Package ‘asymLD’

August 29, 2016

Type Package
Title Asymmetric Linkage Disequilibrium (ALD) for Polymorphic Genetic Data
Version 0.1
Date 2016-01-29
Author Richard M. Single
Maintainer Richard M. Single <rsingle@uvm.edu>
Suggests haplo.stats, fields
LazyLoad Yes
Description Computes asymmetric LD measures (ALD) for multi-allelic genetic data. These measures are identical to the correlation measure (r) for bi-allelic data.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-30 19:00:02

R topics documented:

asymLD-package .. 2
compute.ALD .. 2
compute.AShomz ... 4
hla.freqs .. 6
lsort .. 7
snp.freqs ... 8

Index 9
asymLD-package

asymLD: a package for computing asymmetric Linkage Disequilibrium (ALD) between two polymorphic genetic loci

Description

Computes asymmetric LD measures (ALD) for polymorphic genetic data. These measures are identical to the correlation measure (r) for bi-allelic data.

Details

Package: asymLD
Type: Package
Version: 0.1
Date: 2015-03-13
License: GPL-2

asymLD functions

The function compute.ALD() calculates asymmetric LD for haplotype frequency data. The function compute.AShomz() calculates allele specific homozygosity values for haplotype frequency data.

References

compute.ALD

Compute ALD.

Description

A function to compute asymmetric Linkage Disequilibrium measures (ALD) for polymorphic genetic data. These measures are identical to the correlation measure (r) for bi-allelic data.

Usage

compute.ALD(dat, tolerance = 0.01)

Arguments

dat A data.frame with 5 required variables (having the names listed below):
compute.ALD

- **haplo.freq**: A numeric vector of haplotype frequencies.
- **locus1**: A character vector identifying the first locus.
- **locus2**: A character vector identifying the second locus.
- **allele1**: A character vector identifying the allele at locus 1.
- **allele2**: A character vector identifying the allele at locus 2.

- **tolerance**: A threshold for the sum of the haplotype frequencies. If the sum of the haplotype frequencies is greater than 1+tolerance or less than 1-tolerance an error is returned. The default is 0.01.

Value

The return value is a dataframe with the following components:

- **locus1**: The name of the first locus.
- **locus2**: The name of the second locus.
- **F.1**: Homozygosity (expected under HWP) for locus 1.
- **F.1.2**: Conditional homozygosity* for locus1 given locus2.
- **F.2**: Homozygosity (expected under HWP) for locus 2.
- **F.2.1**: Conditional homozygosity* for locus2 given locus1.
- **ALD.1.2**: Asymmetric LD for locus1 given locus2.
- **ALD.2.1**: Asymmetric LD for locus2 given locus1.

*Overall weighted haplotype-specific homozygosity for the first locus given the second locus.

Details

A warning message is given if the sum of the haplotype frequencies is greater than 1.01 or less than 0.99 (regardless of the tolerance setting). The haplotype frequencies that are passed to the function are normalized within the function to sum to 1.0 by dividing each frequency by the sum of the passed frequencies.

Examples

```r
library(asymLD)

# An example using haplotype frequencies from Wilson(2010)
data(hla.freqs)
hla.a_b <- hla.freqs[which(hla.freqs$locus1=="A" & hla.freqs$locus2=="B",]
compute.ALD(hla.a_b)
hla.freqs$locus <- paste(hla.freqs$locus1, hla.freqs$locus2, sep="-")
compute.ALD(hla.freqs[which(hla.freqs$locus=="C-B",)])
# Note: additional columns on the input dataframe (e.g., "locus" above) are allowed, but
# ignored by the function.

# An example using genotype data from the haplo.stats package
require(haplo.stats)
data(hla.demo)
```
compute.AShomz

Compute allele specific homozygosity.

Description

A function to compute allele specific homozygosity values for haplotype frequency data. The allele specific homozygosity is the homozygosity statistic computed for alleles at one locus that are found on haplotypes with a specific allele (the focal allele) at the other locus (the focal locus).
compute.AShomz

Usage

compute.AShomz(dat, tolerance = 0.01, sort.var = c("focal", "allele"),
sort.asc = rep(TRUE, length(sort.var)))

Arguments

dat A data.frame with 5 required variables (having the names listed below):

- haplo.freq A numeric vector of haplotype frequencies.
- locus1 A character vector indentifying the first locus.
- locus2 A character vector indentifying the second locus.
- allele1 A character vector indentifying the allele at locus 1.
- allele2 A character vector indentifying the allele at locus 1.

tolerance A threshold for the sum of the haplotype frequencies. If the sum of the haplotype frequencies is greater than 1+tolerance or less than 1-tolerance an error is returned. The default is 0.01.

sort.var a vector of variable names specifying the "sort by" variables. The default is c("focal","allele").

sort.asc a vector of TRUE/FALSE values, with the same length as "sort.var", indicating whether sorting of each variable is in ascending order. The default order is ascending.

Value

The return value is a dataframe with the following components:

- loci The locus names separated by ".".
- focal The name of the focal locus (locus conditioned on).
- allele The name of the focal allele (allele conditioned on).
- allele.freq The frequency of the focal allele.
- as.homz The allele specific homozygosity (on haplotypes with the focal allele).

Details

A warning message is given if the sum of the haplotype frequencies is greater than 1.01 or less than 0.99 (regardless of the tolerance setting). The haplotype frequencies that are passed to the function are normalized within the function to sum to 1.0 by dividing each frequency by the sum of the passed frequencies.

Examples

library(asymLD)

An example using haplotype frequencies from Wilson(2010)
data(hla.freqs)
compute.ALD(hla.dr_dq)
compute.ASHomz(hla.dr_dq, sort.var=c("focal","allele"), sort.asc=c(TRUE,TRUE))
compute.ASHomz(hla.dr_dq, sort.var=c("focal","allele.freq"), sort.asc=c(FALSE,FALSE))
Note that there is substantially less variability (higher ALD) for HLA*DQB1
conditional on HLA*DRB1 than for HLA*DRB1 conditional on HLA*DQB1, indicating
that the overall variation for DQB1 is relatively low given specific DRB1 alleles.
The largest contributors to ALD(DQB1|DRB1) are the DRB1*0301 and DRB1*1501 focal
alleles, which have high allele frequencies and also have high allele specific
homozygosity values.

hla.freqs <- hla.freqs[hla.freqs$locus1=="DRB1" & hla.freqs$locus2=="DQB1",]

hla.freqs

Pairwise haplotype frequencies for 7 HLA loci

Description

HLA haplotype frequencies for 21 pairs of HLA loci in a set of 300 controls from a study of myopericarditis incidence following smallpox vaccination.

Usage

`data(hla.freqs)`

Format

A data frame with 3063 observations on the following 5 variables.

- `haplo.freq` a numeric vector
- `locus1` a character vector
- `locus2` a character vector
- `allele1` a character vector
- `allele2` a character vector

Source

Wilson, C., 2010 Identifying polymorphisms associated with risk for the development of myopericarditis following smallpox vaccine. The Immunology Database and Analysis Portal (ImmPort), Study #26.

References

https://immport.niaid.nih.gov/immportWeb/clinical/study/displayStudyDetails.do?itemList=SDY26
lsort

Sort a data.frame.

Description

A function to sort a data.frame on specific columns.

Usage

```r
lsort(dat, by = 1:dim(dat)[2], asc = rep(TRUE, length(by)),
      na.last = TRUE)
```

Arguments

dat
a dataframe or a matrix ("dimnames" are used as the variable names for a matrix)

by
a vector or a list of variable names or column indices specifying the "sort by" variables, the default is to sort by all variables in the order they appear in the data set.

asc
a vector with the same length as "by" indicating whether the sorting of each "by" variable is in ascending order, the default order is ascending.

na.last
a flag indicating whether missing values are placed as the last elements in the data set, the default is TRUE

Value

The return value is a sorted dataframe.

Details

The input dataframe is not modified. The code is adapted from code posted to an old s-news listserv.

Examples

```r
## Not run:
library(asymLD)
data(snp.freqs)

# sort snp.freqs by "locus1" (ascending) and "allele1" (descending)
newdata <- lsort(snp.freqs, by=c("locus1","allele1"), asc=c(T,F))
head(newdata)

# sort snp.freqs by the fourth and the second variable (ascending)
newdata <- lsort(snp.freqs, by=c(4,2))

# sort "snp.freqs" by "locus1" and the 5th variable (ascending)
newdata <- lsort(snp.freqs, by=list("locus1",5))

## End(Not run)
```
snp.freqs

Pairwise haplotype frequencies for 4 SNP loci

Description
HLA haplotype frequencies for 6 pairs of SNP loci from the de Bakker et al. 2006 data for 90 unrelated individuals with European ancestry (CEU) from the Centre d’Etude du Polymorphisme Humain (CEPH) collection obtained from the Tagger/MHC webpage.

Usage
data(snp.freqs)

Format
A data frame with 20 observations on the following 5 variables.
- locus1 a character vector
- locus2 a character vector
- allele1 a character vector
- allele2 a character vector
- haplo.freq a numeric vector

Details
For bi-allelic SNP data the ALD measures are symmetric and equivalent to the r correlation measure of LD.

Source

References
http://www.broadinstitute.org/mpg/tagger/mhc.html
Index

*Topic LD
 asymLD-package, 2
*Topic data
 hla.freqs, 6
 snp.freqs, 8
*Topic disequilibrium
 asymLD-package, 2
*Topic genetics
 asymLD-package, 2
*Topic linkage
 asymLD-package, 2

asymLD (asymLD-package), 2
asymLD-package, 2

compute.ALD, 2
compute.AShomz, 4

hla.freqs, 6

lsort, 7

snp.freqs, 8