation (for both spectral and envelope fit). Default is 0.

rhomax Maximum value for residual lag-1 autocorrelation (for both spectral and envelope fit). Default is 0.9999

rhostart Initial value for residual lag-1 autocorrelation (for both spectral and envelope fit). Default 0.5. Alternatively, if set to negative number, a random value is selected from the prior distribution.

sigmamin Minimum value for residual sigma (for both spectral and envelope fit).

sigmamax Maximum value for residual sigma (for both spectral and envelope fit).

sigmastart Initial value for residual sigma (for both spectral and envelope fit). Default 0.5*(data standard deviation). Alternatively, if set to negative number, a random value is selected from the prior distribution.

ran Would you like to randomly select the parameter for updating (T), or simultaneously update all the parameters (F)?

fit Test for (1) precession amplitude modulation or (2) short eccentricity amplitude modulation? Option 2 is not yet functional!

ftol Tolerance in cycles/ka used to define the precession bandpass. It is added to the highest precession frequency, and subtracted from the lowest precession frequency, to define the half power points for the Taner bandpass filter.

roll Taner filter roll-off rate, in dB/octave.

nsamples Number of candidate MCMC simluations to perform.

epsilon Vector of dimension 11, which controls how large the jump is between each candidate value, e.g. sedimentation rate. For example, a value of 0.2 will yield maximum jump +/- 10 percent of sedimentation rate range. The vector must be arranged in the following order: sedrate,k,g1,g2,g3,g4,g5,spec_rho,spec_sigma,env_rho,env_sigma. If NULL, all epsilon values will be assigned 0.2.

test Activate epsilon testing mode? This option will assign all MCMC samples a log-likelihood of unity. This provides a diagnostic check to ensure that the applied epsilon values are sampling the entire range of parameter values. (T or F)

burnin Threshold for detection of MCMC stability.

detrend Remove linear trend from data series? (T or F)

output Which results would you like to return to the console? (0) no output; (1) return all MCMC candidates
Detail

TimeOpt is an astronomical testing algorithm for untuned (spatial) stratigraphic data. The algorithm identifies the sedimentation rate(s) that simultaneously optimizes: (1) eccentricity amplitude modulations within the precession band, and (2) the concentration of spectral power at specified target astronomical periods.

This version of TimeOpt uses MCMC via Metropolis-Hastings to estimate the parameters and their uncertainties. The priors for the k and g’s are Gaussian, while the other parameters (sedrate, hyperparameters) are uniform (uninformative).

When ran=T, the following approach is used to select the parameter to modify:

0.25 probability of changing sedimentation rate
0.25 probability of changing k
0.30 probability of changing g1,g2,g3,g4,g5 (simultaneously)
0.10 probability of changing sigma_spec,rho_spec (simultaneously)
0.10 probability of changing sigma_env,rho_env (simultaneously)

This is motivated by sensitivity tests, and the fact that we are most interested in g, k and s; moving each group of parameters (sedrate, k or g’s) has specific consequences we can isolate.

Here are some additional notes on the application of timeOptMCMC:

(1) Before conducting a timeOptMCMC analysis, run timeOpt to get a sense of the optimal sedimentation rate region(s).

(2) Make epsilon as large as you reasonably can, to maximize the chance of jumping between modes. Think of epsilon as analogous to a diffusion coefficient. A good strategy is to run a coarse resolution analysis (large epsilon) to identify the optimum region, then use as small an epsilon as possible to explore that optimum region. Note that larger epsilon yields less correlation in candidates. If you want to determine the time constant (thus number of independent samples) associated with a given epsilon, calculate the autocovariance function for accepted candidates (post-burnin). Decimation is useful for generating independent samples if desired.

(3) For greatest efficiency, the percentage of accepted candidates is typically expected to be between 23-44 percent (see Gelman et al., 1996, "Efficient Metropolis jumping rules"). However, the multimodal nature of the parameter space may require smaller acceptance rates.

(4) To ensure that the MCMC algorithm is exploring the full parameter space, run an analysis with 'test=T'. This option will accept all MCMC candidates. The histogram for each parameter value should approximate the prior distribution. If this is not the case, epsilon should be increased.

(5) It is expected that the MAP should be close to the mode when you have enough samples, although this is not guaranteed.
There are different strategies for implementing the algorithm. One can run one long chain, or run multiple short chains and combine.

If you run a very long test chain, you can decimate to conduct a rarefaction analysis (of the parameters).

For testing, it is recommended to run at least 3 very long chains. Ideally they should be long enough that you can’t tell the difference. Plot likelihood versus each candidate, and also sigma vs each candidate, for each run. This will allow identification of simulations that have gone into local minima.

The following are useful estimates to consider: mean of candidate values (post-burnin), MAP, mode of kernel density estimate (post-burnin), 95 percent Credible Interval from kernel density estimate (post-burnin).

Keep in mind that a parabolic plot of log-likelihood vs. parameter value (quadratic in log-likelihood) indicates a Gaussian distribution.

For additional information see Meyers & Malinverno (2018), Meyers (2015), Tarantola (2005), and Malinverno & Briggs (2004).

References


timeOptPlot

*TimeOptPlot: Generate summary figure for TimeOpt analyses*

description

TimeOptPlot: Generate summary figure for TimeOpt analyses.

Usage

timeOptPlot(dat=NULL,res1=NULL,res2=NULL,simres=NULL,fit=1,fitModPwr,flow=NULL,fhigh=NULL,roll=NULL,targetE=NULL,targetP=NULL,xlab="Depth (m)", ylab="Proxy Value",fitR=NULL,verbose=T)
Arguments

- **dat**: Stratigraphic series used for astrochronologic assessment. First column should be depth or height (in meters), second column should be data value.
- **res1**: Data frame containing TimeOpt results: sedimentation rate grid, r^2_envelope, r^2_power, r^2_opt.
- **res2**: Data frame containing the optimal-fitted time series, bandpassed series, envelope, and reconstructed eccentricity model.
- **simres**: Data frame containing the r^2_opt value for each Monte Carlo simulation.
- **fit**: Test for (1) precession amplitude modulation or (2) short eccentricity amplitude modulation?
- **fitModPwr**: Include the modulation periods in the spectral fit? (T or F)
- **flow**: Low frequency cut-off for Taner bandpass (half power point; in cycles/ka).
- **fhigh**: High frequency cut-off for Taner bandpass (half power point; in cycles/ka).
- **roll**: Taner filter roll-off rate, in dB/octave.
- **targetE**: A vector of eccentricity periods to evaluate (in ka). These must be in order of decreasing period, with a first value of 405 ka.
- **targetP**: A vector of precession periods to evaluate (in ka). These must be in order of decreasing period.
- **xlab**: Label for the depth/height axis.
- **ylab**: Label for proxy variable evaluated.
- **fitR**: The r^2_opt value at the optimal sedimentation rate.
- **verbose**: Verbose output? (T or F)

References


See Also

`asm`, `eAsmTrack`, `testPrecession`, `timeOpt`, and `timeOptSim`

Examples

```r
Not run:
ex=etp(tmin=1,tmax=1000,dt=1,pWt=1,owt=0,eWt=1,esinw=TRUE,genplot=FALSE,verbose=FALSE)
ex[1]<-ex[1]*0.02
res1=timeOpt(ex,sedmin=0.5,sedmax=5,numsed=100,fit=1,output=1)
res2=timeOpt(ex,sedmin=0.5,sedmax=5,numsed=100,fit=1,output=2)
simres=timeOptSim(ex,sedrate=2,numsim=2000,fit=1,output=2)
timeOptPlot(ex,res1,res2,simres,flow=0.035,fhigh=0.065,roll=10^3,
```
timeOptSim

Monte Carlo simulation for TimeOpt

Description

Perform Monte Carlo AR1 simulations to evaluate significance of TimeOpt results, as in Meyers (2015).

Usage

timeOptSim(dat,numsim=2000,rho=NULL,sedrate=NULL,sedmin=0.5,sedmax=5,numsed=100,
linLog=1,limit=T,fit=1,fitModPwr=T,flow=NULL,fhigh=NULL,roll=NULL,
targetE=NULL,targetP=NULL,detrend=T,ncores=2,output=0,genplot=T,
check=T,verbose=T)

Arguments

dat  Stratigraphic series for astrochronologic assessment. First column should be
     depth or height (in meters), second column should be data value.

numsim  Number of Monte Carlo AR1 simulations.

rho  AR1 coefficient to use in simulations. By default this will be estimated from the
     stratigraphic series.

sedrate  Sedimentation rate for investigation (cm/ka). This options is for compatibility
     with prior versions of timeOptSim. Please use sedmin, sedmax, numsed.

sedmin  Minimum sedimentation rate for investigation (cm/ka).

sedmax  Maximum sedimentation rate for investigation (cm/ka).

numsed  Number of sedimentation rates to investigate in optimization grid.

linLog  Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear,
     1=log)

limit  Limit evaluated sedimentation rates to region in which full target signal can be
     recovered? (T or F)

fit  Test for (1) precession amplitude modulation or (2) short eccentricity amplitude
     modulation?

fitModPwr  Include the modulation periods in the spectral fit? (T or F)

flow  Low frequency cut-off for Taner bandpass (half power point; in cycles/ka)

fhigh  High frequency cut-off for Taner bandpass (half power point; in cycles/ka)
**Details**

TimeOpt is an astronomical testing algorithm for untuned (spatial) stratigraphic data. The algorithm identifies the sedimentation rate(s) that simultaneously optimizes: (1) eccentricity amplitude modulations within the precession band, and (2) the concentration of spectral power at specified target astronomical periods. The statistical significance of the $r^2_{opt}$ is determined via Monte Carlo simulation using timeOptSim.

The present version of timeOptSim improves upon the original significance testing method of Meyers (2015), by conducting simulations across the entire sedimentation grid. This approach more rigorously protects against inflation of the p-value due to multiple testing. Parallel processing has been implemented to address the greater computational demand that is required.

See timeOpt for more information on the basic methodology.

**References**


**See Also**

asm, eAsm, eAsmTrack, testPrecession, timeOpt, and timeOptPlot

**Examples**

```r
Not run:
generate a test signal with precession and eccentricity
ex=etp(tmin=1,tmax=1000,dt=5,pWt=1,oWt=0,eWt=1,esinw=TRUE,genplot=FALSE,verbose=FALSE)
convert to meters with sedimentation rate of 2 cm/kyr
ex[1]<-ex[1]*0.02
evaluate with timeOptSim. be patient, this may take a while to run.
timeOptSim(ex, sedmin=0.5, sedmax=5, numsed=100)
End(Not run)
```
timeOptSimPwrLaw

Monte Carlo simulation for TimeOpt, using power law (1/f) noise

Description
Perform Monte Carlo power law (1/f) simulations to evaluate significance of TimeOpt results, as in Meyers (2015).

Usage

timeOptSimPwrLaw(dat,numsim=2000,beta=NULL,sedrate=NULL,sedmin=0.5,sedmax=5,numsed=100,linLog=1,limit=T,fit=1,fitModPwr=T,flow=NULL,fhigh=NULL,roll=NULL,targetE=NULL,targetP=NULL,detrend=T,ncores=2,output=0,genplot=T,check=T,verbose=T)

Arguments

dat Stratigraphic series for astrochronologic assessment. First column should be depth or height (in meters), second column should be data value.

numsim Number of Monte Carlo power law (1/f) simulations.

beta Power law coefficient for 1/f noise. Positive number yields a negative slope. By default this will be estimated from the stratigraphic series.

sedrate Sedimentation rate for investigation (cm/ka). This options is for compatibility with prior versions of timeOptSim. Please use sedmin, sedmax, numsed.

sedmin Minimum sedimentation rate for investigation (cm/ka).

sedmax Maximum sedimentation rate for investigation (cm/ka).

numsed Number of sedimentation rates to investigate in optimization grid.

linLog Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear, 1=log)

limit Limit evaluated sedimentation rates to region in which full target signal can be recovered? (T or F)

fit Test for (1) precession amplitude modulation or (2) short eccentricity amplitude modulation?

fitModPwr Include the modulation periods in the spectral fit? (T or F)

flow Low frequency cut-off for Taner bandpass (half power point; in cycles/ka)

fhigh High frequency cut-off for Taner bandpass (half power point; in cycles/ka)

roll Taner filter roll-off rate, in dB/octave.

targetE A vector of eccentricity periods to evaluate (in ka). These must be in order of decreasing period, with a first value of 405 ka.

targetP A vector of precession periods to evaluate (in ka). These must be in order of decreasing period.
detrend  Remove linear trend from data series? (T or F)
ncores   Number of cores to use for parallel processing. Must be >=2
output   Which results would you like to return to console? (0) no output; (1) p-value; (2) simulation r2 results
genplot  Generate summary plots? (T or F)
check    Conduct compliance checks before processing? (T or F). In general this should be activated.
verbose  Verbose output? (T or F)

Details

TimeOpt is an astronomical testing algorithm for untuned (spatial) stratigraphic data. The algorithm identifies the sedimentation rate(s) that simultaneously optimizes: (1) eccentricity amplitude modulations within the precession band, and (2) the concentration of spectral power at specified target astronomical periods. The statistical significance of the r^2_opt is determined via Monte Carlo simulation using timeOptSim.

The present version of timeOptSim improves upon the original significance testing method of Meyers (2015), by conducting simulations across the entire sedimentation grid. This approach more rigorously protects against inflation of the p-value due to multiple testing. Parallel processing has been implemented to address the greater computational demand that is required.

See timeOpt for more information on the basic methodology.

References

S.R. Meyers, 2015, The evaluation of eccentricity-related amplitude modulations and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization: Paleoceanography.

See Also

asm, eAsm, eAsmTrack, testPrecession, timeOpt, and timeOptPlot

Examples

## Not run:
# generate a test signal with precession and eccentricity
ex=etp(tmin=1,tmax=1000,dt=5,pWt=1,oWt=0,eWt=1,esinw=TRUE,genplot=FALSE,verbose=FALSE)
# convert to meters with sedimentation rate of 2 cm/kyr
ex[1]<-ex[1]*0.02
# evaluate with timeOptSim. be patient, this may take a while to run.
timeOptSimPwrLaw(ex,sedmin=0.5,sedmax=5,numsed=100)

## End(Not run)
timeOptTemplate  

TimeOpt analysis using variable sedimentation models

Description

Evaluation of eccentricity-related amplitude modulations and bundling in paleoclimate data, as in Meyers (2015) and Meyers (2019), adapted to allow the evaluation of a wide range of variable sedimentation models, including: differential accumulation across bedding couplets, linear accumulation rate change, step changes in sedimentation rate, etc.

Usage

timeOptTemplate(dat,template=NULL,sedmin=0.5,sedmax=5,difmin=NULL,difmax=NULL,fac=NULL,numsed=50,linLog=1,limit=T,fit=1,fitModPwr=T,iomp=3,flow=NULL,fhigh=NULL,roll=NULL,targetE=NULL,targetP=NULL,cormethod=1,detrend=T,detrendTemplate=F,flipTemplate=F,ncores=1,output=0,genplot=1,check=T,verbose=1)

Arguments

dat  Stratigraphic series for astrochronologic assessment. First column should be depth or height (in meters), second column should be data value.

template  Instantaneous sedimentation rate template to fit. This represents a unitless proportional sedimentation rate history. Default model is a copy of dat, which will be scaled for instantaneous accumulation optimization.

sedmin  Minimum AVERAGE sedimentation rate for investigation (cm/ka).

sedmax  Maximum AVERAGE sedimentation rate for investigation (cm/ka).

difmin  Minimum instantaneous sedimentation rate to investigate (cm/ka).

difmax  Maximum instantaneous sedimentation rate to investigate (cm/ka). By default, this is ignored, and fac is used.

fac  Maximum instantaneous accumulation factor. Maximum rate is scaled to each investigated sedrate as fac*sedrate. Default value of 5 is based on experimentation. If larger than this, risk getting into local minimum during fit.

numsed  Number of sedimentation rates to investigate in optimization grid.

linLog  Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear, 1=log)

limit  Limit evaluated sedimentation rates to region in which full target signal can be recovered? (T or F)

fit  Test for (1) precession amplitude modulations or (2) short eccentricity amplitude modulations?

fitModPwr  Include the modulation periods in the spectral fit? (T or F)

iopt  Optimize on (1) modulations, (2) spectral power, (3) modulations*spectral power

flow  Low frequency cut-off for Taner bandpass (half power point; in cycles/ka)
**Details**

TimeOpt employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This function further develops the method to optimize upon complex sedimentation templates. The approach is demonstrated below with a series of examples.

The statistical significance of the $r^2_{\text{opt}}$ is determined via Monte Carlo simulation (see timeOpt-Sim). See timeOpt for more information on the basic methodology.

**Value**

if output = 1, a data frame containing the following will be returned: Sedimentation rate (cm/ka), r-squared value ($r^2_{\text{envelope}}$, $r^2_{\text{spectra}}$, or $r^2_{\text{opt}}$)

if output = 2, a data frame containing the following will be returned: Time (ka), tuned time series, bandpassed series, envelope, reconstructed model

**References**


See Also

asm, eAsmTrack, testPrecession, timeOpt, timeOptSim, and timeOptTemplatePlot

Examples

```r
Not run:
EXAMPLE (1): Differential accumulation across bedding couplets
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
ex2 = diffAccum(ex, 0.01, 0.05)
ex2 = linterp(ex2)
first with the nominal timeOpt approach
timeOpt(ex2, sedmin=1, sedmax=4, numsed=100)
timeOptSim(ex2, sedmin=1, sedmax=4, numsed=100, numsim=2000)
then with the timeOptTemplate approach
timeOptTemplate(ex2, sedmin=1, sedmax=4, difmin=.5, difmax=6, numsed=100, ncores=2)
timeOptTemplateSim(ex2, sedmin=1, sedmax=4, difmin=.5, difmax=6, numsed=100, numsim=1000, ncores=2)

EXAMPLE (2): Linear sedimentation rate increase
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
ex2 = sedRamp(ex, srstart=0.01, srend=0.05)
ex2 = linterp(ex2)
first with the nominal timeOpt approach
timeOpt(ex2, sedmin=1, sedmax=4, numsed=100)
then with the timeOptTemplate approach
create linear model for input. the magnitude does not matter, it will be rescaled.
(it just needs to be a line)
template = ex2; template[2] = ex2[1]
timeOptTemplate(ex2, template=template, sedmin=1, sedmax=4, difmin=.5, difmax=6, numsed=100, ncores=2)
view optimization procedure (must set ncores=1)
timeOptTemplate(ex2, template=template, sedmin=2.75, sedmax=3.25, difmin=.5, difmax=6, numsed=20, ncores=1, genplot=2)

EXAMPLE (3): Step increase in sedimentation rate, from 1 cm/kyr to 2 cm/kyr at 7 meters depth
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
ex2 = ex
ex2[1:140, 1] = ex2[1:140, 1] * .01
ex2[141:201, 1] = ex2[141:201, 1] * 2 - 7
ex2 = linterp(ex2)
first with the nominal timeOpt approach
timeOpt(ex2, sedmin=1, sedmax=4, numsed=100)
then with the timeOptTemplate approach
create step model for input. the magnitude does not matter, it will be rescaled.
template = ex2; template[1:140, 2] = 1; template[141:261, 2] = 2
timeOptTemplate(ex2, template=template, sedmin=1, sedmax=4, numsed=100, ncores=2)
view optimization procedure (must set ncores=1)
timeOptTemplate(ex2, template=template, sedmin=1, sedmax=2, numsed=20, ncores=1, genplot=2)

EXAMPLE (4): A record with a 100 kyr hiatus at 10 meters depth
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
```
### timeOptTemplatePlot

ex2=delPts(ex,del=101:121)
# use a background sedimentation rate of 2 cm/kyr
ex2[1]=0.179*5*0.02
# first evaluate the distorted record with the nominal timeOpt approach
timeOpt(ex2,sedmin=1,sedmax=4,numsed=100)
# then with the timeOptTemplate approach
# create a constant sedimentation rate template with possible hiatus of unknown
duration at 10 m
timeOptTemplate(ex2,template=template,sedmin=1,sedmax=4,difmax=3,numsed=100,ncores=2)
# now perform a finer grid search near the maximum, using power only
# notice the oscillatory nature of the power fit.
res=timeOptTemplate(ex2,template=template,sedmin=1.5,sedmax=2,difmax=3,numsed=100,ncores=2,iopt=2,output=2)
# compare true eccentricity to TimeOpt-derived eccentricity
plot(ex,type="l",main="True Eccentricity Series",xlab="True Time (kyr)",ylab="")
plot(res[,1],res[,4],type="l",main="Black=TimeOpt precession AM; Red=TimeOpt eccentricity model",
    xlab="TimeOpt derived time (kyr)",ylab="")
lines(res[,1],res[,5],col="red",lwd=2)

```r
End(Not run)
```

timeOptTemplatePlot  

#### Description

TimeOptTemplatePlot: Generate summary figure for TimeOptTemplate analyses.

#### Usage

timeOptTemplatePlot(dat=NULL,template=NULL,detrend=T,detrendTemplate=F,
                    flipTemplate=F,srMin=NULL,srMax=NULL,res1=NULL,simres=NULL,
                    fit=1,flow=NULL,fhigh=NULL,roll=NULL,targetE=NULL,targetP=NULL,
                    xlab="Depth (m)",ylab="Proxy Value",fitR=NULL,output=0,
                    verbose=T)

#### Arguments

- **dat**: Stratigraphic series used for astrochronologic assessment. First column should be depth or height (in meters), second column should be data value.
- **template**: Instantaneous sedimentation rate template to fit. This represents a unitless proportional sedimentation rate history. Default model is a copy of dat, which will be scaled for instantaneous accumulation optimization.
- **detrend**: Remove linear trend from data series? (T or F)
- **detrendTemplate**: Remove linear trend from sedimentation rate template? (T or F)
flipTemplate  Flip direction of sedimentation rate template? (T or F)
srMin  Minimum sedimentation rate for template
dsMax  Maximum sedimentation rate for template
res1  Data frame containing TimeOpt results: sedimentation rate grid, r^2_envelope, r^2_power, r^2_opt.
simres  Data frame containing the r^2_opt value for each Monte Carlo simulation.
fit  Test for (1) precession amplitude modulation or (2) short eccentricity amplitude modulation?
flow  Low frequency cut-off for Taner bandpass (half power point; in cycles/ka).
fhhigh  High frequency cut-off for Taner bandpass (half power point; in cycles/ka).
roll  Taner filter roll-off rate, in dB/octave.
targetE  A vector of eccentricity periods to evaluate (in ka). These must be in order of decreasing period, with a first value of 405 ka.
targetP  A vector of precession periods to evaluate (in ka). These must be in order of decreasing period.
xlab  Label for the depth/height axis.
ylab  Label for proxy variable evaluated.
fitR  The r2 value at the optimal sedimentation rate.
output  Which results you like to return to console? (0) no output; (1) return sedimentation rate grid, r2; (2) return optimal time series, bandpassed series, Hilbert and fitted periods
verbose  Verbose output? (T or F)

References


S.R. Meyers, 2019, Cyclostratigraphy and the problem of astrochronologic testing: Earth-Science Reviews v. 190, 190-223.

See Also

asm, eAsmTrack, testPrecession, timeOpt, timeOptSim, and timeOptTemplate
timeOptTemplateSim  Simulations for timeOptTemplate

Description
Simulations for timeOptTemplate

Usage
timeOptTemplateSim(dat,template=NULL,corVal=NULL,numsim=2000,rho=NULL,sedmin=0.5,sedmax=5,
difmin=NULL,difmax=NULL,fac=NULL,numsed=50,linLog=1,limit=T,fit=1,fitModPwr=T,
iopt=3,flow=NULL,fhigh=NULL,roll=NULL,targetE=NULL,targetP=NULL,
cormethod=1,detrend=T,detrendTemplate=F,flipTemplate=F,ncores=1,output=0,
genplot=T,check=T,verbose=T)

Arguments
dat          Stratigraphic series for modulation assessment. First column should be depth or
             height (in meters), second column should be data value.
template      Instantaneous sedimentation rate template to fit. This represents a unitless propor-
             tional sedimentation rate history. Default template is a copy of dat, which
             will be scaled for instantaneous accumulation optimization.
corVal        r2opt value for data. By default this will be calculated.
numsim        Number of Monte Carlo AR1 simulations.
rho           AR1 coefficient to use in simulations. By default this will be estimated from the
             stratigraphic series.
sedmin        Minimum AVERAGE sedimentation rate for investigation (cm/ka).
sedmax        Maximum AVERAGE sedimentation rate for investigation (cm/ka).
difmin        Minimum instantaneous sedimentation rate to investigate (cm/ka).
difmax        Maximum instantaneous sedimentation rate to investigate (cm/ka). By default,
             this is ignored, and fac is used.
fac           Maximum instantaneous accumulation factor. Maximum rate is scaled to each
             investigated sedrate as fac*sedrate. Default value of 5 is based on experimenta-
             tion. If larger than this, risk getting into local minimum during fit.
umsed        Number of sedimentation rates to investigate in optimization grid.
linLog        Use linear or logarithmic scaling for sedimentation rate grid spacing? (0=linear,
             1=log)
limit         Limit evaluated sedimentation rates to region in which full target signal can be
             recovered? (T or F)
fit           Test for (1) precession amplitude modulations or (2) short eccentricity amplitude
             modulations? fit= 2 is not yet functional.
fitModPwr     Include the modulation periods in the spectral fit? (T or F)
Details

TimeOpt employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This function further develops the method to optimize upon complex sedimentation templates. The approach is demonstrated below with a series of examples.

The statistical significance of the $r^2_{opt}$ is determined via Monte Carlo simulation (see timeOpt-Sim). See timeOpt for more information on the basic methodology.

Value

QUESTION: is this correct?

if output = 1, a data frame containing the following will be returned: Sedimentation rate (cm/ka), $r$-squared value for instantaneous amplitude vs. fitted periods, $r$-squared value for fit to specified periods, $r$-squared*$r$-squared.

if output = 2, a data frame containing the following will be returned: Time (ka), tuned time series, bandpassed series, instantaneous amplitude, fitted periods.
References

S.R. Meyers, 2015, The evaluation of eccentricity-related amplitude modulations and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization: Paleoceanography.


Examples

## Not run:

```r
EXAMPLE (1): Differential accumulation across bedding couplets
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
ex2 = diffAccum(ex, 0.01, .05)
ex2 = linterp(ex2)

first with the nominal timeOpt approach
timeOpt(ex2, sedmin=1, sedmax=4, numsed=100)
timeOptSim(ex2, sedmin=1, sedmax=4, numsed=100, numsim=2000)

then with the timeOptTemplate approach
timeOptTemplate(ex2, sedmin=1, sedmax=4, difmin=.5, difmax=6, numsed=100, ncores=2)
timeOptTemplateSim(ex2, sedmin=1, sedmax=4, difmin=.5, difmax=6, numsed=100, numsim=1000, ncores=2)

EXAMPLE (2): Linear sedimentation rate increase
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
ex2 = sedRamp(ex, srstart=0.01, srend=0.05)
ex2 = linterp(ex2)

first with the nominal timeOpt approach
timeOpt(ex2, sedmin=1, sedmax=4, numsed=100)

then with the timeOptTemplate approach
create linear model for input. the magnitude does not matter, it will be rescaled.
(it just needs to be a line)
template = ex2; template[2] = ex2[1]
timeOptTemplate(ex2, template=template, sedmin=1, sedmax=4, numsed=100, ncores=2)

view optimization procedure
timeOptTemplate(ex2, template=template, sedmin=2.75, sedmax=3.25, numsed=20, ncores=1, genplot=2)

EXAMPLE (3): Step increase in sedimentation rate, from 1 cm/kyr to 2 cm/kyr at 7 meters depth
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
ex2 = ex
ex2[1] = ex[1] * .01
ex2[141:201, 1] = ex2[141:201, 1] * 2 - 7
ex2 = linterp(ex2)

first with the nominal timeOpt approach
timeOpt(ex2, sedmin=1, sedmax=4, numsed=100)

then with the timeOptTemplate approach
create step model for input. the magnitude does not matter, it will be rescaled.
template = ex2; template[1:140, 2] = 1; template[141:261, 2] = 2
timeOptTemplate(ex2, template=template, sedmin=1, sedmax=4, numsed=100, ncores=2)

view optimization procedure
```
# EXAMPLE (4): A record with a 100 kyr hiatus at 10 meters depth

```r
ex = etp(tmin=0, tmax=1000, dt=5, pWt=1, oWt=0, eWt=1, esinw=TRUE)
ex2 = delPts(ex, del=101:121)
```

# use a background sedimentation rate of 2 cm/kyr
```
ex2[1] = 0:179*5*0.02
```

# first evaluate the distorted record with the nominal timeOpt approach
```
timeOpt(ex2, sedmin=1, sedmax=4, numsed=100)
```

# then with the timeOptTemplate approach
```
create a constant sedimentation rate model with possible hiatus of unknown
duration at 10 m
template = ex2; template[2] = 10; template[101,2] = 1
timeOptTemplate(ex2, template=template, sedmin=1, sedmax=3, difmax=3, numsed=100, ncores=2)
```

# now perform a finer grid search near the maximum, using power only
```
notice the oscillatory nature of the power fit.
res = timeOptTemplate(ex2, template=template, sedmin=1.5, sedmax=2, difmax=3, numsed=100, ncores=2,
iopt=2, output=2)
```

# compare true eccentricity to TimeOpt-derived eccentricity
```
pl(2)
plot(ex, type="l", main="True Eccentricity Series", xlab="True Time (kyr)", ylab="")
plot(res[,1], res[,4], type="l", main="Black=TimeOpt precession AM; Red=TimeOpt eccentricity model",
 xlab="TimeOpt derived time (kyr)", ylab="")
lines(res[,1], res[,5], col="red", lwd=2)
```

## End (Not run)

---

### tones

**Calculate all possible difference and combinations tones**

**Description**

Determine all possible difference and combinations tones from a set of frequencies, and find the closest one to a specified frequency

**Usage**

```
tones(a=NULL, freqs=NULL, f=T)
```

**Arguments**

- `a` The frequency you are seeking to match, in cycles/ka.
- `freqs` The vector of frequencies from which to calculate difference and combination tones, in cycles/ka.
- `f` Output results as frequencies (cycles/ka)? If false, will output results as periods (ka). (T or F)
traceFreq

Frequency-domain minimal tuning: Use interactive graphical interface to trace frequency drift.

Usage

traceFreq(spec, color=2, h=6, w=4, xmin=NULL, xmax=NULL, ymin=NULL, ymax=NULL, ydir=1, palette=6, ncolors=100, path=1, pl=0)

Arguments

spec  Time-frequency spectral results to evaluate. Must have the following format: column 1 = frequency; remaining columns (2 to n) = power, amplitude or probability; titles for columns 2 to n must be the location (depth or height). Note that this format is output by function eha.

color  Line color for tracing. 1 = transparent black; 2 = transparent white; 3 = transparent yellow

h  Height of plot in inches.

w  Width of plot in inches.

xmin  Minimum spatial frequency to plot.

xmax  Maximum spatial frequency to plot.

ymin  Minimum depth/height to plot.

ymax  Maximum depth/height to plot.

ydir  Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards.

palette  What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red, (6) viridis

ncolors  Number of colors to use in plot.

path  How do you want to represent the spatial frequency path?: 1=lines and points; 2=lines; 3=points

pl  An option for the color plots: 0=linear scale; 1=plot log of value, 2=normalize to maximum value

See Also

eha and trackFreq
Examples

## Not run:
# Check to see if this is an interactive R session, for compliance with CRAN standards.
# YOU CAN SKIP THE FOLLOWING LINE IF YOU ARE USING AN INTERACTIVE SESSION.
if(interactive()) {

# Generate example series with 3 terms using function 'cycles'.
# Then convert from time to space with sedimentation rate that increases from 1 to 5 cm/ka, using
# function 'sedramp'.
# Finally interpolate to median sampling interval using function 'linterp'.
dat=linterp(sedRamp(cycles(freqs=c(1/100,1/40,1/20),start=1,end=2500,dt=5)))

# EHA analysis, output amplitude results
out=eha(dat,output=3)

## Interactively track frequency drift
freq=traceFreq(out)

}
## End(Not run)

---

**tracePeak**

*A tool to interactively trace peak trajectories on plots*

**Description**

A tool to interactively trace peak trajectories on plots, for results from such functions as eTimeOpt, EHA, eAsm.

**Usage**

```
tracePeak(dat,color=2,h=6,w=4,xmin=NULL,xmax=NULL,ymin=NULL,ymax=NULL,
ydir=-1,palette=6,ncolors=100,path=1)
```

**Arguments**

- `dat` Data frame with results to evaluate. It must have the following format: column 1=parameter to track (e.g., frequency, sedimentation rate, etc.; x-axis of plot); remaining columns (2 to n)=parameter to evaluate for peak identification (color on plot); titles for columns 2 to n must be the location (depth/height/time; y-axis of plot). Note that this format is output by functions eha, eTimeOpt, eAsm.
- `color` Line color for tracing. 1 = transparent black; 2 = transparent white; 3 = transparent yellow
- `h` Height of plot in inches.
- `w` Width of plot in inches.
- `xmin` Minimum parameter value to plot.
trackFreq

\[
\begin{align*}
x_{\text{max}} & \quad \text{Maximum parameter value to plot.} \\
y_{\text{min}} & \quad \text{Minimum depth/height/time to plot.} \\
y_{\text{max}} & \quad \text{Maximum depth/height/time to plot.} \\
y_{\text{dir}} & \quad \text{Direction for y-axis in plots (depth/height/time).} -1 = \text{values increase downwards}, 1 = \text{values increase upwards.} \\
\text{palette} & \quad \text{What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red, (6) viridis} \\
\text{ncolors} & \quad \text{Number of colors to use in plot.} \\
\text{path} & \quad \text{How do you want to represent the path?:} 1=\text{lines and points}; 2=\text{lines}; 3=\text{points}
\end{align*}
\]

See Also

aha and eTimeOpt

Description

Frequency-domain minimal tuning: Use interactive graphical interface and sorting algorithm to track frequency drift.

Usage

trackFreq(spec, threshold=NULL, pick=T, fmin=NULL, fmax=NULL, dmin=NULL, dmax=NULL, xmin=NULL, xmax=NULL, ymin=NULL, ymax=NULL, h=6, w=4, ydir=1, palette=6, ncolors=100, genplot=T, verbose=T)

Arguments

\[
\begin{align*}
\text{spec} & \quad \text{Time-frequency spectral results to evaluate. Must have the following format: column 1=frequency; remaining columns (2 to n)=power, amplitude or probability; titles for columns 2 to n must be the location (depth or height). Note that this format is output by function eha.} \\
\text{threshold} & \quad \text{Threshold level for filtering peaks. By default all peak maxima reported.} \\
\text{pick} & \quad \text{Pick the peaks of interest using a graphical interface? (T or F). Only activated if genplot=T.} \\
\text{fmin} & \quad \text{Minimum frequency for analysis.} \\
\text{fmax} & \quad \text{Maximum frequency for analysis.} \\
\text{dmin} & \quad \text{Minimum depth/height for analysis. NOT ACTIVATED YET!} \\
\text{dmax} & \quad \text{Maximum depth/height for analysis. NOT ACTIVATED YET!} \\
\text{xmin} & \quad \text{Minimum frequency for PLOTTING.}
\end{align*}
\]
trackPeak

Description

A tool to interactively select points to track peak trajectories on plots, for results from functions such as eTimeOpt, EHA, eAsm.

See Also

eha and traceFreq

Examples

## Not run:
# Check to see if this is an interactive R session, for compliance with CRAN standards.
# YOU CAN SKIP THE FOLLOWING LINE IF YOU ARE USING AN INTERACTIVE SESSION.
if(interactive()) {

# Generate example series with 3 terms using function 'cycles'.
# Then convert from time to space with sedimentation rate that increases from 1 to 5 cm/ka, using
# function 'sedramp'.
# Finally interpolate to median sampling interval using function 'linterp'.
dat=linterp(sedRamp(cycles(freqs=c(1/100,1/40,1/20),start=1,end=2500,dt=5)))

# EHA anlaysis, output probability results
out=eha(dat,output=4)

## Isolate peaks with probability >= 0.8
freq=trackFreq(out,0.8)
}
## End(Not run)
trackPeak

Usage

trackPeak(dat, threshold=NULL, pick=T, minVal=NULL, maxVal=NULL, dmin=NULL, dmax=NULL, xmin=NULL, xmax=NULL, ymin=NULL, ymax=NULL, h=6, w=4, ydir=-1, palette=6, ncolors=100, genplot=T, verbose=T)

Arguments

dat Data frame with results to evaluate. It must have the following format: column 1=parameter to track (e.g., frequency, sedimentation rate, etc.; x-axis of plot); remaining columns (2 to n)=parameter to evaluate for peak identification (color on plot); titles for columns 2 to n must be the location (depth/height/time; y-axis of plot). Note that this format is output by functions eha, eTimeOpt, eAsm.

threshold Threshold level for filtering peaks. By default all peak maxima reported.
pick Pick the peaks of interest using a graphical interface? (T or F). Only activated if genplot=T.

minVal Minimum parameter value for analysis (e.g., frequency, sedimentation rate, etc.).

maxVal Maximum parameter value for analysis (e.g., frequency, sedimentation rate, etc.).

dmin Minimum depth/height/time for analysis. NOT ACTIVATED YET!

dmax Maximum depth/height/time for analysis. NOT ACTIVATED YET!

xmin Minimum parameter value for PLOTTING.

xmax Maximum parameter value for PLOTTING.

ymin Minimum depth/height/time for PLOTTING.

ymax Maximum depth/height/time for PLOTTING.

h Height of plot in inches.

w Width of plot in inches.

ydir Direction for y-axis in plots (depth or height). -1 = values increase downwards (slower plotting!), 1 = values increase upwards.

palette What color palette would you like to use? (1) rainbow, (2) grayscale, (3) blue, (4) red, (5) blue-white-red, (6) viridis

ncolors Number of colors to use in plot.

genplot Generate summary plots? (T or F)

verbose Verbose output? (T or F)

See Also

eha and eTimeOpt
trim

Remove outliers from stratigraphic series

Description
Automatically remove outliers from stratigraphic series, using 'boxplot' algorithm.

Usage
trim(dat,c=1.5,genplot=T,verbose=T)

Arguments
- dat: Stratigraphic series for outlier removal. First column should be location (e.g., depth), second column should be data value.
- c: 'c' defines the 'coef' variable for boxplot.stats. For more information: ?boxplot.stats
- genplot: Generate summary plots? (T or F)
- verbose: Verbose output? (T or F)

See Also
delPts, idPts, iso and trimAT

trimAT

Remove outliers from stratigraphic series

Description
Remove outliers from stratigraphic series, using specified threshold value.

Usage
trimAT(dat,thresh=0,dir=2,genplot=T,verbose=T)

Arguments
- dat: Stratigraphic series for outlier removal. First column should be location (e.g., depth), second column should be data value.
- thresh: Threshold value for outlier detection.
- dir: Remove values (1) smaller than or (2) larger than this threshold?
- genplot: Generate summary plots? (T or F)
- verbose: Verbose output? (T or F)

See Also
delPts, idPts, iso and trim
trough

Identify minima of troughs in series, filter at desired threshold value

Description

Identify minima of troughs in any 1D or 2D series, filter at desired threshold value.

Usage

trough(dat, level, plateau=F, genplot=T, verbose=T)

Arguments

dat 1 or 2 dimensional series. If 2 dimensions, first column should be location (e.g., depth), second column should be data value.
level Threshold level for filtering troughs. By default all trough minima reported.
plateau Output plateau points not evaluated? If T, identified troughs will not be output. (T or F)
genplot Generate summary plots? (T or F)
verbose Verbose output? (T or F)

Examples

ex=cycles(genplot=FALSE)
trough(ex, level=-0.02)

tune

Tune stratigraphic series

Description

Tune stratigraphic series from space to time, using specified control points

Usage

tune(dat, controlPts, extrapolate=F, genplot=T, check=T, verbose=T)
Arguments

dat
Stratigraphic series for tuning. First column should be location (e.g., depth), second column should be data value.

controlPts
Tuning control points. A data frame or matrix containing two columns: depth, time

extrapolate
Extrapolate sedimentation rates above and below ‘tuned’ interval? (T or F)

genplot
Generate summary plots? (T or F)

check
Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.

verbose
Verbose output? (T or F)

Examples

# generate example series with 3 precession terms using function ‘cycles’
ex1=cycles()

# then convert from time to space using a sedimentation rate that increases from 1 to 7 cm/ka
ex2=sedRamp(ex1,srstart=0.01,srend=0.07)

# assemble tuning control points (this is the depth-time map)
controlPts=cbind(ex2[,1],ex1[,1])

# tune record
ex3=tune(ex2,controlPts=controlPts)

unbioturb  Bioturbation removal function following the approach of Liu et al (2021)

Description

‘unbioturb’ is a function to remove bioturbation effects from a time series given the bioturbation parameters. It implements the method outlined in Liu et al. (2021), which builds on the approaches of (Guinasso and Schink, 1975), Goreau (1977), and Goreau (1980). ‘unbioturb’ is the inverse of the function ‘bioturb’, both of which model bioturbation as a diffusive process (Guinasso and Schink, 1975). In ‘unbioturb’, the proxy series is deconvolved from an impulse response function determined by the bioturbation characteristics, \( G = \frac{D}{MLv} \).

Usage

unbioturb(dat, G, ML, v, pt = 0.2, wiener = TRUE, fhigh=NULL, output = 1, genplot = TRUE, check = TRUE, verbose = TRUE)
Arguments

dat          Stratigraphic series to be bioturbated. First column should be age (kyr), second column should be data value.
G            Control parameter in Guinasso and Schinck, 1975. $G = D/ML/v$
ML           Mix layer depth (cm)
v            Sedimentation rate (cm/kyr)
pt           Cosine-tapered window parameter: pt is the percent of the data series tapered (choose 0-1). When pt=1, this is equivalent to a Hann taper.
wiener       Apply Wiener filter for deconvolution stabilization? (T or F)
fhigh        Taner filter cut-off frequency for deconvolution stabilization. By default, no Taner lowpass filter is applied.
output       Which results would you like to return to the console? (0) no output; (1) return unbioturbated series; (2) return impulse response
genplot      Generate summary plots? (T or F)
check        Conduct compliance checks before processing? (T or F) In general this should be activated; the option is included for Monte Carlo simulation.
verbose      Verbose output? (T or F)

References


Examples

```r
as a test series, use the three dominant precession terms from Berger et al. (1992)
ex1=cycles()

mix it
res1 <- bioturb(ex1, G=4, ML=10, v=1, genplot = TRUE)

un-mix it
res2=unbioturb(res1, G=4, ML=10, v=1, genplot = TRUE)

pl()
plot(ex1,type="l",main="black=signal, blue=bioturbated, red=unbioturbated",lwd=3)
lines(res2,col="red")
lines(res1,col="blue")
```
writeCSV  

Write CSV file

Description
Write data frame as file with comma separated values

Usage
writeCSV(filename, output)

Arguments
- filename: Desired filename, in quotes: "result.csv"
- output: Data frame to write to file.

writeT  

Write tab-delimited file

Description
Write data frame as file with tab-delimited values

Usage
writeT(filename, output)

Arguments
- filename: Desired filename, in quotes: "result.tab"
- output: Data frame to write to file.
**Description**

The *wtMean* function is designed for Ar/Ar Geochronology, but is also useful as a general purpose weighted mean estimator. It will calculate weighted mean age, age uncertainty, and other helpful statistics/plots (with interactive graphics for data culling). The function includes the option to generate results using the approach of IsoPlot 3.70 (Ludwig, 2008) or ArArCALC (Koppers, 2002).

**Usage**

```r
wtMean(dat, sd=NULL, unc=1, lambda=5.463e-10, J=NULL, Jsd=NULL, CI=2, cull=-1, del=NULL, sort=1, output=F, idPts=T, size=NULL, unit=1, setAr=95, color="black", genplot=T, verbose=T)
```

**Arguments**

- **dat**: dat must contain one of the following: (1) a vector of dates/values for weighted mean calculation, (2) a matrix with two columns: date or value and uncertainty (one or two sigma), or (3) a matrix with six columns, as follows: date, date uncertainty (one or two sigma), K/Ca, %Ar40*, F, and F uncertainty (one or two sigma). NOTE: F is the ratio Ar40*/Ar39K (see Koppers, 2002). See “details” for more information.
- **sd**: Vector of uncertainties associated with each date or value in ‘dat’, as one or two sigma. This option is ignored if dat has more than one column
- **unc**: What is the uncertainty on your input dates/values? (1) one sigma, or (2) two sigma. DEFAULT is one sigma. This also applies to the F uncertainty, and the J-value uncertainty (if specified)
- **lambda**: Relevant for Ar/Ar only- Total decay constant of K40, in units of 1/year. The default value is 5.463e-10/year (Min et al., 2000).
- **J**: Relevant for Ar/Ar only- Neutron fluence parameter
- **Jsd**: Relevant for Ar/Ar only- Uncertainty for J-value (neutron fluence parameter; as one or two sigma)
- **CI**: Which convention would you like to use for the 95% confidence intervals? (1) ISOPILOT (Ludwig, 2008), (2) ArArCALC (Koppers, 2002) (see below for details)
- **cull**: Would you like select dates/data with a graphical interface? (0=no, 1=select points to retain, -1=select points to remove)
- **del**: A vector of indices indicating data points to remove from weighted mean calculation. If specified, this takes precedence over cull.
- **sort**: Sort by date/values? (0=no; 1=sort into increasing order; 2=sort into decreasing order)
wtMean

output  Return weighted mean results as new data frame? (T or F)
idPts  Identify datum number on each point? (T or F)
size  Multiplicative factor to increase or decrease size of symbols and fonts for plot.
unit  Relevant for geochronology only- The time unit for your results. (1) = Ma, (2) = Ka
setAr  Relevant for Ar/Ar only- Set the %Ar40* level to be illustrated on the plot. The default is 95%.
color  Color to use for symbols. Default is black.
genplot  Generate summary plots? (T or F)
verbose  Verbose output? (T or F)

Details

This function performs weighted mean age calculations, including estimation of age uncertainties, mean square weighted deviation, and probability of fit, following the approaches used in IsoPlot 3.70 (Ludwig, 2008) and ArArCALC (Koppers, 2002). It is also useful as a general purpose weighted mean estimator.

The function accepts input in three formats:

1. each date/value and its uncertainty can be entered as individual vectors (‘dat’ and ‘sd’).
2. a two column matrix can be input as ‘dat’, with each date or value (first column) and its uncertainty (second column).
3. a six column matrix can be input as ‘dat’, with each date, its uncertainty, the associated K/Ca value, %Ar40*, F, and F uncertainty (one or two sigma). This option must be used if you wish to calculate and include the uncertainty associated with J. The uncertainty is calculated and propagated following equation 18 of Koppers (2002).

The following plots are produced:

1. A normal Q-Q plot for the dates/values (in essence this is the same as IsoPlot’s linearized probability plot).
2. A cumulative Gaussian plot for the dates/values (a.k.a. cumulative probability plot). This is derived by summing the individual normal distributions for each date/value.
3. A plot of each date/value with its 2-sigma uncertainties.

In addition, K/Ca and Ar40* data are plotted if provided.

A NOTE regarding confidence intervals: There are two conventions that can be used to calculate the confidence intervals, selected with the option ‘CI’:

1. ISOPLOT convention (Ludwig, 2008). When the probability of fit is >= 0.15, the confidence interval is based on 1.96*sigma. When the probability of fit is < 0.15, the confidence interval is based on t*sigma/sqrt(MSWD).
2. ArArCALC convention (Koppers, 2002). When MSWD <=1, the confidence interval is based on 1.96*sigma. When MSWD > 1, the confidence interval is based on 1.96*sigma*sqrt(MSWD).

ADDITIONAL ADVICE: Use the function readMatrix to load your data in R (rather than the function read).
xplot

Generate cross-plot with kernel density estimates on axes

Description
Generate a cross-plot with kernel density estimates on axes. If multiple data points are superposed in cross-plot, transparency of points reflects data density. Custom axes titles optional.
Usage

\[ xplot(x,y,xlab=NULL,ylab=NULL,main=NULL,fill=T) \]

Arguments

- **x**: Variable 1
- **y**: Variable 2
- **xlab**: Label for the x-axis, in quotes
- **ylab**: Label for the y-axis, in quotes
- **main**: Label for the plot, in quotes
- **fill**: Use gray fill for density plots? (T or F)

Examples

```r
random numbers from a normal distribution
ex1<-rnorm(1000)
random numbers from an exponential distribution
ex2<-rexp(1000)

xplot(ex1,ex2)
```

---

**zoomIn**

*Dynamically explore cross-plot, zoom-in into specified region*

Description

Dynamically explore cross-plot, zoom-in into specified region. Accepts one dataframe/matrix with two columns, or two dataframes/vectors with one column.

Usage

\[ zoomIn(dat1,dat2=NULL,ptsize=1,xmin=NULL,xmax=NULL,ymin=NULL,ymax=NULL,plotype=1, verbose=T) \]

Arguments

- **dat1**: Data frame with one or two columns. If one column, dat2 must also be specified.
- **dat2**: Data frame with one column.
- **ptsize**: Size of plotted points.
- **xmin**: Minimum x-value (column 1) to plot
- **xmax**: Maximum x-value (column 1) to plot
- **ymin**: Minimum y-value (column 2) to plot
- **ymax**: Maximum y-value (column 2) to plot
- **plotype**: Type of plot to generate: 1 = points and lines, 2 = points, 3 = lines
- **verbose**: Verbose output? (T or F)
## Index

* **package**
  - astrochron-package, 4

- anchorTime, 6
- ar, 82
- ar1, 7
- ar1etp, 8
- arcsinT, 9, 24, 26, 52, 82
- armaGen, 10
- astrochron (astrochron-package), 4
- astrochron-package, 4
- autoPlot, 12
- bandpass, 13, 52, 74, 82, 101
- bergerPeriods, 14
- bioturb, 15
- calcPeriods, 16
- cb, 16
- clipIt, 17
- confAdjust, 18, 66, 103
- constantSedrate, 20
- conv_fft, 20
- cosTaper, 21, 26, 39, 41
- cycles, 21
- deconv, 22
- delPts, 23, 43, 49, 134
- demean, 9, 24, 24, 26, 52, 82
- detrend, 9, 24, 24, 26, 52, 82
- diffAccum, 25
- divTrend, 9, 24, 25, 52, 82
- dpssTaper, 21, 26, 39, 41
- eAsm, 11, 27, 29, 117, 119
- eha, 28, 29, 29, 37, 48, 55, 58, 60, 62, 64, 129, 131–133
- eTimeOpt, 31, 34, 131, 133
- eTimeOptTrack, 32, 33
- etp, 9, 35
- extract, 31, 36
- flip, 37
- freq2sedrate, 38
- gausTaper, 21, 26, 38, 41
- getColor, 39
- getData, 39
- getLaskar, 9, 36, 40
- hannTaper, 21, 26, 39, 41
- headn, 41
- hilbert, 42
- idPts, 23, 43, 49, 134
- imbie, 44
- impulseResponse, 46
- integratePower, 47
- iso, 23, 43, 49, 134
- lineage, 49
- linterp, 51
- logT, 9, 24, 26, 51, 82
- lowpass, 14, 52, 74, 82, 101
- lowspec, 19, 31, 53, 58, 60, 62, 64, 66, 76, 103
- makeNoise, 56
- modelA, 57
- mtm, 55, 57, 60, 62, 64, 66, 76, 103
- mtmAR, 31, 55, 58, 59, 62, 64
- mtmML96, 31, 55, 58, 60, 62, 64, 66, 103
- mtmPL, 63, 66, 103
- multiTest, 19, 64, 103
- mwCor, 66
- mwin, 68
- mwinGrid, 69
- mwMinMax, 70
- mwStats, 71
mwStatsGrid, 72
noKernel, 14, 52, 73, 74, 82, 101
noLow, 14, 52, 74, 74, 101
p.adjust, 66
pad, 75
peak, 75
periodogram, 19, 31, 55, 60, 62, 64, 66, 76, 103
pl, 79
plotEha, 79
plS, 81
prewhiteAR, 9, 14, 24, 26, 52, 74, 81, 82, 101
prewhiteAR1, 9, 14, 24, 26, 52, 74, 82, 82, 101
pwrLaw, 83
pwrLawFit, 84
rankSeries, 85
read, 85
readMatrix, 86
repl0, 87
replEps, 88
resample, 88
rfbaseline, 55
rmNA, 89
runmed, 62
s, 89
sedRamp, 90
sedrate2time, 90
slideCor, 91
sortNave, 93
spec.mtm, 19, 55, 58, 60, 62, 64
stepHeat, 93, 141
strats, 96
surrogateCor, 92, 96
surrogates, 97, 98
synthStrat, 99
taner, 14, 52, 100
testBackground, 19, 66, 102
testPrecession, 11, 28, 104, 110, 115, 117, 119, 122, 124
testTilt, 106
timeOptMCMC, 111
timeOptPlot, 110, 114, 117, 119
timeOptSimPwrLaw, 118
timeOptTemplate, 120, 124
timeOptTemplatePlot, 122, 123
timeOptTemplateSim, 125
tones, 128
traceFreq, 31, 129, 132
tracePeak, 32, 130
trackFreq, 31, 129, 131
trackPeak, 32, 132
trim, 23, 43, 49, 134, 134
trimAT, 23, 43, 49, 134, 134
trough, 135
tune, 135
unbioturb, 136
writeCSV, 138
writeT, 138
wtMean, 95, 139
xplot, 141
zoomIn, 142